JPH0551656B2 - - Google Patents

Info

Publication number
JPH0551656B2
JPH0551656B2 JP59060206A JP6020684A JPH0551656B2 JP H0551656 B2 JPH0551656 B2 JP H0551656B2 JP 59060206 A JP59060206 A JP 59060206A JP 6020684 A JP6020684 A JP 6020684A JP H0551656 B2 JPH0551656 B2 JP H0551656B2
Authority
JP
Japan
Prior art keywords
alloy
coercive force
permanent magnet
powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59060206A
Other languages
Japanese (ja)
Other versions
JPS60204862A (en
Inventor
Tooru Higuchi
Tetsuhiko Mizoguchi
Koichiro Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59060206A priority Critical patent/JPS60204862A/en
Publication of JPS60204862A publication Critical patent/JPS60204862A/en
Publication of JPH0551656B2 publication Critical patent/JPH0551656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、磁気特性に優れた希土類鉄系永久磁
石合金に関するものである。 (従来の技術) 希土類金属(R)と鉄(Fe)とからなる金属
間化合物は大きな結晶磁気異方性と高い飽和磁化
を有し、高保磁力、および高エネルギー積を有す
る永久磁石合金として有望であり、更に従来の希
土類コバルト磁石に比べて原料が安価であるなど
の利点がある。 しかしながら従来の希土類鉄系の二元系永久磁
石合金は、通常の溶解、粉砕後、焼結してバルク
状に形成した場合、又は樹脂成型のため合金を粉
砕した場合最適な熱処理を施しても、低い保磁力
しか得られず、実用的な永久磁石としては不十分
であつた。 (発明が解決しようとする課題) 本発明は、かかる点に鑑み種々研究を行つた結
果、任意の形状加工が容易な焼結法によつてバル
ク材を形成する場合又は合金を粉砕し樹脂成型し
た場合でも、高磁束密度、高保磁力を有し、高い
エネルギー積を保持した希土類鉄系永久磁石合金
を提供することを目的とするものである。 [発明の構成] (課題を解決するための手段) 本発明は、一般式R1--〓X〓Fe〓 [但しRはY,Ce,Pr,Nd,Sm,M,M(ミ
ツシユメタル)の一種または二種以上、XはC,
N,O,P,H,Al,Siの一種または二種以上]
で、αおよびβの範囲が夫々原子数比で0.001≦
α≦0.5,0.5≦β≦0.95,α+β<1.0によつて規
定されることを特徴とするものである。 前記R−Fe二元系に添加する第三元素Xとし
てはC,N,O,P,H,S,Al,Si等が挙げ
られる。これら第三元素Xを添加することにより
R−X−Feの三元系で安定な菱面体晶、六方晶、
正方晶系などの結晶構造が得られると共に、結晶
のC軸に沿つて磁気的な異方性を持たせて保磁力
が向上するものである。Xとしては、特にN,C
が有効であるが、さらに必要に応じてXに原子数
比で0.001から0.09の範囲内でBを添加しても良
い。この複合添加によつて4πM−H曲線の角型
性を改善することができる。前記Bの添加量が
0.001未満の場合は角型の改善は見られず、一方
前記Bが0.09を超えると磁束密度が減少して最大
エネルギー積が小さくなる。 前記第三元素Xの添加量αの原子数比が0.001
未満の場合には、保磁力の上昇が認められず永久
磁石合金としては実用的ではなく、またαが0.5
を越えてXを多量に添加すると磁束密度が低下す
るので、Xの添加量αを前記範囲に規定した。よ
り好ましい前記Xの添加量は、0.04≦α≦0.20の
範囲である。 前記Feは、本発明磁石合金において磁束密度
を向上させるのに有効な作用をなし、その添加量
βが、0.5未満であると、十分な三元結晶構造が
得られず、磁束密度も低下する。また、前記Fe
の添加量βが0.95を越えてFeの添加量が多くなる
と保磁力が低下するので、前記範囲に規定する必
要がある。より好ましい前記Feの添加量は、0.6
≦β≦0.86の範囲である。 前記希土類元素Rとしては、Y,Ce,Pr,
Nd,Sm,M,Mなどが挙げられ、これらは保磁
力を向上させるのに必須の元素であり、その添加
量が少ないと保磁力が極端に低下するので、0.08
〜0.30の範囲が好ましい。なお、Rの一部にGd
等の重希土類元素を用いても差支えない。 前記組成の合金を溶解、粉砕後、圧粉成形し、
得られた圧粉成形体を焼結した後、熱処理を行つ
て永久磁石とするものである。 また、前記組成の合金粉を樹脂結合することに
よりボンド磁石として用いることができる。前記
合金粉は、樹脂と混合する前に熱処理を施すこと
により保磁力を向上させることができる。また、
前記熱処理に引き続きN2雰囲気中、又はH2雰囲
気中で合金粉に熱処理を施すことにより合金に
N2,H2を含有せしめ又は含有N量、H量を増加
させることができる。なお、前記合金粉はメカニ
カルアロイ等の固相反応又は液体急冷法によつて
製造してもよい。 得られた前記合金粉は樹脂と混合し、成型して
ボンド磁石とする。さらに、前記合金粉をホツト
プレス、熱間塑性加工によりバルク磁石とするこ
ともできる。 (作用) 本発明によれば、希土類鉄系のR−Fe二元系
に第三元素を添加して三元系合金とすることによ
つて、通常の焼結法によりバルク材を形成して
も、また合金を粉砕して樹脂縮合しボンド磁石と
しても優れた磁気特性を有する希土類鉄系永久磁
石合金を得ることができる。 (実施例) 以下、本発明の実施例を詳細に説明する。 実施例 1 第1〜第2表に示す組成の合金試料No.1〜No.18
を高周波溶解し、ジヨークラツシヤーブラウンミ
ルを用いて粗粉砕後、ジエツトミルによる微粉砕
を行つた。この場合、粉砕媒体はN2ガスを用い
た。また、得られた粒子の平均粒径は5μmであ
る。この微粉末を15KOeの磁場中で配向後、2
トン/cm2の圧力で磁場印加方向と直角にプレスし
て圧縮成形し、縦10mm、横10mm、厚さ8mmの板状
圧粉成形体を得た。 次いで、前記圧粉成形体を焼結した後、熱処理
を施して永久磁石を形成し、その残留磁束密度:
Br、保磁力:1Hc、および最大エネルギー積:
(BH)maxを測定し、その結果を第1表および
第2表に示した。 なお、圧粉成形体の焼結条件および熱処理条件
は、次のA,B,Cの何れか一つの条件を用い
た。 A:圧粉成形体を1100℃×1時間、アルゴン雰囲
気中で焼結した後、600℃×5時間の時効処理
を行う。 B:圧粉成形体を1080℃×1時間、アルゴン雰囲
気中で焼結した後、650℃×3時間と550℃×10
時間の二段の時効処理を行う。 C:圧粉成形体を1050℃×1時間アルゴン雰囲気
中で焼結した後、550℃×5時間の時効処理を
行い、その後、室温まで1℃/minの冷却速度
で制御冷却を行つた。 比較例 本発明磁石合金と比較するために、同第2表の
No.19に示す組成の従来のR−Fe二元系合金、お
よびNo.20〜No.22、更に第3表のNo.23〜No.26に示す
本発明の規定を外れる範囲の合金についても、上
記実施例と同様に永久磁石を製造した。この磁気
特性についても同様に測定し、その結果を第2表
及び第3表に併記した。
[Object of the Invention] (Industrial Application Field) The present invention relates to a rare earth iron-based permanent magnet alloy with excellent magnetic properties. (Prior art) Intermetallic compounds consisting of rare earth metals (R) and iron (Fe) have large magnetocrystalline anisotropy and high saturation magnetization, and are promising as permanent magnet alloys with high coercive force and high energy product. Moreover, compared to conventional rare earth cobalt magnets, it has the advantage that the raw materials are cheaper. However, conventional rare-earth iron-based binary permanent magnet alloys can be formed into a bulk shape by normal melting, pulverization, and sintering, or when the alloy is pulverized for resin molding, even after optimal heat treatment. However, only a low coercive force was obtained, which was insufficient for use as a practical permanent magnet. (Problems to be Solved by the Invention) As a result of conducting various studies in view of the above points, the present invention has been developed to form a bulk material by a sintering method that is easy to process into any shape, or to crush an alloy and mold it into a resin. The object of the present invention is to provide a rare earth iron-based permanent magnet alloy that has high magnetic flux density, high coercive force, and maintains a high energy product even in such cases. [Structure of the invention] (Means for solving the problem) The present invention is based on the general formula R 1-- 〓X〓Fe〓 [where R is Y, Ce, Pr, Nd, Sm, M, M (Mitshu Metal) one or more of the following, X is C,
One or more types of N, O, P, H, Al, Si]
, the range of α and β is 0.001≦ in terms of atomic ratio, respectively.
It is characterized by being defined by α≦0.5, 0.5≦β≦0.95, and α+β<1.0. Examples of the third element X added to the R-Fe binary system include C, N, O, P, H, S, Al, and Si. By adding these third elements X, stable rhombohedral, hexagonal, and
In addition to obtaining a crystal structure such as a tetragonal system, the coercive force is improved by imparting magnetic anisotropy along the C axis of the crystal. As X, especially N, C
is effective, but if necessary, B may be added to X in an atomic ratio of 0.001 to 0.09. This composite addition can improve the squareness of the 4πM-H curve. The amount of B added is
When B is less than 0.001, no improvement in squareness is observed, whereas when B exceeds 0.09, the magnetic flux density decreases and the maximum energy product becomes small. The atomic ratio of the added amount α of the third element X is 0.001
If α is less than 0.5, no increase in coercive force is observed and it is not practical as a permanent magnet alloy, and α is 0.5.
If a large amount of X is added exceeding the above range, the magnetic flux density will decrease, so the amount α of X added is defined within the above range. A more preferable amount of X to be added is in the range of 0.04≦α≦0.20. The Fe has an effective effect in improving the magnetic flux density in the magnet alloy of the present invention, and if the added amount β is less than 0.5, a sufficient ternary crystal structure cannot be obtained and the magnetic flux density also decreases. . In addition, the Fe
If the addition amount β exceeds 0.95 and the addition amount of Fe increases, the coercive force will decrease, so it is necessary to define it within the above range. More preferably, the amount of Fe added is 0.6
The range is ≦β≦0.86. The rare earth elements R include Y, Ce, Pr,
These include Nd, Sm, M, M, etc. These are essential elements to improve coercive force, and if the amount added is small, the coercive force decreases extremely, so 0.08
A range of ~0.30 is preferred. In addition, Gd is included in a part of R.
There is no problem in using heavy rare earth elements such as. After melting and pulverizing the alloy having the above composition, compacting the alloy,
After the obtained green compact is sintered, it is heat-treated to form a permanent magnet. Further, by bonding the alloy powder having the above composition with a resin, it can be used as a bonded magnet. The coercive force of the alloy powder can be improved by subjecting it to heat treatment before mixing it with the resin. Also,
Following the above heat treatment, the alloy powder is heat treated in an N 2 atmosphere or an H 2 atmosphere.
It is possible to contain N 2 and H 2 or to increase the content of N and H. Note that the alloy powder may be produced by a solid phase reaction such as mechanical alloying or a liquid quenching method. The obtained alloy powder is mixed with resin and molded into a bonded magnet. Furthermore, the alloy powder can be made into a bulk magnet by hot pressing or hot plastic working. (Function) According to the present invention, a bulk material is formed by a normal sintering method by adding a third element to a rare earth iron-based R-Fe binary system to form a ternary alloy. Also, by pulverizing the alloy and condensing the resin, it is possible to obtain a rare earth iron-based permanent magnet alloy that has excellent magnetic properties even as a bonded magnet. (Example) Examples of the present invention will be described in detail below. Example 1 Alloy samples No. 1 to No. 18 with the compositions shown in Tables 1 and 2
was melted by high frequency, coarsely pulverized using a Joe Crusher Brown mill, and then finely pulverized using a jet mill. In this case, N2 gas was used as the grinding medium. Furthermore, the average particle size of the obtained particles was 5 μm. After orienting this fine powder in a magnetic field of 15KOe,
Compression molding was performed by pressing at right angles to the direction of magnetic field application at a pressure of ton/cm 2 to obtain a plate-shaped powder compact measuring 10 mm in length, 10 mm in width, and 8 mm in thickness. Next, after sintering the powder compact, a permanent magnet is formed by heat treatment, and its residual magnetic flux density:
Br, coercive force: 1 H c , and maximum energy product:
(BH)max was measured and the results are shown in Tables 1 and 2. In addition, as the sintering conditions and heat treatment conditions of the powder compact, any one of the following conditions A, B, and C was used. A: The powder compact is sintered at 1100°C for 1 hour in an argon atmosphere, and then subjected to aging treatment at 600°C for 5 hours. B: After sintering the powder compact at 1080°C for 1 hour in an argon atmosphere, it was sintered at 650°C for 3 hours and at 550°C for 10 hours.
A two-stage aging process is performed. C: After sintering the powder compact in an argon atmosphere at 1050°C for 1 hour, aging treatment was performed at 550°C for 5 hours, and then controlled cooling was performed at a cooling rate of 1°C/min to room temperature. Comparative Example In order to compare with the magnet alloy of the present invention, the
Concerning the conventional R-Fe binary alloy having the composition shown in No. 19, No. 20 to No. 22, and alloys outside the scope of the present invention shown in No. 23 to No. 26 in Table 3. A permanent magnet was also manufactured in the same manner as in the above example. The magnetic properties were also measured in the same manner, and the results are also shown in Tables 2 and 3.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 2 次のような方法により下記第4表に示す組成の
合金粉試料を用いたボンド磁石を作製した。 まず所定量の元素を混合し、アーク溶解を行つ
た後1000〜1200℃の温度で18時間均一化処理を行
つた。得られた合金は、粒径50μm以下まで粉砕
した後、合金組成によつて400〜800℃の範囲で3
時間の熱処理を行つた。なお、N又はHを含有す
る合金はそれぞれ0.95気圧のN2,H2雰囲気下で
引き続き熱処理を行つた。熱処理処理条件はN含
有の場合500℃,10時間、H2含有の場合は250℃,
1時間であつたた。 得られた合金粉は2.5wt%のエポキシ樹脂と混
合し、圧縮成型により8種のボンド磁石とした。
かかる各ボンド磁石の残留磁束密度、保磁力およ
び最大エネルギー積を同第4表に併記した。
[Table] Example 2 Bonded magnets were produced using alloy powder samples having the compositions shown in Table 4 below by the following method. First, a predetermined amount of elements were mixed, arc melted, and then homogenized at a temperature of 1000 to 1200°C for 18 hours. The obtained alloy is crushed to a particle size of 50 μm or less, and then heated at a temperature of 400 to 800℃ depending on the alloy composition.
Heat treatment was performed for several hours. Note that the alloys containing N or H were subsequently heat-treated in N 2 and H 2 atmospheres of 0.95 atm, respectively. Heat treatment conditions are 500℃ for 10 hours when containing N, 250℃ when containing H2 ,
It warmed up in an hour. The obtained alloy powder was mixed with 2.5wt% epoxy resin and compression molded to form eight types of bonded magnets.
The residual magnetic flux density, coercive force, and maximum energy product of each bonded magnet are also listed in Table 4.

【表】 実施例 3 次のような方法により、第5表に示す組成の合
金粉末を用いたボンド磁石を作製した。 まず所定量の元素粉末(希土類元素の粉末粒径
は0.5mm以下、その他の元素は5〜40μm)を混合
し、1気圧Ar雰囲気下で72時間ボールミルによ
る合金化処理を施した。得られた合金粉末は、合
金組成によつて400〜800℃の範囲で30秒間熱処理
を行つた。なおN又はHを含有する合金はそれぞ
れ0.95気圧のN2,H2ガス雰囲気下で引き続き熱
処理を行つた。熱処理条件はN含有の場合500℃,
2時間、H2含有の場合は250℃,1時間であつ
た。 得られた合金粉末は、2.5wt%のエポキシ樹脂
と混合し、圧縮成型により8種のボンド磁石とし
た。かかる各ボンド磁石の残留磁束密度、保磁力
および最大エネルギー積を同第5表に併記した。
[Table] Example 3 Bonded magnets using alloy powders having the compositions shown in Table 5 were produced by the following method. First, a predetermined amount of elemental powder (powder particle size of rare earth elements is 0.5 mm or less, other elements are 5 to 40 μm) was mixed, and alloyed by a ball mill in an Ar atmosphere of 1 atm for 72 hours. The obtained alloy powder was heat treated at a temperature of 400 to 800°C for 30 seconds depending on the alloy composition. The alloys containing N or H were subsequently heat-treated in N 2 and H 2 gas atmospheres at 0.95 atm, respectively. Heat treatment conditions are 500℃ in case of N content;
The temperature was 2 hours, and the temperature was 250°C for 1 hour in the case containing H2 . The obtained alloy powder was mixed with 2.5 wt% of epoxy resin and compressed into eight types of bonded magnets. The residual magnetic flux density, coercive force, and maximum energy product of each bonded magnet are also listed in Table 5.

【表】 [発明の効果] 上各表の結果から明らかな如く、本発明に係る
希土類鉄系永久磁石合金によれば、高磁束密度、
高保磁力を有し、しかも高いエネルギー積を有す
るなど、顕著な効果を有するものである。
[Table] [Effects of the Invention] As is clear from the results in the above tables, the rare earth iron-based permanent magnet alloy according to the present invention has high magnetic flux density,
It has remarkable effects such as having a high coercive force and a high energy product.

Claims (1)

【特許請求の範囲】 1 一般式 R1--〓X〓Fe〓 [但しRはY,Ce,Pr,Nd,Sm,M,M(ミ
ツシユメタル)の一種または二種以上XはC,
N,O,P,H,Al,Siの一種または二種以上] で、αおよびβの範囲が夫々原子数比で 0.001≦α≦0.5 0.5≦β≦0.95 α+β<1.0 によつて規定されることを特徴とする希土類鉄系
永久磁石合金。
[Claims] 1 General formula R 1-- 〓X〓Fe〓 [However, R is one or more of Y, Ce, Pr, Nd, Sm, M, M (Mitshu Metal) X is C,
One or more of N, O, P, H, Al, and Si], and the ranges of α and β are defined by the following atomic ratios: 0.001≦α≦0.5 0.5≦β≦0.95 α+β<1.0 A rare earth iron-based permanent magnet alloy characterized by:
JP59060206A 1984-03-28 1984-03-28 Rare earth element-iron type permanent magnet alloy Granted JPS60204862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060206A JPS60204862A (en) 1984-03-28 1984-03-28 Rare earth element-iron type permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060206A JPS60204862A (en) 1984-03-28 1984-03-28 Rare earth element-iron type permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS60204862A JPS60204862A (en) 1985-10-16
JPH0551656B2 true JPH0551656B2 (en) 1993-08-03

Family

ID=13135439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060206A Granted JPS60204862A (en) 1984-03-28 1984-03-28 Rare earth element-iron type permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS60204862A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy
US4954186A (en) * 1986-05-30 1990-09-04 Union Oil Company Of California Rear earth-iron-boron permanent magnets containing aluminum
JPS6324030A (en) * 1986-06-26 1988-02-01 Res Dev Corp Of Japan Anisotropic rare earth magnet material and its production
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
JP2970809B2 (en) * 1987-12-28 1999-11-02 信越化学工業株式会社 Rare earth permanent magnet
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JP2708578B2 (en) * 1989-11-20 1998-02-04 旭化成工業株式会社 Bonded magnet
JP2708568B2 (en) * 1989-09-13 1998-02-04 旭化成工業株式会社 Magnetic material
JP3886968B2 (en) * 2002-03-18 2007-02-28 日立マクセル株式会社 Magnetic recording medium and magnetic recording cartridge
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
DE112004000008T5 (en) 2003-02-19 2005-06-16 Hitachi Maxell, Ltd, Ibaraki Magnetic recording medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5989401A (en) * 1982-11-15 1984-05-23 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59132105A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS601808A (en) * 1983-06-17 1985-01-08 Sumitomo Special Metals Co Ltd Permanent magnet
JPS60131949A (en) * 1983-12-19 1985-07-13 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JPS60144908A (en) * 1984-01-06 1985-07-31 Daido Steel Co Ltd Permanent magnet material
JPS60176202A (en) * 1984-02-22 1985-09-10 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5989401A (en) * 1982-11-15 1984-05-23 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59132105A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS601808A (en) * 1983-06-17 1985-01-08 Sumitomo Special Metals Co Ltd Permanent magnet
JPS60131949A (en) * 1983-12-19 1985-07-13 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JPS60144908A (en) * 1984-01-06 1985-07-31 Daido Steel Co Ltd Permanent magnet material
JPS60176202A (en) * 1984-02-22 1985-09-10 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy

Also Published As

Publication number Publication date
JPS60204862A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
EP0239031B1 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP0274034B1 (en) Anisotropic magnetic powder, magnet thereof and method of producing same
US5230751A (en) Permanent magnet with good thermal stability
JPH0551656B2 (en)
JPS6181606A (en) Preparation of rare earth magnet
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JPH0518242B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
US4099995A (en) Copper-hardened permanent-magnet alloy
JPH0320046B2 (en)
JPH04241402A (en) Permanent magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS6181607A (en) Preparation of rare earth magnet
US3682715A (en) Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPH044383B2 (en)
JPH06112019A (en) Nitride magnetic material
JPS61147504A (en) Rare earth magnet
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2577373B2 (en) Sintered permanent magnet
JPH04240703A (en) Manufacture of permanent magnet
JPH03222304A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term