JPH01290205A - Manufacture of high-polymer composite type rare-earth magnet - Google Patents

Manufacture of high-polymer composite type rare-earth magnet

Info

Publication number
JPH01290205A
JPH01290205A JP63119356A JP11935688A JPH01290205A JP H01290205 A JPH01290205 A JP H01290205A JP 63119356 A JP63119356 A JP 63119356A JP 11935688 A JP11935688 A JP 11935688A JP H01290205 A JPH01290205 A JP H01290205A
Authority
JP
Japan
Prior art keywords
powder
heat
sintered body
magnetic field
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63119356A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Hiroshi Oyanagi
大柳 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63119356A priority Critical patent/JPH01290205A/en
Publication of JPH01290205A publication Critical patent/JPH01290205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a polymer composite type rare-earth magnet having anisotropy whose magnet characteristic is excellent by a method wherein a heat-treated molded substance is impregnated with a high-polymer resin and composite-molded. CONSTITUTION:An R2T14B-based (where R represents Y and at least one kind of rare-earth elements and T represents a transition element) ingot containing Nd, Fe and B as main components is crushed finely; after that, a powder molded substance which has been obtained by a molding operation in a magnetic field is sintered to form a sintered substance whose crystal orientation degree is high. Then, this sintered substance is crushed; after that, a powder, for molding use, is adjusted so as not to contain a powder whose particle diameter is less than 10mum; the powder is molded in the magnetic field and heat-treated; after that, this heat-treated molded substance is impregnated with a polymer resin. It is desirable that a heat-treatment temperature for a heat-treatment process is within a range of 480-1120 deg.C. By this setup, it is possible to obtain an R-T-B- based polymer composite type magnet having a high magnetic characteristic.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、いわゆるゴム磁石やプラスチック磁石を典型
とした高分子複合型磁石の製造方法に関し、特にNd−
Fe−B系永久磁石を代表とする希土類金属(R)と遷
移金属(T)とホウ素(B)を主成分としてなるR 2
 T 14 B系の希土類磁石粉末を用いた高分子複合
型希土類磁石の磁石特性の改善に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of manufacturing a polymer composite magnet, typically a so-called rubber magnet or a plastic magnet.
R2 whose main components are rare earth metals (R), transition metals (T), and boron (B), typified by Fe-B permanent magnets.
This invention relates to improving the magnetic properties of a polymer composite rare earth magnet using T 14 B-based rare earth magnet powder.

[従来の技術] 高分子複合型磁石は、高分子樹脂中に磁石粉末を分散さ
せたもの、あるいは磁石粉末を高分子樹脂で結着させた
ものである。この磁石は、鋳造磁石や焼結磁石等には見
られない種々の利点例えば弾力性や加工容易性を備えて
おり、種々の方面に用いられている。しかしながら、こ
の高分子複合磁石は磁石粉末と非磁性のv!J#で形成
されているため、焼結磁石等に比べ、磁石特性が低いと
いう欠点を有している。そのため、粉末を磁場中で配向
させる等の異方性化により、高い磁石特性を達成しよう
としている。
[Prior Art] A polymer composite magnet is one in which magnet powder is dispersed in a polymer resin, or one in which magnet powder is bound with a polymer resin. This magnet has various advantages not found in cast magnets, sintered magnets, etc., such as elasticity and ease of processing, and is used in various fields. However, this polymer composite magnet consists of magnetic powder and non-magnetic v! Since it is made of J#, it has the disadvantage of having lower magnetic properties than sintered magnets and the like. Therefore, attempts are being made to achieve high magnetic properties by making the powder anisotropic, such as by orienting the powder in a magnetic field.

分散、結着される磁石粉末としては、これ迄、種々のも
のが用いられているが、その代表例として現在数も高い
磁石特性を示しているNd−Fe・B系焼結磁石粉末が
ある。
Various types of magnet powder have been used to disperse and bind, but a representative example is Nd-Fe/B sintered magnet powder, which currently exhibits high magnetic properties. .

[発明が解決しようとする課題] 従来の希土類磁石粉末を使用した高分子複合磁石は、原
料を溶解して得た合金鋳塊を熱処理後、粉砕し、その粉
末を高分子樹脂と混合し、磁場中で成形して製造されて
いた。ここで使用されていた磁石合金粉末は、磁界中で
の結晶粒配向性を向上させるため、微細な単結晶粒子か
らなっていることが望ましかった。しかしながら、Nd
 −Fe・B系磁石で代表されるR2 T I4B系合
金においては、粉砕時における機械的応力により、保磁
力(IHc )の低下が生じるなめ、粉末が単結晶粒子
からなる微細な領域では、著しく  IHcが低下して
いた。そのため、溶解インゴットを出発原料として使用
した製法においては、高IHcを有する焼結磁石を粉砕
して磁石粉末として使用しても、著しく低い磁石特性を
示す高分子複合型磁石となっていた。
[Problems to be solved by the invention] Conventional polymer composite magnets using rare earth magnet powder are made by heat-treating an alloy ingot obtained by melting raw materials, pulverizing it, mixing the powder with polymer resin, It was manufactured by molding in a magnetic field. The magnet alloy powder used here was desirably composed of fine single crystal grains in order to improve crystal grain orientation in a magnetic field. However, Nd
-In R2T I4B alloys represented by Fe/B magnets, mechanical stress during crushing causes a decrease in coercive force (IHc), and in fine regions where the powder is composed of single crystal grains, IHc was decreasing. Therefore, in a manufacturing method using a molten ingot as a starting material, even if a sintered magnet having a high IHc is crushed and used as magnet powder, the result is a polymer composite magnet that exhibits extremely poor magnetic properties.

一方、粉砕によるIHcの低下がほとんど生じないR−
T−B系磁石合金の作製法としては、液体急冷法が知ら
れている。しかしながら、この製法によって得られた粉
末では、異方性化は実現できなかった。その後、この液
体急冷合金を熱間加工することによって、異方性化が可
能な磁石粉末の得られることが判明しな、この方法は、
高温で、高圧を必要とするため、設備が高価で、大がか
りなものとなるのに加え、製造状態における特性の安定
化には不安が残っており、工業的には有益なものとはい
いがたい。
On the other hand, R-
A liquid quenching method is known as a method for producing a T-B magnet alloy. However, the powder obtained by this manufacturing method could not achieve anisotropy. Subsequently, it was discovered that by hot working this liquid quenched alloy, it was possible to obtain magnet powder that could be made anisotropic.
Since it requires high temperature and high pressure, the equipment is expensive and large-scale, and there are concerns about stabilizing the characteristics in the manufacturing state, so although it may not be useful from an industrial perspective. sea bream.

そこで、本発明の技術的課題は、通常、実施されている
R−T−B系焼結磁石の製造工程を活用して、高性能の
異方性高分子複合型希土類磁石の製造方法を提供するも
のである。
Therefore, the technical problem of the present invention is to provide a method for manufacturing a high-performance anisotropic polymer composite rare earth magnet by utilizing the normally practiced manufacturing process of R-T-B sintered magnets. It is something to do.

[発明を解決するための手段] 本発明によれば、Nd、Fe、Bを主成分として含有す
るR2T14B系(RはY及び希土類元素の少なくとも
一種、Tは遷移元素を表わす、)インゴ・yトを粉砕し
て初期粉末を生成した後、この初期粉末を第1次磁場中
成形し、第1次磁性粉末成形体を生成する第1次磁場中
成形工程と、この第1次磁性粉末成形体を焼結して焼結
体を生成する焼結工程と、この焼結体を粉砕して焼結体
粉砕粉末を生成する焼結体粉砕工程と、この焼結体粉砕
粉末を第2次磁場中成形し、第2次磁性粉末成形体を生
成する第2次磁場中成形工程と、この第2次磁性粉末成
形体を熱処理し、熱処理成形体を生成する熱処理工程と
、この熱処理成形体を高分子樹脂で複合成形する樹脂複
合成形工程とを有する高分子複合型希土類磁石の製造方
法において、前記樹脂複合成形工程は、前記熱処理成形
体を高分子樹脂で含浸することにより複合成形すること
を特徴とする高分子複合型希土類磁石の製造方法が得ら
れる。ここで、前記熱処理成形体を前記熱処理温度保持
後、急冷する急冷工程を含むことが望ましい。
[Means for Solving the Invention] According to the present invention, an R2T14B (R represents at least one of Y and a rare earth element, T represents a transition element) ingo.y containing Nd, Fe, and B as main components. A first magnetic field compaction step of pulverizing the powder to produce an initial powder, and then compacting the initial powder in a first magnetic field to produce a first magnetic powder compact, and this first magnetic powder compaction. A sintering process in which the body is sintered to produce a sintered body, a sintered body crushing process in which this sintered body is crushed to generate a sintered body crushed powder, and this sintered body crushed powder is processed into a second process. A second magnetic field forming step of forming in a magnetic field to produce a second magnetic powder compact; a heat treatment step of heat treating the second magnetic powder compact to produce a heat-treated compact; and a heat-treated compact. In the method for manufacturing a polymer composite rare earth magnet, the resin composite molding step includes composite molding by impregnating the heat-treated molded body with a polymer resin. A method for manufacturing a polymer composite rare earth magnet is obtained. Here, it is desirable to include a quenching step of quenching the heat-treated molded article after the heat treatment temperature is maintained.

更に本発明によれば、Nd、Fe、Bを主成分として含
有するR2T14B系(RはY及び希土類元素の少なく
とも一種、Tは遷移元素を表わす、)インゴットを粉砕
して初期粉末を生成した後、この初期粉末を第1次磁場
中成形し、第1次磁性粉末成形体を生成する第1次磁場
中成形工程と、この第1次磁性粉末成形体を焼結して焼
結体を生成する焼結工程と、この焼結体を粉砕して焼結
体粉砕粉末を生成する焼結体粉砕工程と、この焼結体粉
砕粉末を熱処理し、熱処理成形体を生成する熱処理工程
と、この熱処理成形体を粉砕して熱処理成形体粉末を生
成し、この熱処理成形体粉末を、高分子IfA脂と混合
した後、第2次磁場中にて圧縮成形又は射出成形するこ
とを特徴とする高分子複合型希土類磁石の製造方法が得
られる。
Further, according to the present invention, after pulverizing an R2T14B ingot containing Nd, Fe, and B as main components (R represents at least one of Y and a rare earth element, and T represents a transition element) to generate an initial powder. , a first magnetic field compacting step in which this initial powder is compacted in a first magnetic field to produce a first magnetic powder compact, and this first magnetic powder compact is sintered to produce a sintered compact. a sintering process of pulverizing the sintered body to produce a sintered body pulverized powder; a heat treatment process of heat-treating the sintered body pulverized powder to produce a heat-treated molded body; The heat-treated molded product is pulverized to produce a heat-treated molded product powder, and the heat-treated molded product powder is mixed with a polymeric IfA resin and then compression molded or injection molded in a secondary magnetic field. A method for manufacturing a molecular composite rare earth magnet is obtained.

ここで本発明の上記した2通りの高分子複合型希土類磁
石の製造方法においては、熱処理工程の熱処理温度は4
80〜1120℃の範囲内が望ましい。
In the above-described two methods of manufacturing a polymer composite rare earth magnet of the present invention, the heat treatment temperature in the heat treatment step is 4.
The temperature is preferably within the range of 80 to 1120°C.

更に、本発明の上記した2通りの高分子複合型希土類磁
石の製造方法においては、前記焼結体粉砕工程は、前記
焼結体粉砕粉末の粒径が実質的に10μm〜1圓の範囲
内になるように前記焼結体を粉砕することが望ましい。
Furthermore, in the above-described two methods of manufacturing a polymer composite rare earth magnet of the present invention, the sintered body pulverizing step is performed so that the particle size of the sintered body pulverized powder is substantially within the range of 10 μm to 1 μm. It is desirable to crush the sintered body so that

即ち、本発明は、溶解して得られた合金インゴットを微
粉砕した後、磁場中で成形して得られた粉末成形体を焼
結し、高い結晶配向度の焼結体とし、次にこの焼結体を
粉砕後、粒径が10μm未満の粉末を含有しないように
調整した成形用粉末を、 ■ 磁場中成形し、熱処理した後に、この熱処理成形体
に高分子樹脂を含浸する。
That is, the present invention involves pulverizing an alloy ingot obtained by melting, sintering the obtained powder compact by compacting it in a magnetic field to form a sintered compact with a high degree of crystal orientation, and then After pulverizing the sintered body, a molding powder adjusted so as not to contain powder with a particle size of less than 10 μm is (1) molded in a magnetic field and heat-treated, and then the heat-treated molded body is impregnated with a polymer resin.

■ 熱処理した後、高分子樹脂と混合し、磁場中成形す
る。
■ After heat treatment, it is mixed with polymer resin and molded in a magnetic field.

ことにより、高い磁石特性を有するR−T−B系高分子
複合型磁石を実現するものである。
As a result, an RTB-based polymer composite magnet having high magnetic properties is realized.

本発明の磁石特性の向上は、熱処理によるIHcの向上
とBrの向上に関係しており、この効果は、成形用粉末
が複数の配向した結晶粒で構成されていることに深く起
因していることを、本発明者らは種々実験を行なった結
果発見した。
The improvement in magnetic properties of the present invention is related to the improvement in IHc and Br due to heat treatment, and this effect is deeply attributable to the fact that the molding powder is composed of a plurality of oriented crystal grains. The present inventors discovered this as a result of various experiments.

本発明は、R2T14B系焼結体を粉砕してR2T14
B系高分子複合型磁石を製造する方法において、焼結体
を粉砕して作製した成形用粉末の粒子径を10μmから
1flの範囲とし、磁石の製造工程に、磁石粉末の磁界
中成形及び熱処理を含むものであり、高い磁石特性が実
現でき、工業上非常に有益となる。
The present invention produces R2T14B by crushing R2T14B sintered bodies.
In the method for manufacturing a B-based polymer composite magnet, the particle size of the molding powder prepared by crushing the sintered body is in the range of 10 μm to 1 fl, and the magnet manufacturing process includes magnetic field molding and heat treatment of the magnet powder. It is possible to achieve high magnetic properties, which is very useful industrially.

焼結体粉砕粉末の粒子径を10μm以上としたのは、こ
れ以上の粒径になると熱処理によるIHCの向上が票著
となり、同時にB r、 (BH)、、xの向上も顕著
となるからである。10μm以下の粉末では、熱処理を
施しても粉砕による損傷から磁石合金が著しく回復する
ことは困難となっている。一方、上限の平均粉砕粒径を
IIIIIとしたのは、これ以上の粒径にすると、高分
子複合磁石としての均質性が低下するのと同時に、粉末
成形時における金型破損や、流動性の不均一化等の不都
合が生ずるためである。
The reason why the particle size of the sintered compact powder was set to be 10 μm or more is because if the particle size is larger than this, the improvement in IHC due to heat treatment becomes significant, and at the same time, the improvement in B r, (BH), , x becomes significant. It is. For powders with a diameter of 10 μm or less, it is difficult for the magnetic alloy to significantly recover from damage caused by crushing even if heat treatment is performed. On the other hand, the reason why the upper limit of the average pulverized particle size was set as III is that if the particle size is larger than this, the homogeneity of the polymer composite magnet will decrease, and at the same time, it may cause mold breakage during powder compaction or the fluidity may deteriorate. This is because inconveniences such as non-uniformity occur.

また、粉末の最小粒径を10μm以上としても、本発明
における IHc向上の寄与により磁石特性は向上する
ものであるが、粉末の粒度分布状態によっては、磁石粉
末の占積率が低下するために、Brが減少し、(BH)
laXも減少することもあり得る。
Furthermore, even if the minimum particle size of the powder is set to 10 μm or more, the magnetic properties will be improved due to the contribution of the IHc improvement in the present invention, but depending on the particle size distribution state of the powder, the space factor of the magnetic powder will decrease. , Br decreases, (BH)
laX may also decrease.

しかしながら、この現象は粉末の粒度分布を変化させる
ことにより、容易に改善できるものであり、本発明の負
効果となるものではない、以下、実施例について図面を
参照して述べる。
However, this phenomenon can be easily improved by changing the particle size distribution of the powder, and is not a negative effect of the present invention.Examples will be described below with reference to the drawings.

[実施例] 実施例1 純度97wt%のNd(残部はCe、Prを主体とする
他の希土類元素)、フェロボロン(B純分約20wt%
)及び電解鉄を使用し、希土類元素(R)が34.0w
t%、Bが1.Owt%、残部Feとなるように、アル
ゴン雰囲気中で、高周波加熱により溶解し合金インゴッ
トを得た。
[Example] Example 1 Nd with a purity of 97 wt% (the remainder is other rare earth elements mainly consisting of Ce and Pr), ferroboron (B purity about 20 wt%)
) and electrolytic iron, the rare earth element (R) is 34.0w
t%, B is 1. The alloy was melted by high-frequency heating in an argon atmosphere to obtain an alloy ingot such that the remaining content was Fe.

次に、この合金インゴットを粗粉砕した後、ボールミル
を用いて、平均粒径的2μmに微粉砕した。この合金粉
末を20 KOeの磁界中、1 ton/aaの圧力で
直方体状に成形した0次に、この成形体を真空中104
0℃で1時間保持した後、Ar中で3時間保持し、焼結
体を得た。この焼結体は7.55gr/ am3の密度
を有し、平均結晶粒径は約8μmである。この一部を6
00℃で2時間時効し、磁石特性を測定したところ、B
 r 13.7にG、  IHc12.5にOe、 (
BH)Ilax44.ON、G、Oe程度であった。
Next, this alloy ingot was coarsely ground, and then finely ground to an average particle size of 2 μm using a ball mill. This alloy powder was molded into a rectangular parallelepiped shape under a pressure of 1 ton/aa in a magnetic field of 20 KOe.
After holding at 0°C for 1 hour, it was held in Ar for 3 hours to obtain a sintered body. This sintered body has a density of 7.55 gr/am3 and an average grain size of about 8 μm. Part of this 6
When the magnetic properties were measured after aging at 00°C for 2 hours, B
G at r 13.7, Oe at IHc12.5, (
BH) Ilax44. It was about ON, G, Oe.

一方、時効処理を施さない焼結体について、500μm
以下の粒径となるように粗粉砕した後、それぞれ20μ
m以下、40μm以下、60μm以下、80μm以下、
100μm以下の粉末粒子を除去し、約20にOeの磁
界中、2 jon/cIiの成形圧で円盤状に成形した
On the other hand, for the sintered body that is not subjected to aging treatment, 500 μm
After coarsely pulverizing to the following particle size, each
m or less, 40 μm or less, 60 μm or less, 80 μm or less,
Powder particles of 100 μm or less were removed, and the product was molded into a disk shape under a molding pressure of 2 john/cIi in a magnetic field of about 20 Oe.

次に、これらの成形体を真空中1000℃で1時間保持
した後、Ar中1時間保持し急冷した。
Next, these molded bodies were held in vacuum at 1000° C. for 1 hour, and then held in Ar for 1 hour to be rapidly cooled.

これら成形体の密度(G、D、)は5.8〜6.4gr
/am3であった。
The density (G, D,) of these molded bodies is 5.8 to 6.4 gr
/am3.

次に、これら成形体を真空引き後、エポキシ樹脂を含浸
した後、80℃で5時間保持し硬化させ、高分子複合磁
石とした。その磁気特性の測定結果を第1図に示す。
Next, these molded bodies were evacuated, impregnated with epoxy resin, and then held at 80° C. for 5 hours to be cured to obtain a polymer composite magnet. Figure 1 shows the measurement results of its magnetic properties.

また、比較のために前述の時効処理した焼結体について
も同様に、粗粉砕、磁場中成形、エポキシ樹脂含浸によ
る高分子複合化を行ない、磁石特性を測定した。その結
果は、G、D、5.4(lr/am3゜Br5.1にG
 、  IHc 2.5にOe、 (BH)、、x3.
OH,G、Oeであった。
Further, for comparison, the above-mentioned aged sintered body was similarly subjected to coarse pulverization, molding in a magnetic field, and polymer composite formation by impregnation with epoxy resin, and its magnetic properties were measured. The result is G, D, 5.4 (lr/am3°Br5.1)
, IHc 2.5 to Oe, (BH),, x3.
They were OH, G, and Oe.

第1図示のように、粒子径が10μm以下の粉末を除去
することにより、磁石特性が著しく向上する。
As shown in the first diagram, by removing powder having a particle size of 10 μm or less, the magnetic properties are significantly improved.

実施例2 5wt%のCe、15wt%のPr、残部Nd(ただし
、他の希土類元素はNdとして含めた。)からなるセリ
ウムジジムとジスプロシウム、フェロボロン、電解鉄、
電解コバルトを使用し、実施例1と同様にして、(Ce
 −Pr−Nd)が31.0wt%Dyが2.5wt%
、Coが7wt%、残部がFeのR−T−B系インゴッ
トを得た。
Example 2 Cerium dididium, dysprosium, ferroboron, electrolytic iron, consisting of 5 wt% Ce, 15 wt% Pr, and the balance Nd (however, other rare earth elements were included as Nd).
Using electrolytic cobalt, (Ce
-Pr-Nd) is 31.0wt%Dy is 2.5wt%
An R-T-B ingot containing 7 wt% of Co and the balance of Fe was obtained.

次に、実施例1と同様にして、平均粒径的2μmに微粉
砕した後、磁場中成形、1050℃での焼結を行なった
。この焼結体の密度は7.55or/aI13であり、
平均結晶粒径は約6μmとなっていた。これらの一部を
600℃で2時間時効した磁石特性は、B r 12.
3KG、  IHc14.5にOe、 (BH)lax
34.5H,G、Oeであった。
Next, in the same manner as in Example 1, the powder was pulverized to an average particle diameter of 2 μm, followed by compacting in a magnetic field and sintering at 1050°C. The density of this sintered body is 7.55or/aI13,
The average crystal grain size was approximately 6 μm. The magnetic properties of some of these aged at 600°C for 2 hours are B r 12.
3KG, IHc14.5 to Oe, (BH) lax
It was 34.5H, G, Oe.

一方、時効処理を施さない焼結体を、実施例1と同様に
して粗粉砕後20μm以下、40μm以下、60μm以
下、80μm以下、100μm以下の粉末を除去した後
、600℃で熱処理した。
On the other hand, a sintered body that was not subjected to aging treatment was coarsely pulverized in the same manner as in Example 1, and after removing powder of 20 μm or less, 40 μm or less, 60 μm or less, 80 μm or less, and 100 μm or less, it was heat treated at 600° C.

次に、この熱処理した粉末を解砕した後、ポリエチレン
を40VO1,%混合し、約100℃にて、20 KO
eの磁界を印加しながら、金型中に射出成形し、高分子
複合磁石を得た。その磁石特性の測定結果を第2図に示
す。
Next, after crushing this heat-treated powder, 40 VO 1% polyethylene was mixed, and 20 KO
A polymer composite magnet was obtained by injection molding into a mold while applying a magnetic field of e. Figure 2 shows the measurement results of the magnetic properties.

また比較のために、上述の時効処理した焼結体について
も同様に粗粉砕、ポリエチレン混合後射出成形による高
分子複合磁石化を行なった特性値は Br4.6にG、
    I)Ic3.5KOe   、   (BH)
1.x 3.5H,G、Oeであった。
For comparison, the above-mentioned aged sintered body was similarly coarsely pulverized, mixed with polyethylene, and then made into a polymer composite magnet by injection molding.The characteristic values were Br4.6, G,
I) Ic3.5KOe, (BH)
1. x 3.5H, G, Oe.

第2図示のように、粒子径が10μm以下の粉末を除去
することにより、磁石特性が著しく向上する傾向となっ
ている。
As shown in the second diagram, by removing powder having a particle size of 10 μm or less, the magnetic properties tend to be significantly improved.

以上の実施例で示されたように、異方性を有するR 2
 T 1t、 B系焼結合金を粉砕して作製した成形用
粉末において、10μm以下の粉末粒子を含有しないこ
とにより、磁石特性の著しい向上が実現される。
As shown in the above examples, R 2 having anisotropy
By not containing powder particles of 10 μm or less in the molding powder produced by pulverizing the T 1t, B-based sintered alloy, a significant improvement in magnetic properties is achieved.

以上の実施例は、Nd−Fe−B系。The above embodiments are based on Nd-Fe-B.

Ce−Pr−Nd−Fe−Co−B系についてのみ述べ
たが、Ndの一部をY及び他の希土類元素例えばGd、
Tb、Ho等で置換したり、Feの一部を他の遷移金属
例えばMn、Cr、Ni等で置換したり、Bの一部を他
の半金属例えばSi。
Although only the Ce-Pr-Nd-Fe-Co-B system has been described, a part of Nd may be replaced with Y and other rare earth elements such as Gd,
Tb, Ho, etc. may be substituted, a portion of Fe may be substituted with other transition metals such as Mn, Cr, Ni, etc., and a portion of B may be substituted with other semimetals such as Si.

C等で置換しても、磁石合金の組成がNd −Fe・B
を主成分の一部としており、また磁石の化合物系でNd
2Fe14B系で代表されるようなR2T14Bが磁性
に寄与しているものであれば、本発明の効果が十分に期
待できるものであることは、容易に推測できる。
Even if it is replaced with C etc., the composition of the magnet alloy remains Nd-Fe・B.
is part of the main component, and Nd is also included in the compound system of the magnet.
It can be easily inferred that the effects of the present invention can be fully expected as long as R2T14B, such as the 2Fe14B system, contributes to magnetism.

また、本実施例では、高分子樹脂としてエポキシ樹脂と
ポリエチレンについてのみ述べたが、成形体内部に介在
し、成形体の強度向上に寄与するものであれば、いかな
る物質(例えば、他の高分子樹脂やゴム等であるばかり
でなく金属)であっても、本発明の範囲にあることは、
当業者であれば容易に理解できるものである。
In addition, in this example, only epoxy resin and polyethylene were described as polymer resins, but any material (for example, other polymer Even if it is not only resin, rubber, etc., but also metal), it is within the scope of the present invention.
Those skilled in the art can easily understand this.

また、本実施例に示した高分子複合磁石化の製法につい
ては、成形体に樹脂を含浸する含浸型と、粉末と樹脂を
混練した後射出成形する射出成形型についてのみ述べた
が、他の製法例えば、粉末と、vA脂を混合した後圧縮
成形する圧縮成形型、押出による成形、ロールによる成
形等色の製法についいても適用できることは、当業者で
あれば容易に推測できるものである。
In addition, regarding the manufacturing method of polymer composite magnetization shown in this example, only the impregnation type in which the molded body is impregnated with resin and the injection molding type in which the powder and resin are kneaded and then injection molded are described. For example, those skilled in the art can easily guess that it can be applied to a compression molding mold in which powder and vA fat are mixed and then compression molded, extrusion molding, roll molding, etc.

[発明の効果] 本発明によれば、通常実施されているR−T・B系焼結
磁石の製造工程を活用して、磁石特性の優れた異方性を
有する高分子複合型希土類磁石の製造方法を提供するこ
とができる。
[Effects of the Invention] According to the present invention, a polymer composite rare earth magnet having excellent anisotropy in magnetic properties can be produced by utilizing the commonly practiced manufacturing process of RT-B sintered magnets. A manufacturing method can be provided.

更に本発明によれば、焼結体粉末を原料として含浸型、
圧縮成形型、射出成形型等の広汎な高分子複合型希土類
磁石の製造方法を提供することができるので、工業上非
常に有益である。
Further, according to the present invention, an impregnated type, using sintered body powder as a raw material,
Since it is possible to provide a wide range of manufacturing methods for polymer composite rare earth magnets, such as compression molding molds and injection molding molds, it is very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1における焼結体を粗粉砕し
た粉末の一部除去して作製した成形用粉末の除去した最
大粒子径と、この成形体粉末を使用した高分子複合型希
土類磁石の特性との関係を示す図、第2図は本発明の実
施例2における焼結体を粗粉砕した粉末の一部除去して
作製した成形用粉末の除去した最大粒子径と、この成形
体粉末を使用した高分子複合型希土類磁石の特性との関
係を示す図である。 第1図 陳ムした粉ふ粒吾径(μm)
Figure 1 shows the removed maximum particle diameter of the molding powder prepared by removing a part of the powder obtained by coarsely pulverizing the sintered body in Example 1 of the present invention, and the polymer composite mold using this molded body powder. Figure 2 shows the relationship between the characteristics of rare earth magnets and the maximum particle size of the molding powder produced by removing a part of the powder obtained by coarsely pulverizing the sintered body in Example 2 of the present invention. FIG. 3 is a diagram showing the relationship with the characteristics of a polymer composite rare earth magnet using molded body powder. Figure 1 Diameter of crushed powder grains (μm)

Claims (3)

【特許請求の範囲】[Claims] 1.Nd,Fe,Bを主成分として含有するR_2T_
1_4B系(RはY及び希土類元素の少なくとも一種、
Tは遷移元素を表わす。)インゴットを粉砕して初期粉
末を生成した後、該初期粉末を第1次磁場中成形し、第
1次磁性粉末成形体を生成する第1次磁場中成形工程と
、 該1次磁場粉末成形体を焼結して焼結体を生成する焼結
工程と、 該焼結体を粉砕して焼結体粉砕粉末を生成する焼結体粉
砕工程と、 該焼結体粉砕粉末を第2次磁場中成形し、第2次磁性粉
末成形体を生成する第2次磁場中成形工程と、 該第2次磁性粉末成形体を熱処理し、熱処理成形体を生
成する熱処理工程と、 該熱処理成形体を高分子樹脂で複合成形する樹脂複合成
形工程とを有する高分子複合型希土類磁石の製造方法に
おいて、前記樹脂複合成形処理工程は、前記熱処理成形
体を高分子樹脂で含浸することにより複合成形すること
を特徴とする高分子複合型希土類磁石の製造方法。
1. R_2T_ containing Nd, Fe, and B as main components
1_4B system (R is at least one of Y and a rare earth element,
T represents a transition element. ) A first magnetic field compaction step of pulverizing the ingot to produce an initial powder, and then compacting the initial powder in a first magnetic field to produce a first magnetic powder compact; and the first magnetic field powder compaction. a sintering process of sintering the sintered body to produce a sintered body; a sintered body crushing process of crushing the sintered body to generate a sintered body crushed powder; and a second process of the sintered body crushed powder. a second magnetic field compacting step of forming in a magnetic field to produce a second magnetic powder compact; a heat treatment step of heat-treating the second magnetic powder compact to produce a heat-treated compact; and the heat-treated compact. In the method for manufacturing a polymer composite rare earth magnet, the method includes a resin composite molding step of compositely molding a magnet with a polymer resin, wherein the resin composite molding treatment step performs composite molding by impregnating the heat-treated molded body with a polymer resin. A method for manufacturing a polymer composite rare earth magnet, characterized by the following.
2.Nd,Fe,Bを主成分として含有するR_2T_
1_4B系(RはY及び希土類元素の少なくとも一種、
Tは遷移元素を表わす。)インゴットを粉砕して初期粉
末を生成した後、該初期粉末を第1次磁場中成形し、第
1次磁性粉末成形体を生成する第1次磁場中成形工程と
、 該1次磁場粉末成形体を焼結して焼結体を生成する焼結
工程と、 該焼結体を粉砕して焼結体粉砕粉末を生成する焼結体粉
砕工程と、 該焼結体粉砕粉末を熱処理し、熱処理成形体を生成する
熱処理工程と、 該熱処理成形体を粉砕して、熱処理成形体粉末を生成し
、該熱処理成形体粉末を、高分子樹脂と混合した後、第
2次磁場中にて圧縮成形又は射出成形することを特徴と
する高分子複合型希土類磁石の製造方法。
2. R_2T_ containing Nd, Fe, and B as main components
1_4B system (R is at least one of Y and a rare earth element,
T represents a transition element. ) A first magnetic field compaction step of pulverizing the ingot to produce an initial powder, and then compacting the initial powder in a first magnetic field to produce a first magnetic powder compact; and the first magnetic field powder compaction. a sintering process of sintering the body to produce a sintered body; a sintered body crushing process of crushing the sintered body to generate a sintered body crushed powder; heat-treating the sintered body crushed powder; A heat treatment step for producing a heat-treated compact; pulverizing the heat-treated compact to produce heat-treated compact powder; mixing the heat-treated compact powder with a polymer resin; and then compressing the heat-treated compact in a secondary magnetic field. A method for producing a polymer composite rare earth magnet, which comprises molding or injection molding.
3.第1又は第2の請求項記載の高分子複合型希土類磁
石の製造方法において、前記焼結体粉砕工程は、前記焼
結体粉砕粉末を粒径が、実質的に10μm〜1mmの範
囲内になるように、前記焼結体を粉砕することを特徴と
する高分子複合型希土類磁石の製造方法。
3. In the method for manufacturing a polymer composite rare earth magnet according to claim 1 or 2, the sintered body pulverizing step is performed so that the sintered body pulverized powder has a particle size substantially within the range of 10 μm to 1 mm. A method for manufacturing a polymer composite rare earth magnet, which comprises pulverizing the sintered body so that the sintered body is crushed.
JP63119356A 1988-05-18 1988-05-18 Manufacture of high-polymer composite type rare-earth magnet Pending JPH01290205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119356A JPH01290205A (en) 1988-05-18 1988-05-18 Manufacture of high-polymer composite type rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119356A JPH01290205A (en) 1988-05-18 1988-05-18 Manufacture of high-polymer composite type rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH01290205A true JPH01290205A (en) 1989-11-22

Family

ID=14759464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119356A Pending JPH01290205A (en) 1988-05-18 1988-05-18 Manufacture of high-polymer composite type rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH01290205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214608A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH03214607A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH0422107A (en) * 1990-05-17 1992-01-27 Fuji Elelctrochem Co Ltd Method of manufacturing bond magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169403A (en) * 1986-01-22 1987-07-25 Tohoku Metal Ind Ltd Manufacture of polymer composite type rare earth magnet
JPS6355908A (en) * 1986-08-26 1988-03-10 Tdk Corp Manufacture of rare-earth resin magnet
JPS6369205A (en) * 1986-09-10 1988-03-29 Seiko Instr & Electronics Ltd Manufacture of alloy powder of rare earth element, iron and boron for resin magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169403A (en) * 1986-01-22 1987-07-25 Tohoku Metal Ind Ltd Manufacture of polymer composite type rare earth magnet
JPS6355908A (en) * 1986-08-26 1988-03-10 Tdk Corp Manufacture of rare-earth resin magnet
JPS6369205A (en) * 1986-09-10 1988-03-29 Seiko Instr & Electronics Ltd Manufacture of alloy powder of rare earth element, iron and boron for resin magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214608A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH03214607A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH0422107A (en) * 1990-05-17 1992-01-27 Fuji Elelctrochem Co Ltd Method of manufacturing bond magnet

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH02288305A (en) Rare earth magnet and manufacture thereof
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH07118408B2 (en) Method for manufacturing polymer composite rare earth magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH0775204B2 (en) Method for manufacturing polymer composite rare earth magnet
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JPS62281307A (en) Nd-fe-b plastic magnet and its manufacture
JPH0583627B2 (en)
KR970009409B1 (en) Permanent magnet material processing method
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPS62281308A (en) Manufacture of nd-fe-b plastic magnet
JPH02153041A (en) Manufacture of high polymer compounded type rare earth magnet material
JPH07230907A (en) Manufacture of polymer compound type rare earth magnet material
JPH02106906A (en) Manufacture of polymer composite type rare earth magnet