JPH02156603A - Manufacture of magnetic powder - Google Patents

Manufacture of magnetic powder

Info

Publication number
JPH02156603A
JPH02156603A JP63311273A JP31127388A JPH02156603A JP H02156603 A JPH02156603 A JP H02156603A JP 63311273 A JP63311273 A JP 63311273A JP 31127388 A JP31127388 A JP 31127388A JP H02156603 A JPH02156603 A JP H02156603A
Authority
JP
Japan
Prior art keywords
powder
magnetically anisotropic
magnetic powder
rare earth
compacted body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63311273A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Kunihiko Hori
堀 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63311273A priority Critical patent/JPH02156603A/en
Publication of JPH02156603A publication Critical patent/JPH02156603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To recover the coercive force of magnetic powder reduced when the powder is produced by grinding a press-compacted body of a magnetically anisotropic substance so as to obtain high-performance magnetic powder by heat-treating the powder at a temperature higher than a specific value after powder of a rare earth oxide is mixed with the powder. CONSTITUTION:Powder obtained by grinding a press-compacted body of a magnetically anisotropic substance is heat-treated at a temperature of >=250 deg.C after powder of a rare earth oxide is mixed with the powder. When the powder is processed in such way, the surface of each particle of the powder is coated with the rare earth oxide powder and the distortion produced in the surface of the particles can be relieved. Therefore, the coercive force of the magnetic powder reduced by the grinding can be recovered and high-performance magnetic powder can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing magnetic powder.

[従来の技術] 従来、希土類−鉄一ボロン(以下、R−Fe−Bと略す
)系永久磁石用磁性材料としては、以下の製造方法によ
るものが開発もしくは量産されている。
[Prior Art] Conventionally, rare earth-iron-boron (hereinafter abbreviated as R-Fe-B) based magnetic materials for permanent magnets have been developed or mass-produced using the following manufacturing method.

(1)アモルファス合金を製造するのに用いる急冷薄帯
製造装置で作成した、厚み10〜30μmくらいの急冷
薄片を、熱処理および粉砕した粉末およびそれを用いた
樹脂結合型磁石。 (参考文献(2)(1)で得られた
急冷薄片を、2段階のホットプレス法で機械的配向処理
を施して得られた磁気的に異方性化した圧密体磁石。 
(参考文献1)(3)粉末冶金法にもとすく焼結法によ
って作成された異方性焼結磁石。 (参考文献2)(4
)合金インゴットを500℃以上の温度で熱間加工する
ことにより、結晶粒を微細化しまたその結晶軸を特定の
方向に配向させて得られた磁気的に異方性化させた鋳造
合金磁石。 (参考文献3)(参考文献1:  R,W
、 Lee; Appl、 Phys、 Lett。
(1) A powder obtained by heat-treating and pulverizing a quenched thin flake with a thickness of about 10 to 30 μm produced using a quenched ribbon production apparatus used for manufacturing an amorphous alloy, and a resin-bonded magnet using the powder. (Reference Document (2) A magnetically anisotropic consolidated magnet obtained by mechanically orienting the quenched flake obtained in (1) using a two-step hot pressing method.
(Reference Document 1) (3) Anisotropic sintered magnet created by a powder metallurgy method or a sintering method. (Reference 2) (4
) A magnetically anisotropic cast alloy magnet obtained by hot working an alloy ingot at a temperature of 500° C. or higher to refine the crystal grains and orient the crystal axes in a specific direction. (Reference 3) (Reference 1: R, W
, Lee; Appl, Phys, Lett.

VOl、46(8)、 15 April 1985.
 p790.)(参考文献2: M、 Sagawa、
 S、 Fujimura、’ N。
VOl, 46(8), 15 April 1985.
p790. ) (Reference 2: M, Sagawa,
S, Fujimura, 'N.

Togawa、  H,Yamamoto  and 
 Y、  Matsuura;J、  Appl。
Togawa, H. Yamamoto and
Y, Matsuura; J, Appl.

Phys、 Vol、55(6)、 15 March
 1984. p2083)(参考文献3:特開昭62
−276803)[発明が解決しようとする課題] 上述した従来技術のうち(1)の急冷薄片では、十分実
用となる高い保磁力(8〜16kOeまたはそれ以上)
が得られるが、先に述べたように、磁気的に等方性なの
で、得られる磁気特性(たとえばエネルギー積)が低い
という課題を有する。
Phys, Vol, 55(6), 15 March
1984. p2083) (Reference 3: Japanese Unexamined Patent Publication No. 1983
-276803) [Problems to be Solved by the Invention] Among the above-mentioned conventional techniques, the quenched flakes of (1) have a sufficiently high coercive force (8 to 16 kOe or more) for practical use.
However, as mentioned above, since it is magnetically isotropic, the problem is that the obtained magnetic properties (eg, energy product) are low.

また、(3)、  (4)では、樹脂結合型磁石用磁性
粉末に用いる粒度にすると、保磁力が1kOe以下で全
く実用にならないという課題を有する。
In addition, (3) and (4) have the problem that when the particle size is used for magnetic powder for resin-bonded magnets, the coercive force is less than 1 kOe, making it completely impractical.

さらに、(2)でも、程度が小さいとはいえ、粉砕する
につれて保磁力が低下し、数〜数百μmに粉砕した粉末
状態では保磁力の低下とともに、減磁曲線の角形性に大
きな低下が生じ、これが磁気特性の低下に留まらず、熱
安定性の大きな低下を引き起こすという課題を有する。
Furthermore, in (2), the coercive force decreases as the powder is crushed, although the degree is small, and in the powder state of several to several hundred micrometers, there is a large decrease in the squareness of the demagnetization curve as well as a decrease in the coercive force. The problem is that this not only causes a decrease in magnetic properties but also a large decrease in thermal stability.

本発明は、これらの課題を解決するものであり、その目
的とするところは、高性能な磁性粉末の製造方法を提供
することにある。
The present invention solves these problems, and its purpose is to provide a method for producing high-performance magnetic powder.

[課題を解決するための手段] 本発明の磁性粉末の製造方法は、磁気的に異方性の圧密
体を作成し、これを粉砕して得た粉末に、酸化希土類の
粉末を混合し、250℃以上の温度で熱処理することを
特徴とする。
[Means for Solving the Problems] The method for producing magnetic powder of the present invention involves creating a magnetically anisotropic compacted body, mixing rare earth oxide powder with the powder obtained by pulverizing it, and It is characterized by heat treatment at a temperature of 250°C or higher.

本発明では、磁気的に異方性の圧密体を粉砕し得られた
粉末に、酸化希土類の粉末を混合し、250℃以上の温
度で熱処理することによって、粉末の表面に希土類をコ
ーティングする効果が得られ、粉砕時に生じた表面の歪
を緩和することができるので、粉砕によって減少した保
磁力を回復することができる。
In the present invention, rare earth oxide powder is mixed with the powder obtained by pulverizing a magnetically anisotropic compacted body, and the mixture is heat-treated at a temperature of 250°C or higher to achieve the effect of coating the surface of the powder with rare earth metal. is obtained, and the surface distortion caused during pulverization can be alleviated, so that the coercive force reduced by pulverization can be recovered.

なお、基本組成が希土類金属、鉄およびボロンからなる
希土類磁石としては、Nd−Fe−Bがよく知られてい
るが、希土類金属としては、Y。
Note that Nd-Fe-B is well known as a rare earth magnet whose basic composition is a rare earth metal, iron, and boron, but Y is a rare earth magnet.

L al  Cel ’ P r、  N d+  P
 m、  S ml  E u。
L al Cel' P r, N d+ P
m, S ml E u.

Gd+  T b+  D yI  HO,E r、 
 T m、  Y bおよびLuの希土類元素のうちの
1種または2種以上であれば良く、ジジム(Pr−Nd
)やセリウム・ジジム(Ce−Pr−Nd)でも十分な
磁気性能が得られ、供給面・価格面から有利である。さ
らに、DyやTbなどの重希土類元素の少量添加により
、保磁力iHcを増大させることができ、温度特性の実
質的な改善が達成される。
Gd+ T b+ D yI HO,E r,
Any one or more of the rare earth elements T m, Y b and Lu may be used, and didymium (Pr-Nd
) and cerium didymium (Ce-Pr-Nd) can also provide sufficient magnetic performance and are advantageous in terms of supply and price. Furthermore, by adding a small amount of heavy rare earth elements such as Dy and Tb, the coercive force iHc can be increased and a substantial improvement in temperature characteristics can be achieved.

このことは、酸化希土類粉末についても同様である。This also applies to rare earth oxide powder.

また、Feの一部をCoで置換することにより、キュー
リー温度の向上が計られる。Zrは希土類金属を置換す
ることから低希土類組成で実用となる磁気特性が得られ
低コストとなるだけでなく、問題となっている耐食性も
大幅に向上する。他の遷移金属群で置換しても磁気性能
や耐食性などが改善される。
Furthermore, by replacing a portion of Fe with Co, the Curie temperature can be improved. Since Zr replaces rare earth metals, practical magnetic properties can be obtained with a low rare earth composition, which not only reduces costs, but also greatly improves corrosion resistance, which has been a problem. Substitution with other transition metal groups also improves magnetic performance, corrosion resistance, etc.

[実施例] 以下、本発明について実施例に基づいて詳細に説明する
[Examples] Hereinafter, the present invention will be described in detail based on Examples.

(実施例−1) 実施例−1では、特許請求の範囲第2項記載の製造方法
による圧密体について記す。
(Example-1) In Example-1, a compacted body manufactured by the manufacturing method according to claim 2 will be described.

N d I3F e @a、yB a、sの組成となる
ように、高周波溶解炉を用いアルゴンガス雰囲気中で溶
解・鋳造し、得られたインゴットを急冷薄帯製造装置を
用い、アルゴンガス雰囲気中、直径20mm銅製ロール
などの条件で急冷薄帯を作成した。この急冷薄片を軽く
壊し、型の中にいれて、アルゴン雰囲気中、700〜8
00℃の温度で短時間のうちに、20 kg/mm2の
圧力で高温圧縮成形を施した。
The ingot was melted and cast in an argon gas atmosphere using a high frequency melting furnace so that it had the composition of N d I3F e @a, yB a, s, and the obtained ingot was melted in an argon gas atmosphere using a quenching ribbon production device. A quenched ribbon was prepared using a copper roll having a diameter of 20 mm. This quenched flake was lightly broken, placed in a mold, and heated to 700 to 800 ml in an argon atmosphere.
Hot compression molding was carried out at a temperature of 00° C. for a short time and at a pressure of 20 kg/mm 2 .

得られた圧密体は、密度がほぼ100%であった。The compacted body obtained had a density of approximately 100%.

この圧密体を、再びアルゴン雰囲気中、700〜800
″Cの温度で、10 kg/mm2の圧力で最初の圧縮
方向と垂直な方向に高温圧縮成形を施した。
This compacted body was heated again at 700 to 800 in an argon atmosphere.
Hot compression molding was carried out at a temperature of "C" and a pressure of 10 kg/mm2 in a direction perpendicular to the initial compression direction.

(すなわち、ダイアップセットを施した。)得られたバ
ルクの磁石の磁気特性は、 1Hc=14.2 [kOe] Br=12.3 [kG] (B H)max = 37.9 [MGOe ]であ
った。
(That is, die-up setting was performed.) The magnetic properties of the obtained bulk magnet are as follows: 1Hc = 14.2 [kOe] Br = 12.3 [kG] (B H)max = 37.9 [MGOe] Met.

ここで得られたバルクの磁石を粉砕し、第1表に示すよ
うな粉末粒度にふるい分け、各粒度の粉末のiHcを測
定した。これを比較例とする。
The bulk magnet obtained here was pulverized and sieved into powder particle sizes as shown in Table 1, and the iHc of the powder of each particle size was measured. This is taken as a comparative example.

また、得られた粉末に、酸化テルビウムの粉末を混合し
た後、600℃×10分熱処理したものも同様にiHc
を測定した。これを本発明とする。
In addition, the obtained powder was mixed with terbium oxide powder and then heat-treated at 600°C for 10 minutes.
was measured. This is the present invention.

結果を第1表に示す。The results are shown in Table 1.

第1表 第1表から明らかなように、比較例で、粉末の粒度が細
かくなるにつれて、保磁力が小さくなっているのに対し
、本発明では、バルクと比べても保磁力の減少は少ない
ことが分かる。
Table 1 As is clear from Table 1, in the comparative example, the coercive force decreases as the particle size of the powder becomes finer, whereas in the present invention, the decrease in coercive force is small even compared to the bulk. I understand that.

また、本発明の粉末をエポキシ樹脂と混合・混練し、磁
場中で加圧成形した後キユア処理して、樹脂結合型磁石
を作成した。これを、異方性の方向(磁化容易方向)と
それに垂直な方向(磁化困難方向)で磁気測定を行なっ
た。
Further, the powder of the present invention was mixed and kneaded with an epoxy resin, pressure-molded in a magnetic field, and then cured to create a resin-bonded magnet. Magnetic measurements were performed on this in the anisotropic direction (easy magnetization direction) and the direction perpendicular thereto (difficult magnetization direction).

その結果を第2表に示す。The results are shown in Table 2.

第2表 第2表から明らかなように、磁化容易方向と磁化困難方
向でBrの値が大きく異なっており、異方性の程度の大
きな樹脂結合型磁石が得られており、かつ、最大エネル
ギー積も高い値が得られている。
Table 2 As is clear from Table 2, the values of Br in the easy magnetization direction and the difficult magnetization direction are significantly different, indicating that a resin-bonded magnet with a large degree of anisotropy has been obtained, and the maximum energy A high value was also obtained for the product.

(実施例−2) 実施例−2では、特許請求の範囲第3項記載の製造方法
による圧密体について記す。
(Example 2) In Example 2, a consolidated body produced by the manufacturing method according to claim 3 will be described.

まず、Nd+5FevvB@の組成となるように、高周
波溶解炉を用いアルゴンガス雰囲気中で溶解・鋳造し、
スタンプミル・ボールミルを用い粉砕して、平均粒径で
3〜5μmの磁性粉末を得た。この磁性粉末を金型に充
填し、15kOeの磁場で磁場配向させ、15〜20 
kg/mm2の成形圧で圧縮成形し、これをアルゴンガ
ス雰囲気中で 1000〜1250℃の最適温度で焼結
を施した後、必要に応じて、400〜1250℃の最適
温度で熱処理を施した。
First, melting and casting was performed in an argon gas atmosphere using a high frequency melting furnace so that the composition was Nd+5FevvB@.
It was pulverized using a stamp mill/ball mill to obtain magnetic powder with an average particle size of 3 to 5 μm. This magnetic powder was filled into a mold and oriented in a magnetic field of 15 kOe.
Compression molding was performed at a molding pressure of kg/mm2, sintering was performed at an optimal temperature of 1000 to 1250°C in an argon gas atmosphere, and then heat treatment was performed as necessary at an optimal temperature of 400 to 1250°C. .

得られた焼結磁石の磁気特性は、 1Hc=16.7  [kOeコ Br=12.8 [kG] (BH)max=38.4 [MGOelであった。The magnetic properties of the obtained sintered magnet are as follows: 1Hc=16.7 [kOe Br=12.8 [kG] (BH)max=38.4 [MGOel.

ここで、本発明の粉末を酸化テルビウムの代わりに酸化
ネオジウムの粉末を用いて、他は実施例−1と同様の方
法を用い、樹脂結合型磁石を作成し、磁気測定を行なっ
た。
Here, a resin-bonded magnet was prepared using the same method as in Example 1 except that neodymium oxide powder was used instead of terbium oxide powder of the present invention, and magnetic measurements were performed.

得られた樹脂結合型磁石の磁気特性は、1Hc=15.
4 [kOe] Br=10.0 [kG] (BH)max=20.9 [MGOe]であり、高い
最大エネルギー積の値が得られている。
The magnetic properties of the obtained resin bonded magnet were 1Hc=15.
4 [kOe] Br=10.0 [kG] (BH)max=20.9 [MGOe], and a high maximum energy product value is obtained.

(実施例−3) 実施例−3では、特許請求の範囲第4項記載の製造方法
による圧密体について記す。
(Example 3) In Example 3, a consolidated body manufactured by the manufacturing method according to claim 4 will be described.

また、Pr+vFeya、5Bscu+、sの組成とな
るように、高周波溶解炉を用いアルゴンガス雰囲気中で
溶解・鋳造し、得られたインゴットをアルゴンガス雰囲
気中、1000℃で80%の熱間ブレスを施し、アルゴ
ンガス雰囲気中で1000℃×24時間の熱処理を施し
た。
In addition, the ingot was melted and cast in an argon gas atmosphere using a high-frequency melting furnace so that it had a composition of Pr+vFeya, 5Bscu+, s, and the obtained ingot was hot pressed at 1000°C for 80% in an argon gas atmosphere. , heat treatment was performed at 1000° C. for 24 hours in an argon gas atmosphere.

得られたバルクの磁石の磁気特性は、 1Hc=13.2 [kOe] Br =12.6  [kG] (BH)max=36.2 [MGOe]であった。The magnetic properties of the obtained bulk magnet are 1Hc=13.2 [kOe] Br = 12.6 [kG] (BH)max=36.2 [MGOe].

ここでも同様に、酸化ディスプロシウムの粉末を用いて
、樹脂結合型磁石を作成し、磁気測定を行なった。その
結果を以下に示した。
Similarly, a resin-bonded magnet was created using dysprosium oxide powder, and magnetic measurements were performed. The results are shown below.

1Hc=12.1 [kOe] Br=   9.3[k、Gコ (BH)max=19.7 [MGOe]これから分か
るように、高い最大エネルギー積の値を有する樹脂結合
型磁石が得られている。
1Hc = 12.1 [kOe] Br = 9.3 [k, Gco (BH) max = 19.7 [MGOe] As can be seen, a resin-bonded magnet with a high maximum energy product value was obtained. There is.

以上、実施例−1,2および3がら分がるように、本発
明は、磁性粉末の種類に限定されるものではなく、いか
なる粉末でも効果のあるものである。また、混合する酸
化希土類の粉末の種類に限定されるものでもない。
As can be seen from Examples 1, 2 and 3 above, the present invention is not limited to the type of magnetic powder, and any powder can be used effectively. Further, the type of rare earth oxide powder to be mixed is not limited.

(実施例−4) 実施例−1,2および3の粉末を用い、バインダーとし
てナイロン12を用いて、射出成形および押出成形を行
なったが、どの条件でもなんら問題はなく、本発明は樹
脂結合型磁石の製造方法に依存しないことは明らかであ
る。
(Example 4) Injection molding and extrusion molding were performed using the powders of Examples 1, 2, and 3 and nylon 12 as a binder, but there were no problems under any conditions. It is clear that it does not depend on the manufacturing method of the type magnet.

[発明の効果] 以上述べたように、本発明によれば、磁気的に異方性の
圧密体を作成し、・これを粉砕して得た粉末に、酸化希
土類の粉末を混合し、250℃以上の温度で熱処理した
ことを特徴とすることにより、粉砕に伴う歪によって失
われた保磁力を回復することから、従来の急冷法による
等方性の急冷薄片よりはるかに高性能な異方性の粉末が
得られるので、単に磁気特性の向上だけでなく、それを
用いた製品の高性能化を実現するなど応用面にも多大の
効果を有するものである。
[Effects of the Invention] As described above, according to the present invention, a magnetically anisotropic compacted body is created, a rare earth oxide powder is mixed with the powder obtained by pulverizing the compacted body, and 250 By being heat-treated at a temperature of ℃ or higher, the coercive force lost due to the strain caused by crushing is recovered, so it is an anisotropic material with much higher performance than isotropic quenched flakes produced by the conventional quenching method. Since a magnetic powder can be obtained, it has great effects not only in improving magnetic properties but also in applications such as realizing higher performance in products using it.

以  上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)磁気的に異方性の圧密体を作成し、これを粉砕し
て得た粉末に、酸化希土類の粉末を混合し、250℃以
上の温度で熱処理することを特徴とする磁性粉末の製造
方法。
(1) Magnetic powder is produced by creating a magnetically anisotropic compacted body, pulverizing it, mixing rare earth oxide powder with the powder, and heat-treating the mixture at a temperature of 250°C or higher. Production method.
(2)上記磁気的に異方性の圧密体が、希土類,鉄,ボ
ロンおよび製造上不可避な不純物からなる合金を急冷薄
帯製造装置を用いて急冷薄片を作成し、この薄片を2段
階のホットプレス法で機械的配向処理を施し、磁気的に
異方性化させた圧密体であることを特徴とする請求項1
記載の磁性粉末の製造方法。
(2) The above-mentioned magnetically anisotropic consolidated body is produced by quenching an alloy consisting of rare earths, iron, boron, and impurities that are unavoidable in manufacturing, using a quenching ribbon manufacturing device, and then processing this thin flake in two stages. Claim 1, characterized in that it is a compacted body that has been subjected to mechanical orientation treatment using a hot pressing method and has been made magnetically anisotropic.
A method for producing the magnetic powder described above.
(3)上記磁気的に異方性の圧密体が、希土類,鉄,ボ
ロンおよび製造上不可避な不純物からなる合金を溶解お
よび鋳造後、この合金インゴットを、いわゆる粉末冶金
学的手法を用い、粉砕,磁場中成形,焼結,熱処理とい
った工程で磁気的に異方性化させた焼結磁石であること
を特徴とする請求項1記載の磁性粉末の製造方法。
(3) After the magnetically anisotropic compacted body melts and casts an alloy consisting of rare earths, iron, boron, and impurities unavoidable in manufacturing, the alloy ingot is pulverized using a so-called powder metallurgy method. 2. The method for producing magnetic powder according to claim 1, wherein the magnet is a sintered magnet that has been made magnetically anisotropic through steps such as forming in a magnetic field, sintering, and heat treatment.
(4)上記磁気的に異方性の圧密体が、希土類,鉄,ボ
ロン,銅および製造上不可避な不純物からなる合金を溶
解および鋳造後、この合金インゴットを500℃以上の
温度で熱間加工することにより、結晶粒の微細化および
その結晶軸の特定の方向への配向することによって磁気
的に異方性化させた鋳造合金であることを特徴とする請
求項1記載の磁性粉末の製造方法。
(4) After the magnetically anisotropic compacted body melts and casts an alloy consisting of rare earth elements, iron, boron, copper, and impurities unavoidable in manufacturing, this alloy ingot is hot-processed at a temperature of 500°C or higher. Production of the magnetic powder according to claim 1, characterized in that it is a cast alloy made magnetically anisotropic by refining the crystal grains and orienting the crystal axes in a specific direction. Method.
JP63311273A 1988-12-09 1988-12-09 Manufacture of magnetic powder Pending JPH02156603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311273A JPH02156603A (en) 1988-12-09 1988-12-09 Manufacture of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311273A JPH02156603A (en) 1988-12-09 1988-12-09 Manufacture of magnetic powder

Publications (1)

Publication Number Publication Date
JPH02156603A true JPH02156603A (en) 1990-06-15

Family

ID=18015152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311273A Pending JPH02156603A (en) 1988-12-09 1988-12-09 Manufacture of magnetic powder

Country Status (1)

Country Link
JP (1) JPH02156603A (en)

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPS62198103A (en) Rare earth-iron permanent magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH02156603A (en) Manufacture of magnetic powder
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH02156604A (en) Manufacture of magnetic powder
JPH01175207A (en) Manufacture of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH033204A (en) Manufacture of magnetic powder
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH02268404A (en) Magnetic powder and manufacture thereof
JP2992808B2 (en) permanent magnet
JPS63287007A (en) Manufacture of permanent magnet
JPS63107009A (en) Manufacture of permanent magnet
JPH02162704A (en) Manufacture of permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH0583627B2 (en)
JPH0775204B2 (en) Method for manufacturing polymer composite rare earth magnet
JPH02118054A (en) Permanent magnet material
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JP2003031408A (en) Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet
JPS63286516A (en) Manufacture of permanent magnet