JPH0775204B2 - Method for manufacturing polymer composite rare earth magnet - Google Patents

Method for manufacturing polymer composite rare earth magnet

Info

Publication number
JPH0775204B2
JPH0775204B2 JP63178180A JP17818088A JPH0775204B2 JP H0775204 B2 JPH0775204 B2 JP H0775204B2 JP 63178180 A JP63178180 A JP 63178180A JP 17818088 A JP17818088 A JP 17818088A JP H0775204 B2 JPH0775204 B2 JP H0775204B2
Authority
JP
Japan
Prior art keywords
powder
magnet
polymer composite
rare earth
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63178180A
Other languages
Japanese (ja)
Other versions
JPH0228901A (en
Inventor
忠邦 佐藤
浩 大柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63178180A priority Critical patent/JPH0775204B2/en
Publication of JPH0228901A publication Critical patent/JPH0228901A/en
Publication of JPH0775204B2 publication Critical patent/JPH0775204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、いわゆるゴム磁石を典型とした高分子複合型
磁石の製造方法に関し、特にNd・Fe・B系永久磁石を代
表とする希土類金属(R)と遷移金属(T)とホウ素
(B)を主成分としてなるR2T14B系の希土類磁石粉末を
用いた高分子複合型希土類磁石の改善に関するものであ
る。
[Field of Industrial Application] The present invention relates to a method for producing a polymer composite magnet typified by a so-called rubber magnet, and in particular, a rare earth metal typified by a Nd / Fe / B system permanent magnet. The present invention relates to improvement of a polymer composite type rare earth magnet using an R 2 T 14 B rare earth magnet powder containing (R), a transition metal (T) and boron (B) as main components.

〔従来の技術〕[Conventional technology]

高分子複合型磁石は、高分子樹脂中に磁石粉末を分散さ
せたもの、あるいは磁石粉末を高分子樹脂で結着させた
ものである。この磁石は、鋳造磁石や焼結磁石等には見
られない種々の利点、例えば弾力性や加工容易性を備え
ており、種々の方面に用いられている。しかしながら、
磁石粉末と非磁性の樹脂で形成されているため、焼結磁
石等に比べ、磁気特性が低いという欠点を有している。
The polymer composite type magnet is one in which magnet powder is dispersed in polymer resin, or magnet powder is bound with polymer resin. This magnet has various advantages not found in cast magnets, sintered magnets, and the like, such as elasticity and workability, and is used in various fields. However,
Since it is made of a magnetic powder and a non-magnetic resin, it has a drawback that it has lower magnetic characteristics than a sintered magnet or the like.

そのため、粉末を磁界中で配向させる等の異方性化によ
り、高い磁石特性を達成しようとしている。分散、結着
される磁石粉末としては、これ迄、種々のものが用いら
れているが、本発明では、現在最も高い磁石特性を示し
ているNd・Fe・B系を代表とするR2T14B系磁石粉末を使
用している。
Therefore, it is attempted to achieve high magnet characteristics by anisotropy such as orienting the powder in a magnetic field. As the magnetic powder to be dispersed and bound, various kinds have been used so far, but in the present invention, R 2 T typified by the Nd / Fe / B system showing the highest magnetic properties at present. 14 B-based magnet powder is used.

従来の希土類磁石粉末を使用した高分子複合磁石は、原
料を溶解して得た合金鋳塊を熱処理後、粉砕し、その粉
末を高分子樹脂と混合し、磁界中で成形して製造されて
いた。ここで使用されていた磁石合金粉末は、磁界中で
の結晶配向性を向上させるため、微細な単結晶粒子から
なっていることが望ましかかった。
Polymer composite magnets using conventional rare earth magnet powder are manufactured by heat treating alloy ingots obtained by melting raw materials, crushing, mixing the powder with polymer resin, and molding in a magnetic field. It was It was hoped that the magnet alloy powder used here would consist of fine single crystal particles in order to improve the crystal orientation in a magnetic field.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、Nd・Fe・B系磁石で代表されるR2T14B系
合金においては、粉砕時における機械的応力により、保
磁力(IHC)の低下が生じるため、粉末が単結晶粒子か
らなる微細な領域では、著しくIHCが低下していた。そ
のため、溶解インゴットを出発原料として使用した製法
においては、高IHCを有する焼結磁石を粉砕して磁石粉
末として使用しても、著しく低い磁石特性を示す高分子
複合型磁石となっていた。
However, in R 2 T 14 B-based alloys represented by Nd / Fe / B-based magnets, the coercive force ( I H C ) decreases due to mechanical stress during pulverization, so that the powder is formed from single crystal particles. In the fine region, the I H C was significantly reduced. Therefore, in the manufacturing method using the molten ingot as a starting material, even if the sintered magnet having a high I H C is crushed and used as the magnet powder, the polymer composite type magnet has remarkably low magnet characteristics. .

まして、インゴットを熱処理後、粉砕して高分子複合磁
石とする製法では、存在価値のない極めて劣悪な磁石特
性を示すのみであった。
Furthermore, in the manufacturing method in which the ingot is heat-treated and then pulverized into a polymer composite magnet, only extremely poor magnet characteristics having no existence value are exhibited.

一方、粉砕によるIHCの低下が殆んど生じないR・T・
B系磁石合金の作製法としては、溶融してる合金を回転
ロール等に噴射し、超急冷することによって磁石合金を
得る液体急冷法が知られていた。
On the other hand, R · T · decrease of I H C by crushing does not occur almost
As a method for producing a B-based magnet alloy, a liquid quenching method has been known in which a molten alloy is jetted onto a rotating roll or the like and is rapidly quenched to obtain a magnet alloy.

しかしながら、この製法によって得られた粉末では、異
方性化は実現できなかった。その後、この液体急冷合金
を熱間塑性加工することによって異方性化が可能な磁石
粉末の得られることがわかった。この方法は、高温で高
圧を必要とするため、設備が高価で、大がかりなものと
なるのに加え、製造状態における特性の安定化には不安
が残っており、大量生産で特性バラツキの小さい粉末を
得るのはまだ困難であり、工業的には有益なものとはい
いがたい。
However, anisotropy could not be realized with the powder obtained by this production method. After that, it was found that hot-plastic working of this liquid-quenched alloy yielded magnet powder capable of anisotropy. Since this method requires high pressure at high temperature, the equipment is expensive and large-scaled, and there is still concern about stabilizing the characteristics in the production state, and powders with small characteristic variations in mass production. Is still difficult to obtain and is not industrially useful.

本発明の技術課題は、通常実施されているR・T・B系
焼結磁石の製造工程を活用して、高性能な異方性高分子
複合型磁石の製造方法を提供するものである。したがっ
て、工業上、非常に有用な製法となる。
The technical problem of the present invention is to provide a method for manufacturing a high-performance anisotropic polymer composite magnet by utilizing the manufacturing process of an R / T / B system sintered magnet that is usually carried out. Therefore, it is a very useful manufacturing method industrially.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば、Nd,Fe,Bを主成分として含有するR2T14
B(但し、RはY及び希土類元素、Tは遷移金属)系合
金粉末を高分子樹脂を用いて高分子複合型磁石を製造す
る方法において、前記R2T14B系合金粉末は,R2T14B系合
金インゴットを粉砕した粉砕粉末から粉末冶金法により
焼結体を作製し,この焼結体を微粉砕して作製した焼結
体粉砕粉末の内の粒径30μm以下の粉末粒子を,R2T14B
系合金インゴットから液体急冷法で作製した急冷合金粉
末で置換したものよりなることを特徴とする高分子複合
希土類磁石の製造方法が得られる。
According to the present invention, R 2 T 14 containing Nd, Fe, B as a main component is used.
In a method for producing a polymer composite magnet using B (where R is Y and a rare earth element, T is a transition metal) alloy powder using a polymer resin, the R 2 T 14 B alloy powder is R 2 A sinter was produced from the pulverized powder obtained by pulverizing a T 14 B-based alloy ingot by powder metallurgy, and the pulverized powder of the sinter was finely pulverized. , R 2 T 14 B
A method for producing a polymer-composite rare earth magnet, characterized by comprising a system alloy ingot replaced with a quenched alloy powder produced by a liquid quenching method.

ここで、本発明においては、高分子樹脂を用いて高分子
複合型磁石を製造する方法とは、原料合金粉末を高分子
樹脂と混合して、射出成形,押出成形又は圧縮成形する
方法、もしくは圧縮成形の後、高分子樹脂を含浸する方
法をいう。
Here, in the present invention, the method for producing a polymer composite type magnet using a polymer resin means a method of mixing a raw material alloy powder with a polymer resin and performing injection molding, extrusion molding or compression molding, or A method of impregnating a polymer resin after compression molding.

即ち本発明は、溶解して得られた合金インゴットを微粉
砕した後、磁場中で成形して得られた粉末成形体を焼結
し、高い結晶配向度の焼結体とし、次にこの焼結体を粉
砕後、焼結体粉砕粉末中の30μm以下の粒子径範囲に液
体急冷法により作製したR2T14B系合金粉末を含有するよ
うに調整した粉末を使用することにより、高い磁石特性
を有するR・T・B系高分子複合型磁石を実現するもの
である。
That is, the present invention is to pulverize an alloy ingot obtained by melting and then sinter the powder compact obtained by compacting in a magnetic field to obtain a sintered compact having a high degree of crystal orientation, and then sintering this sintered compact. After crushing the aggregate, by using the powder adjusted to contain the R 2 T 14 B-based alloy powder produced by the liquid quenching method in the particle size range of 30 μm or less in the crushed powder of the sintered body, a high magnet can be obtained. It is intended to realize an R / T / B-based polymer composite magnet having characteristics.

本発明の磁石特性の配向は、熱処理による焼結体粉砕粉
末のIHC,Br及び減磁曲線の角型性の向上に関係してお
り、この効果は、成形用粉末が複数の配向した結晶粒で
構成されていることに深く起因している。しかしなが
ら、この粉末の熱処理による磁気特性の向上は、粉末粒
子径が小さくなるにしたがい減少する傾向を示してい
る。
Orientation of the magnetic properties of the present invention, I H C of the sintered body ground powder by heat treatment is related to the improvement of the squareness of the Br and demagnetization curve, this effect molding powder has a plurality of alignment It is deeply attributed to the fact that it is composed of crystal grains. However, the improvement in magnetic properties of the powder by heat treatment tends to decrease as the powder particle size decreases.

本発明者らは種々実験を行なった結果、焼結体粉砕粉末
中でも30μm以下の粒子は、粉砕による損傷から熱処理
によっても明らかに回復が困難であり、この30μm以下
の範囲においては、液体急冷法により作製した液体急冷
合金粉末や、液体急冷合金を熱間塑性加工して得られる
合金粉末を含有することにより、高い磁石特性を有する
R・T・B系高分子複合型磁石の得られることを発見し
た。
As a result of various experiments conducted by the present inventors, particles of 30 μm or less in the crushed powder of the sintered body are obviously difficult to recover from damage due to crushing even by heat treatment. In the range of 30 μm or less, the liquid quenching method is used. By containing the liquid-quenched alloy powder produced by the above method or the alloy powder obtained by hot plastic working of the liquid-quenched alloy, it is possible to obtain an R / T / B-based polymer composite magnet having high magnet characteristics. discovered.

本発明は、高特性で大量処理が可能で、しかもバラツキ
の少ない磁石特性を示す焼結磁石の製造工程を使用し
て、高分子磁石用粉末の大半が製造できるので、工業
上、非常に有益となる。
INDUSTRIAL APPLICABILITY The present invention is industrially very useful because most of powders for polymer magnets can be manufactured by using a manufacturing process of a sintered magnet which has high characteristics and can be processed in a large amount, and shows a magnet characteristic with less variation. Becomes

焼結体粉砕粉末中の30μmの粒子範囲に、液体急冷法に
より作製したR2T14B系合金粉末を含有することに規定し
たのは、30μm以上の範囲では含有の効果が飽和し明瞭
でなく30μm以下の範囲とした場合に効果が顕著となる
からである。
It was stipulated that the R 2 T 14 B-based alloy powder produced by the liquid quenching method should be contained in the 30 μm particle range in the crushed powder of the sintered compact because the effect of inclusion was saturated in the range of 30 μm or more. This is because the effect becomes remarkable when the thickness is 30 μm or less.

本発明は、含浸型,圧縮成形型,射出成形型等の広汎な
高分子複合型磁石の製法に適用できる粉末を提供するも
のである。しかも、簡便にして、高性能な高分子複合型
磁石が実現できるので、工業上、非常に有益である。
The present invention provides a powder that can be applied to a wide variety of methods for producing polymer composite type magnets such as impregnation type, compression molding type and injection molding type. Moreover, since a high-performance polymer composite magnet can be simply realized, it is industrially very useful.

以下、実施例について述べる。Examples will be described below.

〔実施例〕〔Example〕

実施例1. 純度97wt%のNd(残部はCe,Prを主体とする他の希土類
元素)、純度99wt%以上のDy、フェロボロン(B純分約
20wt%)及び電解鉄を使用し、(Nd0.9・Dy0.1)が34.0
wt%、Bが1.0wt%、残部Feの組成を有するインゴット
を、アルゴン雰囲気中で高周波加熱により溶解し、合金
インゴットを得た。
Example 1. Nd with a purity of 97 wt% (the balance is other rare earth elements mainly composed of Ce and Pr), Dy with a purity of 99 wt% or more, ferroboron (B pure content approximately
20wt%) and electrolytic iron are used, (Nd 0.9・ Dy 0.1 ) is 34.0
An ingot having a composition of wt%, B of 1.0 wt% and the balance of Fe was melted by high frequency heating in an argon atmosphere to obtain an alloy ingot.

次に、このインゴットを粗粉砕した後、ボールミルを用
いて、平均粒径約2μmに微粉砕した。この合金粉末を
約20kOeの磁界中、1ton/cm2の圧力で直方体状に成形し
た。次にこの成形体を真空中1000℃で1時間保持した
後、Ar中で3時間保持し、焼結体を得た。この焼結体は
7.55gr/cm3の密度を有し、平均結晶粒径は約5μmであ
った。この一部を600℃で2時間時効し、磁石特性を測
定したところ、Br12.8kG,IHC20kOe,(BH)max.39M.G.Oe
程度であった。
Next, this ingot was roughly crushed and then finely crushed to an average particle size of about 2 μm using a ball mill. This alloy powder was molded into a rectangular parallelepiped at a pressure of 1 ton / cm 2 in a magnetic field of about 20 kOe. Next, this molded body was held in vacuum at 1000 ° C. for 1 hour and then in Ar for 3 hours to obtain a sintered body. This sintered body
It had a density of 7.55 gr / cm 3 and an average crystal grain size of about 5 μm. A part of this was aged at 600 ℃ for 2 hours and the magnet characteristics were measured. As a result, Br12.8kG, I H C 20kOe, (BH) max.39M.G.Oe
It was about.

時効処理を施さない焼結体について、300μm以下の粒
径となるように粗粉砕した後、この粉末を600℃で真空
中1時間、Ar中4時間保持し、熱処理した。
The sintered body not subjected to the aging treatment was roughly pulverized to have a particle size of 300 μm or less, and then the powder was heat-treated at 600 ° C. for 1 hour in vacuum and 4 hours in Ar.

一方、合金インゴットをAr雰囲気中で高周波加熱により
再溶解した後、周速度が約40m/secのCu製ロールに噴射
し、厚さ約20μm、幅約3mmの液体急冷合金薄帯及び薄
片を得た。次に、この液体急冷薄帯を粗粉砕した後、Ar
雰囲気中、700℃,1ton/cm2の圧力でホットプレスし、成
形体を得た。この密度は約7.50gr/cm3であった。次に、
この成形体をAr雰囲気中、700℃,2.5ton/cm2の圧力で一
軸方向に加圧し、加圧方向の寸法が約1/5になるように
熱間塑性加工を施こした。この加工成形体は、加圧方向
に磁気異方性を有し、結晶粒径が約0.3μmで厚さが約
0.1μmの板状結晶が積層してなっていた。この成形体
の磁石特性は、Br12.2kG,IHC22kOe,(BH)max.33M.G.Oe
程度であった。次に、この成形体を平均粒径約10μmに
微粉砕した。
On the other hand, after remelting the alloy ingot by high frequency heating in Ar atmosphere, it is sprayed on a Cu roll with a peripheral speed of about 40 m / sec to obtain a liquid-quenched alloy ribbon and flakes with a thickness of about 20 μm and a width of about 3 mm. It was Next, after roughly crushing this liquid quenched ribbon, Ar
Hot pressing was performed in an atmosphere at 700 ° C. and a pressure of 1 ton / cm 2 to obtain a molded body. This density was about 7.50 gr / cm 3 . next,
The compact was uniaxially pressurized at 700 ° C. and a pressure of 2.5 ton / cm 2 in an Ar atmosphere, and hot plastic working was performed so that the dimension in the pressing direction was about 1/5. This processed compact has magnetic anisotropy in the pressing direction, a crystal grain size of about 0.3 μm and a thickness of about 0.3 μm.
Plate-like crystals of 0.1 μm were laminated. The magnet characteristics of this compact are Br12.2kG, I H C 22kOe, (BH) max.33M.G.Oe
It was about. Next, this molded body was finely pulverized to an average particle size of about 10 μm.

次に、先に熱処理した焼結体粉砕粉末中の微細粒子を20
μm以下,30μm以下,40μm以下,50μm以下の範囲で
分離除去し、それに対応した量を熱間塑性加工成形体微
粉末でそれぞれ補填したところ、20μm以下では約5wt
%,30μm以下では約10wt%,40μm以下では約20wt%,5
0μm以下では約30wt%であった。
Next, the fine particles in the crushed powder of the sintered body that was previously heat-treated
It was separated and removed in the range of μm or less, 30 μm or less, 40 μm or less, 50 μm or less, and the corresponding amount was supplemented with the hot plastic work compact powder, respectively, and it was about 5 wt.
%, 30μm or less about 10wt%, 40μm or less about 20wt%, 5
Below 0 μm, it was about 30 wt%.

次に、この粉末にポリエチレンを35vol.%混合した後、
約100℃にて20kOeの磁界を印加しながら、金型中に射出
成形し、高分子複合磁石とした。その磁石特性を約30kO
eの磁界を印加して測定した結果を第1図に示す。30μ
m以下の焼結体粉砕粉末を熱間塑性加工粉末で置換する
ことにより、高分子複合磁石の磁気特性は著しく向上し
ている。
Next, after mixing polyethylene with 35% by volume of this powder,
A polymer composite magnet was obtained by injection molding into a mold while applying a magnetic field of 20 kOe at about 100 ° C. Its magnet characteristics are about 30kO
The result of measurement by applying a magnetic field of e is shown in FIG. 30μ
The magnetic properties of the polymer composite magnet are remarkably improved by substituting the crushed powder of the sintered body of m or less with the hot plastic working powder.

尚、参考までに前述の時効処理した焼結体についても30
0μm以下に粗粉砕して、同様にポリエチレン混合,射
出成形して高分子複合磁石を作製したところ磁石特性は
Br5.4kG,IHC3.5kOe,(BH)max.4.5M.G.Oeであった。
For reference, the aging-treated sintered body mentioned above is also 30
Coarse pulverization to 0 μm or less, polyethylene mixing and injection molding in the same manner to produce a polymer composite magnet
Br5.4kG, I H C 3.5kOe, was (BH) max.4.5MGOe.

実施例2. 5wt%のCe,15wt%のPr,残部Nd(ただし、他の希土類元
素はNdとして含めた。)からなるセリウムジシムと、フ
ェロボロン,電解コバルト,アルミニウムを使用し、実
施例1と同様にして、希土類元素Rが32wt%,Coが7wt
%,Alが1wt%,残部がFeのR・T・B系インゴットを得
た。
Example 2 Same as Example 1 using cerium disim composed of 5 wt% Ce, 15 wt% Pr, and balance Nd (however, other rare earth elements were included as Nd), ferroboron, electrolytic cobalt, and aluminum. And the rare earth element R is 32 wt% and Co is 7 wt%
%, Al was 1 wt%, and the balance was Fe.

次に、このインゴットを使用し、実施例1と同様にし
て、粉砕,磁場中成形,1040℃での焼結を行なった。こ
こで得られた焼結体は密度約7.55gr/cm3であり、平均粒
径約6.5μmの結晶からなっていた。この焼結体の一部
を600℃で2時間時効したところ、Br12.2kG,IHC11.5kO
e,(BH)max33.5M.G.Oeであった。
Next, using this ingot, in the same manner as in Example 1, crushing, forming in a magnetic field, and sintering at 1040 ° C. were performed. The sintered body obtained here had a density of about 7.55 gr / cm 3 and was composed of crystals having an average particle size of about 6.5 μm. When a part of this sintered body was aged at 600 ℃ for 2 hours, Br12.2kG, I H C 11.5kO
It was e, (BH) max33.5M.G.Oe.

時効処理を施さない焼結体について、500μm以下の粒
径となるように粗粉砕した後、微細粒子を20μm以下,3
0μm以下,40μm以下の範囲で分離除去した。その分離
量は粉末全量に対し、それぞれ約3wt%,約7wt%,約15
wt%であった。
After roughly pulverizing the sintered body that has not been subjected to aging treatment to a particle size of 500 μm or less, fine particles of 20 μm or less, 3
It was separated and removed in the range of 0 μm or less and 40 μm or less. The separated amount is about 3 wt%, about 7 wt%, and about 15 wt% of the total amount of powder, respectively.
It was wt%.

一方、合金インゴットを使用して、実施例1と同様にし
て、周速度が約15m/secのCu製ロールに噴射し、厚さ約5
0μm,幅約7mmの液体急冷薄片を得た。この薄片を無磁場
中で成形して粉末の液体急冷薄片を得た。この薄片を無
磁場中で成形して粉末のみの磁気特性を測定したところ
4πIs約10kG,Br約7.5kG,IHC約18kOe,(BH)max.約10M.
G.Oeであった。次に、この液体急冷薄片をボールミルに
て平均粒径約5μmに微粉砕した。
On the other hand, using an alloy ingot, in the same manner as in Example 1, the alloy was injected onto a Cu roll having a peripheral speed of about 15 m / sec to give a thickness of about 5
A liquid-quenched thin slice with a width of 0 μm and a width of about 7 mm was obtained. This thin piece was molded in a magnetic field to obtain a powdery liquid quenched thin piece. The flakes and was molded in a non-magnetic field was measured the magnetic properties of the powder only 4πIs about 10 kG, Br about 7.5 kg, I H C about 18kOe, (BH) max. About 10M.
It was G.Oe. Next, this liquid quenched thin piece was finely pulverized with a ball mill to an average particle size of about 5 μm.

次に、前記の微細粒子を除去した焼結体粉砕粉末に、そ
の除去量に対応した量の液体急冷薄片粉砕粉末を補填
し、混合した。この混合粉末を約20kOeの磁界中、3ton/
cm2の圧力で円盤状に成形した後、1000℃で真空中1時
間、Ar中1時間保持後急冷した。この熱処理試料の密度
は約6.3gr/cm3であった。
Next, the crushed powder of the sintered body from which the fine particles had been removed was supplemented with an amount of the liquid rapidly crushed pulverized powder corresponding to the removal amount, and mixed. This mixed powder was placed in a magnetic field of about 20 kOe at 3 ton /
After being formed into a disk shape at a pressure of cm 2 , it was held at 1000 ° C. in vacuum for 1 hour and in Ar for 1 hour and then rapidly cooled. The density of this heat-treated sample was about 6.3 gr / cm 3 .

次に、この熱処理試料を真空引き後、エポキシ樹脂を含
浸した後、100℃で2時間保持し硬化させ、高分子複合
磁石とした。その磁石特性の測定結果を第2図に示す。
30μm以下の焼結体粉末を、液体急冷粉末で置換するこ
とにより、高分子複合磁石の磁気特性は著しく向上して
いる。
Next, this heat-treated sample was evacuated, impregnated with an epoxy resin, and then held at 100 ° C. for 2 hours to be cured to obtain a polymer composite magnet. The measurement results of the magnet characteristics are shown in FIG.
The magnetic properties of the polymer composite magnet are remarkably improved by replacing the sintered powder having a particle size of 30 μm or less with the liquid quenching powder.

尚、参考までに、前述の時効処理した粉末についても、
300μm以下に粗粉砕して同様に磁場中成形、 エポキシ樹脂含浸・硬化後、高分子複合磁石としての磁
石特性を測定したところ、d5.4gr/cm3,Br5.2kG,IHC3.0k
Oe,(BH)max.3.5M.G.Oeであった。
For reference, the aging-treated powder described above is also
After roughly crushing to 300 μm or less, similarly molding in a magnetic field, epoxy resin impregnation and curing, the magnet characteristics as a polymer composite magnet were measured and found to be d5.4gr / cm 3 , Br5.2kG, I H C 3.0k
It was Oe, (BH) max.3.5MGOe.

実施例3. 純度97wt%のNd(残部はCe,Prを主体とする他の希土類
元素)、フェロボロン及び電解鉄を使用し、実施例1と
同様にして、希土類元素(R)が33.5wt%,Bが1,1wt
%,残部Feのインゴットを得た。
Example 3 Nd having a purity of 97 wt% (the rest are other rare earth elements mainly composed of Ce and Pr), ferroboron and electrolytic iron were used, and in the same manner as in Example 1, the rare earth element (R) was 33.5 wt%. , B is 1,1wt
%, The balance Fe was obtained.

次に、このインゴットを使用し、実施例1と同様にし
て、粉砕,磁場中成形,1020℃での焼結を行なった。こ
こで得られた焼結体は密度約7.55gr/cm3であり、平均粒
径約6μmの結晶からなっていた。この焼結体の一部を
600℃で2時間時効したところ、Br13.7kG,IHC11.5kOe,
(BH)max.44M.G.Oeであった。
Next, using this ingot, in the same manner as in Example 1, crushing, forming in a magnetic field, and sintering at 1020 ° C. were performed. The sintered body obtained here had a density of about 7.55 gr / cm 3 and was composed of crystals having an average grain size of about 6 μm. A part of this sintered body
Was 2 hours aging at 600 ℃, Br13.7kG, I H C 11.5kOe,
It was (BH) max.44M.G.Oe.

時効処理を施さない焼結体について、300μm以下の粒
径となるように粗粉砕した後、この粉末を600℃で真空
中1時間、Ar中4時間保持し、熱処理した。
The sintered body not subjected to the aging treatment was roughly pulverized to have a particle size of 300 μm or less, and then the powder was heat-treated at 600 ° C. for 1 hour in vacuum and 4 hours in Ar.

次に、熱処理した焼結体粉砕粉末中の微細粒子を20μm
以下,30μm以下,40μm以下の範囲で分離除去し、それ
に対応した量を、実施例2で作製した液体急冷微粉末
(粉砕粒径約5μm)で補填し混合した。その補填量は
それぞれ約5wt%,約10wt%,約20wt%であった。
Next, the fine particles in the crushed powder of the heat-treated sintered body were set to 20 μm.
Then, the mixture was separated and removed in the range of 30 μm or less and 40 μm or less, and the corresponding amount was filled with the liquid quenched fine powder (pulverized particle size of about 5 μm) prepared in Example 2 and mixed. The amount of compensation was about 5 wt%, about 10 wt%, and about 20 wt%, respectively.

次に、この混合粉末にエポキシ樹脂を25vol.%混合した
後約20kOeの磁界中5ton/cm2の成形圧で円盤状に成形し
た。この成形体を100℃で2時間保持し硬化させ、高分
子複合磁石とした。その磁石特性の測定結果を第3図に
示す。30μm以下の焼結体粉砕粉末を、液体急冷粉末で
置換することにより、高分子複合磁石の磁気特性は明ら
かに向上している。
Next, 25 vol.% Of the epoxy resin was mixed with this mixed powder, and the mixture was molded into a disk shape at a molding pressure of 5 ton / cm 2 in a magnetic field of about 20 kOe. This molded body was kept at 100 ° C. for 2 hours to be hardened to obtain a polymer composite magnet. The measurement results of the magnet characteristics are shown in FIG. The magnetic properties of the polymer composite magnet are clearly improved by substituting the pulverized powder of the sintered compact of 30 μm or less with the liquid quenching powder.

尚、参考までに、前述の時効処理した粉末についても、
300μm以下に粗粉砕して、同様に熱処理、エポキシ樹
脂混合、磁場中成形、樹脂硬化を行ない、磁石特性を測
定したところ、Br5.5kG,IHC3.0kOe,(BH)max.4.0M..G.
Oeであった。
For reference, the aging-treated powder described above is also
Was coarsely pulverized to 300μm or less, similarly heat treatment, the epoxy resin mixture, the magnetic field during molding, subjected to resin curing was measured for magnetic properties, Br5.5kG, I H C 3.0kOe, (BH) max.4.0M. .G.
It was Oe.

以上の実施例で示されたように、異方性を有するR2T14B
系焼結結合金を粉砕して作製した成形用粉末中の30μm
以下の粒子範囲に液体急冷法により作製したR2T14B系合
金粉末を含有することにより、磁石特性の著しく向上し
た高分子複合型磁石が実現できる。
As shown in the above examples, R 2 T 14 B having anisotropy
30 μm in powder for molding made by crushing sinter-bonded gold
By including the R 2 T 14 B-based alloy powder produced by the liquid quenching method in the following particle range, a polymer composite type magnet having significantly improved magnet characteristics can be realized.

以上の実施例では、Nd−Dy−Fe−B系,Ce−Pr−Nd−Fe
−Co−Al−B系,Nd−Fe−B系についてのみ述べたが、N
dの一部をY及び他の希土類元素例えばGd,Tb,Ho等で置
換したり、Feの一部を他の遷移金属例えばMn,Cr,Ni等で
置換したり、Bの一部を他の半金属例えばSi,C等で置換
しても磁石合金の組成がNd,Fe,Bを主成分の一部として
おり、また磁石の化合物系でNd2Fe14B系で代表されるよ
うなR2T14Bが磁性に寄与しているものであれば、本発明
の効果が十分に期待できるものであることは容易に推測
できる。
In the above examples, Nd-Dy-Fe-B system, Ce-Pr-Nd-Fe
Only the --Co--Al--B system and the Nd--Fe--B system have been described.
Part of d is replaced with Y and other rare earth elements such as Gd, Tb, Ho, etc., Part of Fe is replaced with other transition metal such as Mn, Cr, Ni, etc. Part of B is replaced with other Even if it is replaced by a semi-metal such as Si, C, etc., the composition of the magnet alloy has Nd, Fe, B as a part of the main component, and it is a compound system of the magnet represented by Nd 2 Fe 14 B system. If R 2 T 14 B contributes to magnetism, the effect of the present invention can be easily expected.

また、本実施例では高分子樹脂としてエポキン樹脂とポ
リエチレンのみについて述べたが、成形体内部に介在
し、成形体の強度向上に寄与するものであれば、いかな
る物質(例えば、他の高分子樹脂やゴム等であるばかり
でなく、金属でも可)であっても、本発明の範囲にある
ことは、当業者であれば容易に理解できるものである。
Although only the Epokin resin and polyethylene are used as the polymer resin in this embodiment, any substance (for example, another polymer resin) that intervenes inside the molded body and contributes to the improvement of the strength of the molded body can be used. Those skilled in the art can easily understand that not only rubber and the like but also metal and the like are within the scope of the present invention.

また、実施例に示した高分子複合磁石化の製法について
は、成形体に樹脂を含浸する含浸型,粉末と樹脂とを混
合した後圧縮成形する圧縮成形型,粉末と樹脂を混練し
た後射出成形する射出成形型についてのみ述べたが、他
の成形法例えば、押出による成形,ロールによる成形等
他の製法についても適用できることは、当業者であれば
容易に想像できるものである。
Further, regarding the polymer composite magnetizing method shown in the examples, an impregnating mold for impregnating a molded body with resin, a compression molding mold for mixing powder and resin and then compression molding, and an injection after kneading powder and resin Although only the injection mold for molding is described, those skilled in the art can easily imagine that other molding methods such as extrusion molding and roll molding can be applied.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、通常実施されて
いるR・T・B系焼結磁石の製造工程を活用して、高性
能な異方性高分子複合型希土類磁石の製造方法を提供す
ることができる。
As described above, according to the present invention, a method for manufacturing a high-performance anisotropic polymer composite rare earth magnet is utilized by utilizing the manufacturing process of an R / T / B system sintered magnet that is usually performed. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例1における熱間塑性加工成形体微粉末
で置換した焼結体粉砕粉末中の粉末粒径と高分子複合磁
石の磁石特性との関係を示す図、第2図は、実施例2に
おける液体急冷合金粉末で置換した焼結体粉砕粉末中の
粉末粒径と高分子複合磁石の磁石特性との関係を示す
図、第3図は、実施例3における液体急冷合金粉末で置
換した焼結体粉砕粉末中の粉末粒径と高分子複合磁石の
磁石特性との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a powder particle diameter in a pulverized powder of a sintered compact substituted with a fine powder of a hot plastic working compact in Example 1 and a magnetic property of a polymer composite magnet, and FIG. FIG. 3 is a diagram showing the relationship between the powder particle size in the crushed powder of the sintered body replaced with the liquid quenching alloy powder in Example 2 and the magnetic properties of the polymer composite magnet. FIG. 3 is the liquid quenching alloy powder in Example 3. It is a figure which shows the relationship between the powder particle size in the substituted sintered compact pulverized powder, and the magnet characteristic of a polymer composite magnet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Nd,Fe,Bを主成分として含むR2T14B(但し,
RはNdを必須成分として含むY及び希土類元素の内の少
なくとも一種,TはFeを必須成分として含む遷移金属の内
の少なくとも一種)系合金粉末を用いて高分子複合型磁
石を製造する方法において,前記R2T14B系合金粉末は,R
2T14B系合金インゴットを粉砕した粉砕粉末から粉末冶
金法により焼結体を作製し,この焼結体を微粉砕して作
製した焼結体粉砕粉末の内の粒径30μm以下の粉末粒子
を,R2T14B系合金インゴットから液体急冷法で作製した
急冷合金粉末で置換したものよりなることを特徴とする
高分子複合型希土類磁石の製造方法。
1. R 2 T 14 B containing Nd, Fe and B as main components (however,
R is at least one of Y and rare earth elements containing Nd as an essential component, and T is at least one of transition metals containing Fe as an essential component.) In a method for producing a polymer composite magnet, , The R 2 T 14 B-based alloy powder is R
2 T 14 B-based alloy Ingot crushed powder was used to make a sintered body by powder metallurgy, and this sintered body was finely pulverized. A method for producing a polymer composite type rare earth magnet, comprising: a R 2 T 14 B-based alloy ingot replaced with a quenched alloy powder produced by a liquid quenching method.
JP63178180A 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet Expired - Fee Related JPH0775204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63178180A JPH0775204B2 (en) 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63178180A JPH0775204B2 (en) 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet

Publications (2)

Publication Number Publication Date
JPH0228901A JPH0228901A (en) 1990-01-31
JPH0775204B2 true JPH0775204B2 (en) 1995-08-09

Family

ID=16044003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63178180A Expired - Fee Related JPH0775204B2 (en) 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet

Country Status (1)

Country Link
JP (1) JPH0775204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547525A (en) * 1991-08-09 1993-02-26 Sankyo Seiki Mfg Co Ltd Rare earth bonded magnet

Also Published As

Publication number Publication date
JPH0228901A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH0551656B2 (en)
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH0775204B2 (en) Method for manufacturing polymer composite rare earth magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JPS63115307A (en) Manufacture of rare-earth magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH02162704A (en) Manufacture of permanent magnet
JPH02205305A (en) Manufacture of high-molecular composite type rare earth magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPH07230907A (en) Manufacture of polymer compound type rare earth magnet material
JPH0583627B2 (en)
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPH01146309A (en) Manufacture of rare earth magnet
JPH0329302A (en) Manufacture of anisotropic high-polymer composite-type rare-earth magnet
JPH02156603A (en) Manufacture of magnetic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees