JPS60144909A - Manufacture of permanent magnet material - Google Patents

Manufacture of permanent magnet material

Info

Publication number
JPS60144909A
JPS60144909A JP59000264A JP26484A JPS60144909A JP S60144909 A JPS60144909 A JP S60144909A JP 59000264 A JP59000264 A JP 59000264A JP 26484 A JP26484 A JP 26484A JP S60144909 A JPS60144909 A JP S60144909A
Authority
JP
Japan
Prior art keywords
cooling rate
permanent magnet
rare earth
cooled
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000264A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59000264A priority Critical patent/JPS60144909A/en
Publication of JPS60144909A publication Critical patent/JPS60144909A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To enhance a residual magnetic flux density and coersive force and simultaneously further improve magnetic characteristic expressed by the miximum energy product by forming a permanent magnet using a material mainly composed of particular rare earth elements and iron. CONSTITUTION:As a material of permanent magnet, a composition expressed by R1-alpha-beta-gammaFealphaMbetaXgamma is used. Here, R is one or two or more kinds of rare earth element, and M is one or two or more kinds of Ni, Co, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W. X is one or two or more kinds of B, C, N, Si, P and values of alpha, beta, gamma satisfy the relations, 0.60<=alpha<=0.85, 0<=beta<=0.20, 0<=gamma<=0.15. An alloy of such composition is smashed and is then molded under the magnetic field and thereafter sintered. It is then heat processed and a magnet material can be obtained. In this case, after the sintering, a material is cooled up the 530-750 deg.C at a cooling rate of 0.5-10 deg.C/min and then held at this temperature for 0.2hr or longer. Thereafter, it is cooled up to a room temperature at a cooling rate of 30 deg.C/min or higher.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、家庭電化製品、音響製品、時計部品、自動
車部品、精密機器等々の永久磁石を用いる広範囲な用途
に使用することができる永久磁石材料の製造方法に関し
、とくに希土類元素(R)と鉄(Fe)とを主体とする
永久磁石材料の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a permanent magnet that can be used in a wide range of applications such as home appliances, audio products, watch parts, automobile parts, precision instruments, etc. The present invention relates to a method for manufacturing materials, and particularly to a method for manufacturing permanent magnet materials mainly containing rare earth elements (R) and iron (Fe).

(従来技術) 近年、永久磁石材料における最大エネルギ積((B H
) maw )の向上はかってのアルニコ系磁石材料等
のそれに比べて著しいものがあり、とくに家庭電化製品
、音響製品、時計部品、自動車部品、精密機器等々の小
型軽量化および高性能化等に大きく貢献している。
(Prior art) In recent years, the maximum energy product ((B H
) maw ) has been significantly improved compared to the previous alnico magnet materials, etc., and has been particularly effective in reducing the size and weight and improving the performance of home appliances, audio products, watch parts, automobile parts, precision equipment, etc. Contributing.

従来、このような優れた特性の永久磁石材料としては希
土類−コバルト系磁石が代表的なものであり、その最大
エネルギ積((B H) maw )は18〜28MG
・Oe程度のかなり高い値を示している。しかし、最大
エネルギ積((BH)WaX )をさらに向上させるた
めの研究はいぜんとして続けられ、一部では他の希土類
磁石の開発も進んでおり、なかには希土類−鉄系磁石材
料についての開発も行われている。この希土類−鉄系磁
石材料としてはNd−Fe−B系のものもあるが、本発
明者らはこれを基にさらに研究を進めた結果、前記N 
d (REM) −F e −B系および=れに類する
希土類−鉄系の永久磁石材料の熱処理において冷却速度
および保持温度が磁気特性とくに保磁力に大きく影響を
与えることを新規に見出して、この発明を完成するに至
ったものである。
Conventionally, rare earth-cobalt magnets have been typical as permanent magnet materials with such excellent properties, and their maximum energy product ((B H) maw) is 18 to 28 MG.
・It shows a fairly high value of about Oe. However, research to further improve the maximum energy product ((BH) Wa ing. Although there are Nd-Fe-B based rare earth-iron magnet materials, as a result of further research based on this, the present inventors found that the
We have newly discovered that the cooling rate and holding temperature greatly affect the magnetic properties, especially the coercive force, in the heat treatment of d (REM) -F e -B system and similar rare earth-iron system permanent magnet materials. This led to the completion of the invention.

(発明の目的) この発明は上述したNd−Fe−B系を代表とするRE
M−Fe−B系およびこれに類する希土類−鉄系の永久
磁石材料において、残留磁束密度(Br)、保磁力(B
Hc、rHc)および最大エネルギ積(’(BH) w
ax )で表わされる磁気特性をさらに向上させること
ができる希土類−鉄系永久磁石材料の製造方法を提供す
ることを目的と(発明の構成) この発明による永久磁石材料の製造方法は、一般式、R
□−6−β−アFe、MβXyで表わされ、Rが希土類
元素の1種または2種以上、MがMn、Ni 、Co、
Ti 、Zr、Hf、V。
(Object of the Invention) This invention relates to the RE of the above-mentioned Nd-Fe-B system.
In M-Fe-B-based and similar rare earth-iron based permanent magnet materials, residual magnetic flux density (Br), coercive force (B
Hc, rHc) and the maximum energy product ('(BH) w
An object of the present invention is to provide a method for manufacturing a rare earth-iron permanent magnet material that can further improve the magnetic properties represented by R
□-6-β-A is represented by Fe, MβXy, R is one or more rare earth elements, M is Mn, Ni, Co,
Ti, Zr, Hf, V.

Nb、Ta、Cr、MO,W(7)1種または2種以上
、XがB、C,N、Si、Pc7)うちの1種または2
種以上であり、 0.60≦α≦0.85. 0≦β≦0.20. 0≦γ<0.15 である組成の合金を粉砕して磁場中成形した後、焼結お
よび熱処理して永久磁石材料を製造するに際し、焼結後
に0.5〜10°O/winの冷却速度で530〜75
0°Cまで冷却し、530〜7500Cの温度範囲で0
.2時間以上保持し、その後30°(!/min以上の
冷却速度で室温まで冷却するようにしたことを特徴とし
ている。
Nb, Ta, Cr, MO, W (7) 1 type or 2 or more types, X is B, C, N, Si, Pc7) 1 type or 2 types
species or more, 0.60≦α≦0.85. 0≦β≦0.20. After pulverizing an alloy with a composition of 0≦γ<0.15 and forming it in a magnetic field, it is sintered and heat treated to produce a permanent magnet material. 530-75 in speed
Cool down to 0°C and cool down to 0 in the temperature range of 530-7500C.
.. It is characterized in that it is held for 2 hours or more and then cooled to room temperature at a cooling rate of 30° (!/min or more).

この発明が適用される永久磁石材料は、上記のように一
般式、 R1−ct−β−,yFeoMβxアで表わされるが、
式中のRは希土類元素の1種または2種以上であること
を示し、Ndをはじめとし、Sc。
The permanent magnet material to which this invention is applied is represented by the general formula, R1-ct-β-,yFeoMβxa, as described above.
R in the formula represents one or more rare earth elements, including Nd and Sc.

Y、La、Ce、Pr、Pm、Sm、Eu。Y, La, Ce, Pr, Pm, Sm, Eu.

Gd、Tb、Dy、Ho、Er、Tm、Yb。Gd, Tb, Dy, Ho, Er, Tm, Yb.

Luのうちの1種または2種以上が用いられる。One or more types of Lu are used.

また、上記一般式において、Fe(鉄)は、0.60≦
α≦0.85の範囲としている。ここで、Feの量が多
すぎると、残留磁束密度(Br)は向上するものの、保
磁力(BHC。
In addition, in the above general formula, Fe (iron) is 0.60≦
The range is α≦0.85. Here, if the amount of Fe is too large, the residual magnetic flux density (Br) will improve, but the coercive force (BHC) will increase.

IHc)が極端に減少するため、すぐれた最大エネルギ
積((B H) wax )は得られなくなるので、α
≦0.85とした。一方、Feの量が少なすぎると残留
磁束密度(Br)が低くなり、最大エネルギ積((BH
) mat )が減少するので、0.60≦αとした。
Since the excellent maximum energy product ((B H) wax ) can no longer be obtained due to the extreme decrease in IHc), α
≦0.85. On the other hand, if the amount of Fe is too small, the residual magnetic flux density (Br) will be low and the maximum energy product ((BH
) mat ) decreases, so 0.60≦α is set.

さらに、上記一般式において、MはMn。Furthermore, in the above general formula, M is Mn.

Ni、Co、Ti、Zr、Hf、V、Nb。Ni, Co, Ti, Zr, Hf, V, Nb.

Ta、Cr、Mo、Wの1種または2種以上であり、O
≦β≦0.20の範囲としている。また、XハB 、 
C、N 、 S i 、 P(7) 114マタハ2種
以上であり、0≦γ<0.15の範囲としている。ここ
で、上記Mは上記X元素と複合添加することによりMの
一部が硼化物、炭化物、窒化物、珪化物、燐化物となり
、保磁力(BHC、IHC)の向上および残留磁束密度
(B r)の向上に著しい効果をもたらす元素である。
One or more of Ta, Cr, Mo, and W, and O
The range is ≦β≦0.20. Also, XhaB,
C, N, S i , P(7) 114 2 or more types, and the range is 0≦γ<0.15. Here, by adding the above M in combination with the above element It is an element that has a remarkable effect on improving r).

しかし、Mの量が多すぎると前記硼化物、炭化物、窒化
物、珪化物。
However, if the amount of M is too large, the above-mentioned borides, carbides, nitrides, and silicides may be formed.

燐化物等の形成量が多くなり、磁気特性が劣化するので
、β≦0.20とした。また、上記X元素は希土類−鉄
系磁石、たとえばNd−Fe系磁石のキュリ一点を常温
程度から300°C以上に上昇させる効果を有するもの
であるが、Xの量が多すぎると保磁力(BHC、IHC
)および残留磁束密度(B r)が減少し、すぐれた最
大エネルギ積((B H) max )が得られなくな
るのでO≦γ<0.15とした。
Since the amount of phosphide etc. formed increases and the magnetic properties deteriorate, β≦0.20 is set. Furthermore, the X element has the effect of raising the Curie point of rare earth-iron magnets, such as Nd-Fe magnets, from room temperature to over 300°C; however, if the amount of X is too large, the coercive force ( BHC, IHC
) and residual magnetic flux density (B r) decrease, making it impossible to obtain an excellent maximum energy product ((B H) max ), so O≦γ<0.15 was set.

このような組成の合金から永久磁石材料を製造するに際
しては、上記合金を粉砕して磁場中成形した後、焼結お
よび熱処理するが、この熱処理において、前記焼結後に
0.5〜10°C/創nの冷却速度で530〜750℃
まで冷却し、530〜750°Cの温度範囲で0.2時
間以上保持し、その後30°O/min以上の冷却速度
で室温まで冷却する。
When producing a permanent magnet material from an alloy having such a composition, the alloy is crushed and formed in a magnetic field, and then sintered and heat treated. / Wound cooling rate: 530-750℃
The sample is cooled to a temperature of 530 to 750° C. for 0.2 hours or more, and then cooled to room temperature at a cooling rate of 30° O/min or more.

ここで、焼結後の冷却速度を0.5〜bminとしたの
は、この範囲を外れた場合に磁気特性、とくに保磁力(
BHc、zHc)および最大エネルギ積((BH) m
ax )が低下するためである。また、冷却後の保持温
度を530〜750°Cとしたのは、この範囲を外れた
場合に磁気特性、とくに保磁力(BHc 、IHC)お
よび最大エネルギ積((BH) wax )が低下する
ためであり、この530〜750℃における保持時間を
0.2時間以上としたのは、この保持時間が短かすぎる
と磁気特性、とくに保磁力(BHC。
Here, the reason why the cooling rate after sintering is set to 0.5 to bmin is that when the cooling rate is outside this range, the magnetic properties, especially the coercive force (
BHc, zHc) and the maximum energy product ((BH) m
This is because ax ) decreases. In addition, the holding temperature after cooling was set at 530 to 750 °C because magnetic properties, especially coercive force (BHc, IHC) and maximum energy product ((BH) wax) decrease when outside this range. The reason why the holding time at 530 to 750°C is set to 0.2 hours or more is because if the holding time is too short, the magnetic properties, especially the coercive force (BHC).

IHc)および最大エネルギ積((BH) max )
が低下するためである。この場合、あまり長時間保持し
ても磁気特性の向上はさほど得られないので、生産性や
作業性等を考慮して0.2〜5時間程度とするのがよい
IHc) and maximum energy product ((BH) max )
This is because the In this case, even if the magnetic properties are kept for too long, the magnetic properties will not improve much, so it is preferable to keep it for about 0.2 to 5 hours in consideration of productivity and workability.

さらに、保持後の冷却速度を30°c/min以上とし
たのは、これよりも冷却速度が小さすぎると磁気特性、
とくに保磁力(BHC、IHC)および最大エネルギ積
((BH)maりが低下するためである。この場合、あ
まり冷却速度を大きくしても磁気特性の向上はさほど得
られないので作業性等の面からも100°(!/min
程度以下とすれば十分である。
Furthermore, the reason why the cooling rate after holding was set to 30°c/min or more is because if the cooling rate is too low, the magnetic properties
In particular, this is because the coercive force (BHC, IHC) and maximum energy product ((BH) ma decrease.In this case, even if the cooling rate is increased too much, the magnetic properties will not improve much, so workability etc. 100° from the surface (!/min
It is sufficient to keep it below this level.

(実施例1) NdO,17FeO,75SiO,05”0.03なる
組成の合金をアルゴン雰囲気中に調整したボタン溶解炉
を用いて溶製した。次いで、溶製合金を乳鉢内で粗粉砕
した後、ジェットミルにて平均粒径4pm程度まで微粉
砕した。
(Example 1) An alloy having a composition of NdO, 17FeO, 75SiO, 05"0.03 was melted using a button melting furnace adjusted to an argon atmosphere.Then, the melted alloy was coarsely ground in a mortar. The mixture was pulverized to an average particle size of about 4 pm using a jet mill.

次に、得られた粉末を15KOeの磁場中で約2ton
f/cm2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000℃で1時
間の条件で焼結を行い、その後A’O/minの冷却速
度で650°Cまで冷却し、650 ’C!で1時間保
持したのち、50°Q/minの冷却速度で室温まで冷
却した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press forming under a pressure of f/cm2, the obtained molded body was sintered at 1000°C for 1 hour in an argon atmosphere, and then cooled to 650°C at a cooling rate of A'O/min. Cool to 650'C! After being held for 1 hour, it was cooled to room temperature at a cooling rate of 50°Q/min.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギ積((B
H) max )を調べたところ、第1表に示す結果と
なった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B
H) max ) was investigated, and the results are shown in Table 1.

第1表に示すように、焼結後の冷却速度が本発明の範囲
を満足する陽、2〜5の場合はいずれもすぐれた磁気特
性を示しているのに対して、冷却速度が小さすぎる陽、
1および冷却速度が大きすぎる陽、6の場合にはいずれ
も本発明のものよりも磁気特性が劣っていることが明ら
かである。
As shown in Table 1, cases where the cooling rate after sintering satisfies the range of the present invention and cases of 2 to 5 show excellent magnetic properties, whereas the cooling rate is too low. Yang,
It is clear that in the cases of No. 1 and No. 6, in which the cooling rate is too high, the magnetic properties are inferior to those of the present invention.

(実施例2) 実施例1と同じ組成の合金を溶製したのち実施例1と同
様にして粗粉砕および微粉砕した。
(Example 2) An alloy having the same composition as in Example 1 was melted and then coarsely crushed and finely crushed in the same manner as in Example 1.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において1000°C
で1時間の条件で焼結を行い、その後1’C/minの
冷却速度でT’Oまで冷却し、T’Cで1時間保持した
のち、50°O/winの冷却速度で室温まで冷却した
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded body was heated at 1000°C in an argon atmosphere.
Sintering was performed under the conditions of 1 hour at , then cooled to T'O at a cooling rate of 1'C/min, held at T'C for 1 hour, and then cooled to room temperature at a cooling rate of 50°O/win. did.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギ積((B
 H) wax )を調べたところ、第2少に示す結果
となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B
H) wax) was investigated, and the results shown in the second category were obtained.

第2表に示すように、冷却後の保持温度が本発明の範囲
を満足するNo、12〜16の場合はいずれもすぐれた
磁気特性を示しているのに対して、保持温度が高すぎる
慟、11および保持温度が低すぎる陽、17の場合には
いずれも本発明のものよりも磁気特性が劣っていること
が明らかである。
As shown in Table 2, cases No. 12 to No. 16, where the holding temperature after cooling satisfies the range of the present invention, all show excellent magnetic properties, whereas cases where the holding temperature is too high show excellent magnetic properties. , 11 and 17, in which the holding temperature is too low, it is clear that the magnetic properties are inferior to those of the present invention.

(実施例3) 実施例1と同じ組成の合金を溶製したのち実施例1と同
様にして粗粉砕および微粉砕した。
(Example 3) An alloy having the same composition as in Example 1 was melted and then coarsely and finely pulverized in the same manner as in Example 1.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において1000°C
で1時間の条件で焼結を行い、その後1°C/minの
冷却速度で650℃まで冷却し、650°Cでt時間保
持したのち、50°C/minの冷却速度で室温まで冷
却した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded body was heated at 1000°C in an argon atmosphere.
Sintering was performed for 1 hour at a cooling rate of 1°C/min, then cooled to 650°C at a cooling rate of 1°C/min, held at 650°C for t hours, and then cooled to room temperature at a cooling rate of 50°C/min. .

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギ積((B
 I() wax )を調べたところ、第3表に示す結
果となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B
I()wax) was investigated and the results are shown in Table 3.

第3表に示すように、冷却後の保持時間を0.2時間以
上とした場合はいずれもすぐれた磁気特性を示している
のに対して、保持時間が短かすぎるNo、1.2の場合
には本発明のものよりも磁気特性が劣っていることが明
らかである。
As shown in Table 3, when the holding time after cooling was set to 0.2 hours or more, all showed excellent magnetic properties, whereas in No. 1.2, where the holding time was too short. In some cases, it is clear that the magnetic properties are inferior to those of the present invention.

また、保持時間を5時間とすれば十分な磁気特性が得ら
れ、これよりもさらに長時間保持しても磁気特性の大き
な向上は認められず、したがって保持時間は0.2〜5
時間時間上するのが良いことが明らかとなった。
In addition, sufficient magnetic properties can be obtained if the holding time is 5 hours, and no significant improvement in magnetic properties is observed even if the holding time is longer than this, so the holding time is 0.2 to 5 hours.
It has become clear that increasing the time is better.

(実施例4) 実施例1と同じ組成の合金を溶製したのち実施例1と同
様にして粗粉砕および微粉砕した。
(Example 4) An alloy having the same composition as in Example 1 was melted and then coarsely and finely pulverized in the same manner as in Example 1.

次に、得られた粉末を15KOeの磁場中で約2ton
f/am2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000℃で1時
間の条件で焼結を行い、その後1℃/+ninの冷却速
度で650°Cまで冷却し、650°Cで1時間保持し
たのち、Q’C!/winの冷却速度で室温まで冷却し
た。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press forming under a pressure of f/am2, the obtained molded body was sintered at 1000°C for 1 hour in an argon atmosphere, and then cooled to 650°C at a cooling rate of 1°C/+nin. After holding at 650°C for 1 hour, Q'C! The mixture was cooled to room temperature at a cooling rate of /win.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、rHc)、および最大エネルギ積((B
H) wax )を調べたところ、第4表に示す結果と
なった。
Next, the residual magnetic flux density (Br), coercive force (BHC, rHc), and maximum energy product ((B
H) wax) was investigated, and the results are shown in Table 4.

第4表に示すように、保持後の冷却速度を30’Q≠ 特性を示しているのに対して、冷却速度が小さすぎるN
o、 1 、2の場合には本発明のものよりも磁気特性
が劣っていることが明らかである。
As shown in Table 4, the cooling rate after holding is 30'Q≠.
It is clear that in the cases of o, 1, and 2, the magnetic properties are inferior to those of the present invention.

また、冷却速度は70℃/min程度までとすれば十分
な磁気特性が得られ、これよりもさらに大きな速度で冷
却しても磁気特性の大きな向上は認められず、したがっ
て保持後の冷却速度は30〜70’O/’min程度と
するのが良いことが明らかとなった。
In addition, sufficient magnetic properties can be obtained if the cooling rate is up to about 70°C/min, and no significant improvement in magnetic properties is observed even if the cooling rate is higher than this, so the cooling rate after holding is It has become clear that it is good to set the rate to about 30 to 70'O/'min.

(実施例5) 第5表に示す組成の合金をアルゴン雰囲気中に調整した
ボタン溶解炉を用いて溶製した。次いで、溶製合金を乳
鉢内で粗粉砕した後、ジェットミルにて平均粒径4pm
程度まで微粉砕した。
(Example 5) Alloys having the compositions shown in Table 5 were melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was coarsely ground in a mortar and then ground to an average particle size of 4 pm using a jet mill.
It was pulverized to a certain extent.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において1000°C
で1時間の条件で焼結を行い、その後2℃/winの冷
却速度で630℃まで冷却し、630°Cで2時間保持
したのち、60’07m1nの冷却速度で室温まで冷却
した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded body was heated at 1000°C in an argon atmosphere.
Sintering was performed under the conditions of 1 hour at 2° C./win, then cooled to 630° C. at a cooling rate of 2° C./win, held at 630° C. for 2 hours, and then cooled to room temperature at a cooling rate of 60′07 m1n.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、および最大エネルギKN (
(B H) mar )を調べたところ、第5表に示す
結果となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy KN (
(B H) mar), the results are shown in Table 5.

第5表に示すように、本発明の熱処理条件を採用するこ
とによって、希土類−鉄系永久磁石材料の磁気特性を著
しくすぐれCものとすることができ、β=0すなわちM
元素を含まない陽、43〜45の場合にもすぐれた磁気
特性を得ることができた。
As shown in Table 5, by employing the heat treatment conditions of the present invention, the magnetic properties of the rare earth-iron permanent magnet material can be significantly improved to C, and β=0, that is, M
Excellent magnetic properties were also obtained in the case of 43 to 45, which do not contain any elements.

(発明の効果) 以上説明してきたように、この発明の永久磁石材料の製
造方法では、一般式 %式% が希土類元素の1種または2種以上、MがMn。
(Effects of the Invention) As described above, in the method for producing a permanent magnet material of the present invention, the general formula % is one or more rare earth elements, and M is Mn.

Ni、Co、Ti、Zr、Hf、V、Nb。Ni, Co, Ti, Zr, Hf, V, Nb.

Ta、Cr 、MO、W(7)1種または2種以上、X
がB、C,N、St 、Pのうちの1種または2種以上
であり、 0.60≦α≦0,85. 0≦β≦0.20. 0≦γ<0.15 である組成の合金を粉砕して磁場中成形した後、焼結お
よび熱処理して永久磁石材料を製造するに際し、焼結後
に0.5〜lO℃/minの冷却速度で530〜750
℃まで冷却し、530〜750°Cの温度範囲で0.2
時間以上保持し、その後30°Q/min以上の冷却速
度で室温まで冷却するようにしたから、残留磁束密度(
Br)、保磁力(BHC、IHC)、最大エネルギ積(
(BH)max )で表わされる磁気特性に著しく優れ
た永久磁石材料を製造することが可能であり、家庭電化
製品、音響製品、時計部品、自動車部品、精密機器等々
の小型軽量化および高性能化等を永久磁石の面から実現
することが可能であるという非常に優れた効果をもたら
しうるものである。
Ta, Cr, MO, W (7) one or more types, X
is one or more of B, C, N, St, and P, and 0.60≦α≦0,85. 0≦β≦0.20. When producing a permanent magnet material by pulverizing an alloy having a composition of 0≦γ<0.15 and forming it in a magnetic field, followed by sintering and heat treatment, a cooling rate of 0.5 to 10°C/min after sintering is used. 530-750
0.2 in the temperature range of 530-750°C.
The residual magnetic flux density (
Br), coercive force (BHC, IHC), maximum energy product (
It is possible to manufacture permanent magnetic materials with extremely excellent magnetic properties expressed by etc. can be realized from the perspective of permanent magnets, which can bring about very excellent effects.

特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 豊Patent applicant: Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Shio

Claims (1)

【特許請求の範囲】[Claims] (1)式、R1−(x−β−yFe、Mβxアで表わさ
れ、Rが希土類元素の1種または2種以上、MがMn、
Ni 、Co、Ti 、Zr、Hf、V。 Nb、Ta、Cr、Mo 、W(7)1種または2種以
上、XがB、C,N、St 、Pのうちの1種または2
種以上であり、 0.60≦α≦0.85. 0≦β≦0.20. 0≦γ<0.15 である組成の合金を粉砕して磁場中成形した後、焼結お
よび熱処理して永久磁石材料を製造するに際し、焼結後
に0.5〜10°O/minの冷却速度で530〜75
0°Cまで冷却し、530〜750°Cの温度範囲で0
.2時間以上保持し、その後30℃7/min以上の冷
却速度で室温まで冷却することを特徴とする永久磁石材
料の製造方法。
(1) Formula, represented by R1-(x-β-yFe, Mβxa, R is one or more rare earth elements, M is Mn,
Ni, Co, Ti, Zr, Hf, V. Nb, Ta, Cr, Mo2, W (7) 1 type or 2 or more types, X is 1 type or 2 types of B, C, N, St2, P
species or more, 0.60≦α≦0.85. 0≦β≦0.20. After pulverizing an alloy with a composition of 0≦γ<0.15 and forming it in a magnetic field, it is sintered and heat treated to produce a permanent magnet material. 530-75 in speed
Cool down to 0°C and cool down to 0 in the temperature range of 530-750°C.
.. A method for producing a permanent magnet material, which comprises maintaining the temperature for 2 hours or more, and then cooling it to room temperature at a cooling rate of 30° C. or more than 7/min.
JP59000264A 1984-01-06 1984-01-06 Manufacture of permanent magnet material Pending JPS60144909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000264A JPS60144909A (en) 1984-01-06 1984-01-06 Manufacture of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000264A JPS60144909A (en) 1984-01-06 1984-01-06 Manufacture of permanent magnet material

Publications (1)

Publication Number Publication Date
JPS60144909A true JPS60144909A (en) 1985-07-31

Family

ID=11469048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000264A Pending JPS60144909A (en) 1984-01-06 1984-01-06 Manufacture of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS60144909A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182104A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS60182107A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS60182105A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS60182106A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS621204A (en) * 1985-03-13 1987-01-07 Hitachi Metals Ltd Manufacture of permanent magnet
JPS62241303A (en) * 1986-04-12 1987-10-22 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JPS62241302A (en) * 1986-04-12 1987-10-22 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JPS6467902A (en) * 1987-09-08 1989-03-14 Shinetsu Chemical Co Rare earth permanent magnet
JPS6476703A (en) * 1987-09-17 1989-03-22 Shinetsu Chemical Co Rare earth element permanent magnet
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
EP0453270A2 (en) * 1990-09-04 1991-10-23 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Rare-earth based magnetic materials, production process and use
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5211770A (en) * 1990-03-22 1993-05-18 Mitsubishi Materials Corporation Magnetic recording powder having a high coercive force at room temperatures and a low curie point
US5478411A (en) * 1990-12-21 1995-12-26 Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Magnetic materials and processes for their production
US5800728A (en) * 1990-10-05 1998-09-01 Hitachi Metals, Ltd. Permanent magnetic material made of iron-rare earth metal alloy
US6475302B2 (en) 1999-12-28 2002-11-05 Kabushiki Kaisha Toshiba Permanent magnet

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527241B2 (en) * 1984-02-28 1993-04-20 Sumitomo Spec Metals
JPS60182107A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS60182105A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS60182106A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPS60182104A (en) * 1984-02-28 1985-09-17 Sumitomo Special Metals Co Ltd Permanent magnet material and manufacture thereof
JPH0552646B2 (en) * 1984-02-28 1993-08-06 Sumitomo Spec Metals
JPH0527242B2 (en) * 1984-02-28 1993-04-20 Sumitomo Spec Metals
JPS621204A (en) * 1985-03-13 1987-01-07 Hitachi Metals Ltd Manufacture of permanent magnet
JPS62241303A (en) * 1986-04-12 1987-10-22 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JPH0450723B2 (en) * 1986-04-12 1992-08-17 Shinetsu Chem Ind Co
JPH0450722B2 (en) * 1986-04-12 1992-08-17 Shinetsu Chem Ind Co
JPS62241302A (en) * 1986-04-12 1987-10-22 Shin Etsu Chem Co Ltd Rare earth permanent magnet
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
JPS6467902A (en) * 1987-09-08 1989-03-14 Shinetsu Chemical Co Rare earth permanent magnet
JPS6476703A (en) * 1987-09-17 1989-03-22 Shinetsu Chemical Co Rare earth element permanent magnet
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5211770A (en) * 1990-03-22 1993-05-18 Mitsubishi Materials Corporation Magnetic recording powder having a high coercive force at room temperatures and a low curie point
EP0453270A2 (en) * 1990-09-04 1991-10-23 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Rare-earth based magnetic materials, production process and use
US5800728A (en) * 1990-10-05 1998-09-01 Hitachi Metals, Ltd. Permanent magnetic material made of iron-rare earth metal alloy
US5478411A (en) * 1990-12-21 1995-12-26 Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Magnetic materials and processes for their production
US6475302B2 (en) 1999-12-28 2002-11-05 Kabushiki Kaisha Toshiba Permanent magnet

Similar Documents

Publication Publication Date Title
JPS60144909A (en) Manufacture of permanent magnet material
JPS60254708A (en) Manufacture of permanent magnet
JPS60144906A (en) Permanent magnet material
JPH01219143A (en) Sintered permanent magnet material and its production
JPS62136551A (en) Permanent magnet material
JPS63301505A (en) R-b-fe sintered magnet
JPS60144908A (en) Permanent magnet material
JPS60144907A (en) Permanent magnet material
JPS6151901A (en) Manufacture of permanent magnet
JPH0353505A (en) Bonded magnet and magnetization thereof
JPH0146575B2 (en)
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS6180805A (en) Permanent magnet material
JPS63128606A (en) Permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS6230846A (en) Production of permanent magnet material
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPS62136553A (en) Permanent magnet material
JPS62136550A (en) Permanent magnet material
JPS60254709A (en) Permanent magnet
JPS62136558A (en) Permanent magnet material
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof