JPS60144908A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS60144908A
JPS60144908A JP59000263A JP26384A JPS60144908A JP S60144908 A JPS60144908 A JP S60144908A JP 59000263 A JP59000263 A JP 59000263A JP 26384 A JP26384 A JP 26384A JP S60144908 A JPS60144908 A JP S60144908A
Authority
JP
Japan
Prior art keywords
permanent magnet
alpha
earth elements
maximum energy
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000263A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59000263A priority Critical patent/JPS60144908A/en
Publication of JPS60144908A publication Critical patent/JPS60144908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance residual magnetic flux density and further improve magnetic characteristic expressed by the maximum energy product by forming a permanent magnet using a material mainly composed of particular rate earth elements and iron. CONSTITUTION:As a material of a permanent magnet, a composition expressed by R1-alpha-betaFealphaXbeta is used. Here, R is one or two or more kinds of rare earth elements and X is one or two or mare kinds of C, N, Si, P. Values of alpha, beta satisfy the relations, 0.60<=alpha<=0.85, 0.01<=beta<=0.15. For example, an alloy having a composition expressed by Nd0.22-betaFe0.75CbetaB0.03 is fused under the Ar ambient within a button dissolving furnace, it is then roughly smashed within a mortar and thereafter smashed to fine powder with a jet mill until the average grain size becomes about 4mum. Then, the powder is press-molded under magnetic field of 15kOe and a mold obtained is sintered for an hour under the Ar ambient at a temperature of 1,000 deg.C.

Description

【発明の詳細な説明】 この発明は、家庭電化製品、音響製品1時計部品、自動
車部品、精密機器等々の永久磁石を用いる広範囲な用途
に使用することができる永久磁石材料に関し、とくに希
土類元素(R)と鉄(Fe)とを主体とする永久磁石材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet material that can be used in a wide range of applications using permanent magnets such as home appliances, audio products, watch parts, automobile parts, precision instruments, etc. This relates to a permanent magnet material mainly composed of R) and iron (Fe).

(従来技術) 近年、永久磁石材料における最大エネルギ積((B H
) ff1ax )の向上はかってのアルニコ系磁石材
料等のそれに比べて著しいものがあり、とくに家庭電化
製品、音響製品、時計部品、自動車部品、精密機器等々
の小型軽量化および高性能化等に大きく貢献している。
(Prior art) In recent years, the maximum energy product ((B H
) The improvement in ff1ax) is remarkable compared to that of the old alnico magnet materials, etc., and it is especially important for the miniaturization and weight reduction and high performance of home appliances, audio products, watch parts, automobile parts, precision instruments, etc. Contributing.

従来、このような優れた特性の永久磁石材料としては希
土類−コバルト系磁石が代表的なものであり、その最大
エネルギ積((BH) mat )は18〜28MGΦ
Oe程度のかなり高い値を示している。しかし、最大エ
ネルギ積((BH)raaX )をさらに向上させるた
めの研究はいぜんとして続けられ、一部では他の希土類
磁石の開発も進んでおり、なかには希土類−鉄系磁石材
料についての開発も行われている。この希土類−鉄系磁
石材料としてはNd−Fe系やNd−Fe−B系のもの
もあるが、本発明者らはこれを基にさらに研究を進めた
結果、この発明を完成するに至ったものである。
Conventionally, rare earth-cobalt magnets have been typical as permanent magnet materials with such excellent characteristics, and their maximum energy product ((BH) mat ) is 18 to 28 MGΦ
It shows a fairly high value of about Oe. However, research to further improve the maximum energy product ((BH) raa ing. There are Nd-Fe-based and Nd-Fe-B-based rare earth-iron magnet materials, but as a result of further research based on these, the inventors were able to complete this invention. It is something.

(発明の目的) この発明は上述したNd−Fe系およびNd−Fe−B
系を代表とするREM−Fe (−B)系の永久磁石材
料において、残留磁束密度(Br)、保磁力(BH’C
,IHC)および最大エネルギ積((BH) maw 
)で表わされる磁気特性をさらに向上させた希土類−鉄
系永久磁石材料を提供することを目的としている。
(Object of the invention) This invention relates to the above-mentioned Nd-Fe system and Nd-Fe-B system.
In the REM-Fe (-B) series permanent magnet material, the residual magnetic flux density (Br) and the coercive force (BH'C
, IHC) and the maximum energy product ((BH) maw
) The object of the present invention is to provide a rare earth-iron permanent magnet material with further improved magnetic properties expressed by:

(発明の構成) この発明による永久磁石材料は、一般式、R1、−β 
、Fe、XβByで表わされ、Rが希土類元素の1種ま
たは2種以上、XがC9N、St、Pの1種または2種
以上であり、0.60≦α≦0.85. 0、O1≦β<0.15. 0≦γ≦0.10 であることを特徴としている。
(Structure of the Invention) The permanent magnet material according to the present invention has the general formula: R1, -β
, Fe, XβBy, R is one or more rare earth elements, X is one or more of C9N, St, P, and 0.60≦α≦0.85. 0, O1≦β<0.15. It is characterized in that 0≦γ≦0.10.

この発明による永久磁石材料は、上記のように、一般式
、R1−a−73−yFectX/3Byで表わされる
が、式中のRは希土類元素の1種または2種以上である
ことを示し、Ndをはじめとし、Sc、Y、La、Ce
、Pr、Pm、Sm。
As mentioned above, the permanent magnet material according to the present invention is represented by the general formula R1-a-73-yFectX/3By, where R represents one or more rare earth elements, Including Nd, Sc, Y, La, Ce
, Pr, Pm, Sm.

Eu、Gd、Tb、Dy、Ho、Er、Tm。Eu, Gd, Tb, Dy, Ho, Er, Tm.

Yb、Luのうちの1種または2種以上が用いられる。One or more types of Yb and Lu are used.

また、上記一般式において、Fe(鉄)は、0.80≦
α≦0.85の範囲としている。ここで、Feの量が多
すぎると、残留磁束密度(Br)は向上するものの、保
磁力(、BHC。
In addition, in the above general formula, Fe (iron) is 0.80≦
The range is α≦0.85. Here, if the amount of Fe is too large, the residual magnetic flux density (Br) will improve, but the coercive force (, BHC) will increase.

I Hc)が極端に減少するため、すぐれた最大エネル
ギ積((B H) maw )は得られなくなるので、
α≦0.85とした。一方、Feの量が少なすぎると残
留磁束密度(B r)が低くなり、最大エネルギ積((
B H) mat )が減少するので、0.60≦αと
した。
Since the excellent maximum energy product ((B H) maw ) can no longer be obtained because I Hc) is extremely reduced,
α≦0.85. On the other hand, if the amount of Fe is too small, the residual magnetic flux density (Br) will be low, and the maximum energy product ((
Since B H) mat ) decreases, 0.60≦α is set.

さらに、上記一般式において、XはC,N。Furthermore, in the above general formula, X is C or N.

Sj、Pの1種または2種以上であり、o、o、i≦β
<0.15の範囲としている。ここで、X元素は希土類
−鉄系磁石、たとえばNd−Fe系磁石のキュリ一点を
常温程度から300°C以上に上昇させ、保磁力(BH
C,1,HC)を向上させる効果を有するものであり、
このような効果を得るためには、0.01≦βとする必
要がある。しかし、Xの量が多すぎると炭化物、窒化物
、珪化物、燐化物の占める割合が高くなって保磁力(B
HC、IHC)および残留磁束密度(B r)が減少し
、すぐれた最大エネルギ積((BH)maX)が得られ
なくなるのでβ<0.15とした。
One or more of Sj and P, o, o, i≦β
The range is <0.15. Here, the element
It has the effect of improving C, 1, HC),
In order to obtain such an effect, it is necessary to satisfy 0.01≦β. However, if the amount of
HC, IHC) and residual magnetic flux density (Br) decrease, making it impossible to obtain an excellent maximum energy product ((BH)maX), so β<0.15 was set.

さらに、B(硼素)は希土類−鉄系磁石、たとえばNd
−Fe系磁石の磁気特性を高めるのに有効であるが、多
すぎるとかえって磁気特性が低下するので、γ≦0.1
0とした。
Furthermore, B (boron) is a rare earth-iron magnet, such as Nd.
-It is effective in improving the magnetic properties of Fe-based magnets, but if it is too much, the magnetic properties will deteriorate, so γ≦0.1
It was set to 0.

(牢槁41fll 1 ) Nd’FeCB なる組成の合 0.22−β 0,75 β 0.03−金をアルゴン
雰囲気中に調整したボタン溶解炉を用いて溶製した。次
いで、溶製合金を乳鉢内で粗粉砕した後、ジェットミル
にて平均粒径4gm程度まで微粉砕した。
(Gold 41fl1) Nd'FeCB 0.22-β 0.75 β 0.03-gold was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 4 gm.

次に、得られた粉末を15KOeの磁場中で約2ton
f/cm2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000°Cで1
時間の条件で焼結を行い、室温まで急冷した後さらに所
定の熱処理を施した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press forming under a pressure of f/cm2, the obtained molded body was heated at 1000°C in an argon atmosphere for 1
Sintering was carried out under the conditions of a certain amount of time, and after being rapidly cooled to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC) 、および最大エネルギ積((
B H) mat )を調べたところ、第1表に示すよ
うに、本発明の範囲を満足する場合はいずれもすぐれた
磁気特性を示しているのに対して、C量が少なすぎるN
o、1.2.およびC量が多すぎる陥、6の場合にはい
ずれも本発明のものよりも磁気特性が劣っていることが
明らかである。
Then, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((
As shown in Table 1, when the B H
o, 1.2. It is clear that the magnetic properties are inferior to those of the present invention in both case 6 and case 6 in which the amount of C is too large.

(実施例2) NdO,22−βFeO,75Si/3 Bo、03な
る組成の合金をアルゴン雰囲気中に調整したボタン溶解
炉を用いて溶製した。次いで、溶製合金を乳鉢内で粗粉
砕した後、ジェットミルにて平均粒径4gm程度まで微
粉砕した。
(Example 2) An alloy having the composition of NdO, 22-βFeO, 75Si/3 Bo, 03 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 4 gm.

次に、得られた粉末を15KOeの磁場中で約2ton
f/Cm2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000°Cで1
時間の条件で焼結を行い、室温まで急冷した後さらに所
定の熱処理を施した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press forming under a pressure of f/Cm2, the obtained molded body was heated at 1000°C in an argon atmosphere for 1
Sintering was carried out under the conditions of a certain amount of time, and after being rapidly cooled to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHc)、および最大エネルギ積((B
 H) max )を調べたところ、第2表に示す結果
となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHc), and maximum energy product ((B
H) max ) was investigated, and the results are shown in Table 2.

第2表に示すように、本発明の範囲を満足する場合はい
ずれもすぐれた磁気特性を示しているのに対して、Si
量が少なすぎるNo、11.12、およびSi量が多す
ぎる慟、16の場合にはいずれも本発明のものよりも磁
気特性が劣っていることが明らかである。
As shown in Table 2, all cases satisfying the scope of the present invention show excellent magnetic properties, whereas Si
It is clear that in the cases of No. 11.12, where the amount of Si is too small, and No. 16, where the amount of Si is too large, the magnetic properties are inferior to those of the present invention.

(実施例3) Ndo、22−βFeo、75PβBo、o3なる組成
の合金をアルゴン雰囲気中に調整したボタン溶解炉を用
いて溶製した。次いで、溶製合金を乳鉢内で粗粉砕した
後、ジェットミルにて平均粒径4gm程度まで微粉砕し
た。
(Example 3) An alloy having a composition of Ndo, 22-βFeo, 75PβBo, and o3 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 4 gm.

次に、得られた粉末を15KOeの磁場中で約2ton
f/cm2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000°Cで1
時間の条件で焼結を行い、室温まで急冷した後さらに所
定の熱処理を施した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press forming under a pressure of f/cm2, the obtained molded body was heated at 1000°C in an argon atmosphere for 1
Sintering was carried out under the conditions of a certain amount of time, and after being rapidly cooled to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギ積((B
 H) man )を調べたところ、第3表に示す結果
となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B
H)man) was investigated, and the results are shown in Table 3.

第3表に示すように、本発明の範囲を満足する場合はい
ずれもすぐれた磁気特性を示しているのに対して、P量
が少なすぎるNo、21.22、およびP量が多すぎる
陽、26の場合にはいずれも本発明のものよりも磁気特
性が劣っていることが明らかである。
As shown in Table 3, all cases satisfying the scope of the present invention show excellent magnetic properties, while No. 21.22, which has too little P amount, and No. 21.22, which has too much P amount, have excellent magnetic properties. , 26, it is clear that the magnetic properties are inferior to those of the present invention.

(実施例4) Ndo、22Feo、75NβBo、。3なる組成の合
金をアルゴン雰囲気中に調整したボタン溶解炉を用いて
溶製した。次いで、溶製合金を乳鉢内で粗粉砕した後、
ジェットミルにて平均粒径471m程度まで微粉砕した
(Example 4) Ndo, 22Feo, 75NβBo. An alloy having the composition No. 3 was melted using a button melting furnace adjusted to an argon atmosphere. Next, after coarsely pulverizing the molten alloy in a mortar,
It was pulverized using a jet mill to an average particle size of about 471 m.

次に、得られた粉末を15KOeの磁場中で約2ton
f/cm2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000°Cで1
時間の条件で焼結を行い、室温まで急冷した後さらに所
定の熱処理を施した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press forming under a pressure of f/cm2, the obtained molded body was heated at 1000°C in an argon atmosphere for 1
Sintering was carried out under the conditions of a certain amount of time, and after being rapidly cooled to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギ積((B
 H) max )を調べたところ、第4表に示す結果
となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B
H) max ) was investigated, and the results are shown in Table 4.

第4表に示すように、本発明の範囲を満足する場合はい
ずれもすぐれた磁気特性を示しているのに対して、N量
が少なすぎるNo、31.32、およびN量が多すぎる
陽、36の場合にはいずれも本発明のものよりも磁気特
性が劣っていることが明らかである。
As shown in Table 4, all cases satisfying the range of the present invention show excellent magnetic properties, while No. 31.32, which has too little N amount, and No. 31.32, which has too much N amount, exhibit excellent magnetic properties. , 36, it is clear that the magnetic properties are inferior to those of the present invention.

(実施例5) 第5表に示す組成の合金をアルゴン雰囲気中に調整した
ボタン溶解炉を用いて溶製した。次いで、溶製合金を乳
鉢内で粗粉砕した後、ジェットミルにて平均粒径47h
m程度まで微粉砕した。
(Example 5) Alloys having the compositions shown in Table 5 were melted using a button melting furnace adjusted to an argon atmosphere. Next, after coarsely pulverizing the molten alloy in a mortar, a jet mill was used to reduce the average particle size to 47 h.
It was pulverized to about m.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において1ooo°C
で1時間の条件で焼結を行い、室温まで急冷した後さら
に所定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded body was heated to 100°C in an argon atmosphere.
Sintering was carried out under the conditions of 1 hour, and after rapidly cooling to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギ積((B
 H) max )を調べたところ、第5表に示す結果
となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B
H) max ) was investigated, and the results are shown in Table 5.

第5表に示すように、R−Fe系の磁石材料にX成分を
適量添加した(No、41〜43.45)の場合にもR
−Fe−B系の磁石材料にX成分を適量添加した場合(
前記実施例)と同様にすぐれた磁気特性を示しており、
R−Fe−B系の磁石材料に上記X成分を含まない陽、
44の場合よりも磁気特性にすぐれていることが明らか
である。
As shown in Table 5, the R
-When an appropriate amount of X component is added to Fe-B magnet material (
It shows excellent magnetic properties similar to the above example),
A positive R-Fe-B magnet material that does not contain the above X component,
It is clear that the magnetic properties are superior to those of No. 44.

(発明の効果) 以上説明してきたように、この発明による永久磁石材料
は、一般式 %式% が希土類元素の1種または2種以上、XがC2N、Si
、Pの1種または2種以上であり、0.60≦α≦0.
85. 0.01≦β<0.15. 0≦γ≦0.10 であるようにしたから、残留磁束密度(Br)保磁力(
BHC,IHC)、最大エネルギ積((B H) ma
x )で表わされる磁気特性に著しく優れたものであり
、家庭電化製品、音響製品、時計部品、自動車部品、精
密機器等々の小型軽量化および高性能化等を永久磁石の
面から実現することが可能であるという非常に優れた効
果をもたらしうるものである。
(Effects of the Invention) As explained above, the permanent magnet material according to the present invention has the general formula % where the general formula % is one or more rare earth elements, and X is C2N, Si
, P, and 0.60≦α≦0.
85. 0.01≦β<0.15. Since 0≦γ≦0.10, the residual magnetic flux density (Br) and coercive force (
BHC, IHC), maximum energy product ((B H) ma
It has extremely excellent magnetic properties expressed by It is possible to bring about very good effects.

特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 豊Patent applicant: Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Shio

Claims (1)

【特許請求の範囲】 (1)式、R1−ex−f3FeaXβで表わされ、R
が希土類元素の1種または2種以上、XがC1N、St
 、Pの1種または2種以上であり、0.60≦α≦0
.85. 0.01≦β<0.15、 であることを特徴とする永久磁石材料。 (2)式、R1、,3、Fe、XβB、で表わされ、R
が希土類元素の1種または2種以上、XがC,N、St
、Pの1種または2種以上であり、 0.60≦α≦0.85. 0.01≦β<0.15、 γ≦0.10 であることを特徴とする永久磁石材料。
[Claims] Formula (1), represented by R1-ex-f3FeaXβ, R
is one or more rare earth elements, X is C1N, St
, one or more types of P, and 0.60≦α≦0
.. 85. A permanent magnetic material characterized in that 0.01≦β<0.15. (2) Represented by the formula, R1, , 3, Fe, XβB, and R
is one or more rare earth elements, X is C, N, St
, P, and 0.60≦α≦0.85. A permanent magnetic material characterized in that 0.01≦β<0.15 and γ≦0.10.
JP59000263A 1984-01-06 1984-01-06 Permanent magnet material Pending JPS60144908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000263A JPS60144908A (en) 1984-01-06 1984-01-06 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000263A JPS60144908A (en) 1984-01-06 1984-01-06 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS60144908A true JPS60144908A (en) 1985-07-31

Family

ID=11469021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000263A Pending JPS60144908A (en) 1984-01-06 1984-01-06 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS60144908A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
EP0470476A2 (en) * 1990-08-09 1992-02-12 Siemens Aktiengesellschaft Method for the preparation of anisotropic magnetic material based on the Sm-Fe-N substance system
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
EP0571002A2 (en) 1989-08-25 1993-11-24 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production
JPH044387B2 (en) * 1984-02-01 1992-01-28
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy
JPH0551656B2 (en) * 1984-03-28 1993-08-03 Tokyo Shibaura Electric Co
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
EP0571002A2 (en) 1989-08-25 1993-11-24 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
EP0571002B2 (en) 1989-08-25 2003-01-02 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
EP0470476A2 (en) * 1990-08-09 1992-02-12 Siemens Aktiengesellschaft Method for the preparation of anisotropic magnetic material based on the Sm-Fe-N substance system

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
EP0258609A2 (en) Permanent magnet with good thermal stability
JPS60254708A (en) Manufacture of permanent magnet
US5230751A (en) Permanent magnet with good thermal stability
JPS60144909A (en) Manufacture of permanent magnet material
JP3121824B2 (en) Sintered permanent magnet
JPS60144906A (en) Permanent magnet material
JPS62136551A (en) Permanent magnet material
JPS60144908A (en) Permanent magnet material
JPS60144907A (en) Permanent magnet material
JPS62241304A (en) Rare earth permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3178848B2 (en) Manufacturing method of permanent magnet
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH1083908A (en) High-resistance rare-earth magnet and manufacture thereof
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS62136553A (en) Permanent magnet material
JPS60254709A (en) Permanent magnet
JPS62136550A (en) Permanent magnet material
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine