JPS63128606A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS63128606A
JPS63128606A JP61273985A JP27398586A JPS63128606A JP S63128606 A JPS63128606 A JP S63128606A JP 61273985 A JP61273985 A JP 61273985A JP 27398586 A JP27398586 A JP 27398586A JP S63128606 A JPS63128606 A JP S63128606A
Authority
JP
Japan
Prior art keywords
permanent magnet
gamma
beta
rare
percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61273985A
Other languages
Japanese (ja)
Inventor
Hideaki Imai
秀秋 今井
Junji Nomura
野村 順治
Takashi Namikata
尚 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61273985A priority Critical patent/JPS63128606A/en
Publication of JPS63128606A publication Critical patent/JPS63128606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve temperature characteristics, oxidation-resistant properties and magnet characteristic of a rare-earth-ferrous composition permanent magnet by a method wherein the composition is expressed by R-Fe-B-F (wherein R denotes at least one of rare-earth elements including Y) and the ratios of the components are specified. CONSTITUTION:The permanent magnet of the present invention is made of material whose composition is expressed by a general formula RalphaFe(100-alpha-beta-gamma) BbetaFgamma (wherein R denotes at least one of rare-earth elements including Y) and alpha, beta and gamma are within the ranges of atomic percentages of 10<=alpha<=30, 3<=beta<=15 and 0.1<=gamma<=10 respectively and further 4<=beta+gamma<=20. The atomic percentage of R must be 10-30 %. If the percentage is less than 10 %, the coerocive force is reduced and, if the percentage is above 30 %, the flux density is degraded and the energy product is reduced. As R, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are included and at least one of them must be contained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類−鉄系組成を有する永久磁石に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet having a rare earth-iron composition.

[従来の技術] 近年開発されたNd−Fe−B系の希土類永久磁石(例
えば特開昭59−46008号)は、これまでにない高
い磁気特性が得られること、3m−Go系永久磁石に比
べ、FeやNdという資源が豊富で安価な材料を使用で
きるため低コストになり、非常に有用な材料である。
[Prior Art] Recently developed Nd-Fe-B rare earth permanent magnets (e.g., Japanese Patent Laid-Open No. 59-46008) have the ability to obtain unprecedented high magnetic properties and are superior to 3m-Go permanent magnets. In comparison, it is a very useful material because it is low-cost and can use materials such as Fe and Nd, which are rich in resources and inexpensive.

しかし、この材料はキュリ一点が低く温度特性が悪いと
いうことや、耐酸化性が低く空気中に長時間放置すると
磁気特性が劣化するという欠点がある。
However, this material has drawbacks such as a low Curie point and poor temperature characteristics, low oxidation resistance, and deterioration of magnetic properties if left in air for a long time.

温度特性を改良するためにNd−Fe−B系合金のFe
の一部をCOに置換する方法(例えば特開昭59−13
2104号)が行われているが、Goの添加によりキュ
リ一点は大きくなるが、添加量を大きくするにつれ保磁
力が低下するという問題がある。
Fe in Nd-Fe-B alloy to improve temperature characteristics.
A method of substituting a part of
No. 2104), the Curie point increases by adding Go, but there is a problem in that the coercive force decreases as the amount added increases.

Ndの一部を重・希土類元素に置換する方法も提案され
ているが、温度特性は改善されても残留磁束密度が低下
するという問題がある。
A method of substituting a portion of Nd with a heavy/rare earth element has also been proposed, but there is a problem in that the residual magnetic flux density decreases even though the temperature characteristics are improved.

耐酸化性については焼結俊の永久磁石の表面に樹脂コー
ティング、特殊なメッキ、あるいは蒸着によって湿気の
透過を防ぐための薄膜を形成せしめるという方法が提案
(例えば特開昭60−54406号、60−63901
号)がなされているが、複雑な形状の物について実施す
ることは難しく、またコストが高くなるという問題点を
有している。
Regarding oxidation resistance, a method has been proposed in which a thin film is formed on the surface of a sintered permanent magnet to prevent the penetration of moisture by resin coating, special plating, or vapor deposition (for example, Japanese Patent Application Laid-open No. 60-54406, 60). -63901
However, it is difficult to implement on objects with complicated shapes and has the problem of high cost.

[発明が解決しようとする問題点] 本発明は以上の点を考慮してなされたもので、従来のN
d−Fe−B磁石よりキュリ一点が高く温度特性に優れ
るとともに耐酸化性が改善され、かつエネルギー積等の
磁石特性にも優れる永久磁石を提供するものである。
[Problems to be solved by the invention] The present invention has been made in consideration of the above points.
The present invention provides a permanent magnet which has a Curie point higher than that of a d-Fe-B magnet, has excellent temperature characteristics, has improved oxidation resistance, and has excellent magnetic properties such as energy product.

[問題を解決するための手段] 本発明者らは、前記問題点を解消すべく鋭意研究を重ね
た結果、希土類−鉄系組成の永久磁石において、ホウ素
およびフッ素を共存せしめると温度特性、耐酸化性、磁
石特性が向上することを見い出し、本発明を完成するに
至った。
[Means for Solving the Problem] As a result of intensive research to solve the above-mentioned problems, the present inventors found that when boron and fluorine coexist in a permanent magnet with a rare earth-iron composition, the temperature characteristics and acid resistance improve. The present inventors have discovered that the magnetization properties and magnetic properties are improved, and have completed the present invention.

すなわち、本発明の永久磁石は、一般式%式%( RはYを含む希土類元素の少なくとも一種)で、α、β
およびγの範囲がそれぞれ原子百分比で、 10≦α≦30 3≦β≦15 0.1≦γ、≦10 で、かつ4≦β+γ≦20 の組成である永久磁石である。
That is, the permanent magnet of the present invention has the general formula % (R is at least one kind of rare earth element including Y), α, β
The permanent magnet has a composition in which the ranges of and γ are 10≦α≦30, 3≦β≦15, 0.1≦γ, ≦10, and 4≦β+γ≦20, respectively, in atomic percentage.

以下、本発明の永久磁石について詳細に説明する。Hereinafter, the permanent magnet of the present invention will be explained in detail.

本発明においては、Rは原子百分比で10〜30%であ
ることが必要である。10%未満では保磁力が小さくな
ってしまうし、30%を越えると磁束密度が低下するた
めエネルギー積が小さくなる。RとしてはY、La、C
e。
In the present invention, R needs to be 10 to 30% in atomic percentage. If it is less than 10%, the coercive force becomes small, and if it exceeds 30%, the magnetic flux density decreases and the energy product becomes small. R is Y, La, C
e.

PrSNd15m、Eu、Gd、Tb、DV。PrSNd15m, Eu, Gd, Tb, DV.

HOlEr、 Tm、”y’bおよびl−uが含マレ、
この中の少なくとも一種を含有すればよい。
HOlEr, Tm, "y'b and lu are male,
It is sufficient to contain at least one of these.

また、ミツシュメタルやジジウム等の二種以上の混合物
を用いることもできる。
Moreover, a mixture of two or more types of metal, didium, etc. can also be used.

ホウ素としては原子百分比で3〜15%であることが必
要となる。3%未満では保磁力が小さいし、キュリ一点
も低いので実用的でない。
The boron content is required to be 3 to 15% in terms of atomic percentage. If it is less than 3%, the coercive force is small and the curri is too low, so it is not practical.

15%を越えると磁束密度が低く、エネルギー積の小ざ
なものしか得ることができない。
If it exceeds 15%, the magnetic flux density will be low and only a small energy product can be obtained.

フッ素としては原子百分比で0.1〜10%であること
が必要となる。フッ素が0.1%未満ではキュリ一点温
度上昇による減磁率や耐酸化性は改善されず、エネルギ
ー積も向上しないし、10%を越えると磁束密度が低く
、エネルギー積の小さなものしか得ることができない。
Fluorine needs to be 0.1 to 10% in atomic percentage. If the fluorine content is less than 0.1%, the demagnetization rate and oxidation resistance due to a Curie temperature rise will not be improved, and the energy product will not improve, and if it exceeds 10%, the magnetic flux density will be low and only a small energy product can be obtained. Can not.

R−Fe−B系合金のフッ素の導入方法は、少なくとも
一種の希土類フッ化物(RF3、Rは前述と同じ元素)
をNd−Fe−B系合金に添加することにより行うこと
ができる。
The method of introducing fluorine into the R-Fe-B alloy is to use at least one kind of rare earth fluoride (RF3, R is the same element as above).
This can be done by adding to the Nd-Fe-B alloy.

また、本発明においては(ホウ素+フッ素)の原子百分
比が4〜20%であることも必要である。4%未満の場
合は保磁力が小さく、キュリ一点や耐酸化性も改善され
ない。20%を越えると磁束密度が低く、エネルギー積
の小さなものしか得ることができない。
Further, in the present invention, it is also necessary that the atomic percentage of (boron + fluorine) be 4 to 20%. If it is less than 4%, the coercive force is small and the Curie point and oxidation resistance are not improved. If it exceeds 20%, the magnetic flux density will be low and only a small energy product can be obtained.

本発明において最も重要な点はフッ素を含有していると
いうことであり、R−Fe−B基金属間化合物にRF3
を添加した後に焼結することによりフッ素を導入するこ
とができる。RFIの金属間化合物中の挙動は明らかで
はないが、1つの役割としては次のような事が考えられ
る。すなわち、R−Fe−B基金属間化合物の保磁力は
主として逆磁区の核発生のしやすさにより決定されると
考えられ、粒界部の欠陥が多いと逆磁区発生源となり保
磁力は低くなる。RF3は焼結時に焼結助剤として動き
、粒界の欠陥を少なくする作用をするものと考えられる
The most important point in the present invention is that it contains fluorine, and the R-Fe-B based intermetallic compound contains RF3.
Fluorine can be introduced by sintering after adding. Although the behavior of RFI in intermetallic compounds is not clear, one possible role is as follows. In other words, the coercive force of R-Fe-B-based intermetallic compounds is thought to be determined mainly by the ease with which reverse magnetic domains nucleate.If there are many defects at grain boundaries, the coercive force becomes a source of reverse magnetic domains, and the coercive force is low. Become. It is thought that RF3 acts as a sintering aid during sintering and acts to reduce defects at grain boundaries.

本発明はR−Fe−B−1基本成分としているが、Fe
の一部をC01Ni、A腰Ti、cr、vn、cu、z
n、zr、 Nb。
The present invention uses R-Fe-B-1 as the basic component, but Fe
Part of C01Ni, A waist Ti, cr, vn, cu, z
n, zr, Nb.

Mo、Ru、Rh、Pd、Hf、Ta5W、Re、QS
、lr等で置換することもできる。
Mo, Ru, Rh, Pd, Hf, Ta5W, Re, QS
, lr, etc. can also be substituted.

これらの添加量はFeの15%程度であり、これ以上多
くなると磁束密度が小さくなり低エネルギー積のものし
か得られない。また、上記のような金属元素の他に原子
百分比で3%以下の酸素が存在していてもよい。
The amount of these additives is about 15% of Fe, and if the amount is more than this, the magnetic flux density becomes small and only a low energy product can be obtained. Further, in addition to the above-mentioned metal elements, oxygen may be present in an amount of 3% or less in atomic percentage.

次に本発明の永久磁石の製造方法の一例について説明す
る。
Next, an example of the method for manufacturing a permanent magnet of the present invention will be described.

最初に原子百分比でNd15%、Fe77%、88%の
組成からなる合金を製造する。次いでボールミル等の粉
砕手段を用いて該合金を粉砕する。焼結後の磁気特性を
良好なものとするためには、粒径は10μ以下にするこ
とが好ましい。粒径10μ以上では保磁力が小さくなっ
てしまう。粉砕された合金と所定量の希土類フッ化物を
適当な混合装置によって混合し、原料粉末とする。この
場合の希土類フッ化物の平均粒径は10μ以下であるこ
とが好ましく、10μ以上では均一混合が難しく、保磁
力を向上させることはできない。
First, an alloy having a composition of 15% Nd, 77% Fe, and 88% Fe is produced in atomic percentage. Next, the alloy is pulverized using a pulverizing means such as a ball mill. In order to obtain good magnetic properties after sintering, the particle size is preferably 10 μm or less. If the particle size is 10 μm or more, the coercive force becomes small. The pulverized alloy and a predetermined amount of rare earth fluoride are mixed using a suitable mixing device to form a raw material powder. In this case, the average particle size of the rare earth fluoride is preferably 10 μm or less; if it is 10 μm or more, it is difficult to mix uniformly and the coercive force cannot be improved.

次に該原料粉末を、15KOeの磁場を印加して配向処
理しながら所望の形状に成型する。
Next, the raw material powder is molded into a desired shape while being oriented by applying a magnetic field of 15 KOe.

焼結はAr等の不活性ガス雰囲気中において、1000
〜1200℃で0.5〜3時間行い、続いて500〜i
 ooo℃で1〜20時間の時効処理を行う。
Sintering is carried out at 1000 ml in an inert gas atmosphere such as Ar.
~1200°C for 0.5~3 hours, followed by 500~i
Aging treatment is performed at ooo°C for 1 to 20 hours.

このようにして磁気特性に優れた永久磁石を得ることが
できる。
In this way, a permanent magnet with excellent magnetic properties can be obtained.

[実施例] 以下、実施例によりざらに詳細に説明する。[Example] Hereinafter, the present invention will be roughly explained in detail using examples.

実施例1〜9 原子百分比がネオジウム(Nd)15%、鉄(Fe>7
7%およびホウ素(B)8%になるように各金属元素を
配合し、Ar雰囲気下水冷鋼ボート中でアーク溶解した
。得られた合金をN2雰囲気中で粗粉砕した後、ざらに
ボールミルによって5μ以下の粒径まで微粉砕した。。
Examples 1 to 9 Atomic percentages of neodymium (Nd) 15%, iron (Fe>7
Each metal element was blended to give 7% boron (B) and 8% boron (B), and arc melting was performed in a water-cooled steel boat under an Ar atmosphere. The obtained alloy was coarsely ground in a N2 atmosphere, and then finely ground to a grain size of 5 μm or less using a rough ball mill. .

該微粉末に焼結後の永久磁石中のフッ素(F)の原子百
分比が3%になるように、平均粒径が5μ以下の各種希
土類フッ化物(RF3)を添加し、N2雰囲気中で混合
し原料粉末とした。
Various rare earth fluorides (RF3) with an average particle size of 5μ or less are added to the fine powder so that the atomic percentage of fluorine (F) in the permanent magnet after sintering is 3%, and mixed in an N2 atmosphere. It was made into raw material powder.

該原料粉末を金型に入れ、15)(Qeの磁界を印加し
ながら2kg/cm 2の圧力で圧縮成形した。得られ
た成形体をAr雰囲気中でi ooo℃、1時間焼結し
室温まで急冷した。次いでAr雰囲気中で850℃、1
時間、続いて650℃、2時間の時効処理を行った後、
室温まで急冷した。
The raw material powder was placed in a mold and compression molded at a pressure of 2 kg/cm 2 while applying a magnetic field of 15) (Qe).The obtained molded body was sintered in an Ar atmosphere at 100°C for 1 hour, and then heated to room temperature. It was then rapidly cooled to 850°C in an Ar atmosphere for 1
After aging at 650℃ for 2 hours,
It was rapidly cooled to room temperature.

ここで得られた永久磁石の組成は、原子百分比でNd1
4.4R1,OF”73.9B7.7 F3.0でめっ
た。
The composition of the permanent magnet obtained here is Nd1 in atomic percentage.
4.4R1, OF"73.9B7.7 F3.0.

得られた永久磁石の残留磁束密度(Br)、保磁力IH
c)、最大エネルギー積[(BH)I11ax]、キュ
リ一温度(TC>と磁束密度の温度係数を測定した。ま
た耐酸化性について評価した。
Residual magnetic flux density (Br) and coercive force IH of the obtained permanent magnet
c), maximum energy product [(BH)I11ax], Curie temperature (TC>), and temperature coefficient of magnetic flux density were measured. Oxidation resistance was also evaluated.

比較例1 実施例1において原料粉末に希土類フッ化物を添加しな
い以外は同一の条件で焼結、時効処理を行った。
Comparative Example 1 Sintering and aging treatment were performed under the same conditions as in Example 1 except that rare earth fluoride was not added to the raw material powder.

上記実施例および比較例1で得られた永久磁石の磁石特
性耐酸化性等を第1表に示す。
Table 1 shows the magnetic properties, oxidation resistance, etc. of the permanent magnets obtained in the above Examples and Comparative Example 1.

ただし、第1表の記載のうち、 3rの温度係数=20〜140℃における減少率、耐酸
化性=80℃×90%RHにおいて1000時間放置後
のBrの低下率である。
However, among the descriptions in Table 1, temperature coefficient of 3r = rate of decrease at 20 to 140°C, oxidation resistance = rate of decrease in Br after standing for 1000 hours at 80°C x 90% RH.

第1表 実施例10〜12 実施例1において原料粉末にフッ化テルビウムを、合金
中のフッ素の原子百分比が0.3.6.9%になるよう
に添加する以外は同一の方法で焼結、時効処理を行った
。得られた永久磁石の磁石特性を第2表に示す。
Table 1 Examples 10 to 12 Sintered in the same manner as in Example 1 except that terbium fluoride was added to the raw material powder so that the atomic percentage of fluorine in the alloy was 0.3.6.9%. , subjected to aging treatment. Table 2 shows the magnetic properties of the obtained permanent magnet.

比較例2 実施例1において原料粉末にフッ化テルビウムを、合金
中のフッ素の原子百分比が15%になるように添加する
以外は同一の方法で焼結、時効処理を行った。jqられ
た永久磁石の磁石特性を第2表に示づ。
Comparative Example 2 Sintering and aging were performed in the same manner as in Example 1 except that terbium fluoride was added to the raw material powder so that the atomic percentage of fluorine in the alloy was 15%. Table 2 shows the magnetic properties of the permanent magnets.

第2表 実施例13〜15 希土類フッ化物としてフッ化プラセオジムを用い、実施
例1と同一の方法を用いて第3表に示す合金組成を有す
る永久磁石を作成した。その磁石特性を第3表に示す。
Table 2 Examples 13 to 15 Permanent magnets having the alloy compositions shown in Table 3 were prepared using praseodymium fluoride as the rare earth fluoride and using the same method as in Example 1. The magnetic properties are shown in Table 3.

′X43表 実施例16〜18 希土類フッ化物としてフッ化ジスプロシウムを用い、実
施例1と同一の方法を用いて第4表に示す合金組成を有
する永久磁石を作成した。その磁石特性を第4表に示す
'X43 Table Examples 16 to 18 Permanent magnets having the alloy compositions shown in Table 4 were prepared using dysprosium fluoride as the rare earth fluoride and using the same method as in Example 1. The magnetic properties are shown in Table 4.

第4表                  [実施例
21 原子百分比がネオジウム15%、鉄70%、コバルト7
%、およびホウ素が8%になるように各金属元素を配合
し、以下実施例1と同一の方法により微粉砕した。該微
粉末に焼結後の永久磁石中のフッ素の原子百分比が3%
になるようにフッ化テルビウムを添加し、実施例1と同
一の方法により焼結、時効処理を行い永久磁石を得た。
Table 4 [Example 21 Atomic percentage: 15% neodymium, 70% iron, 7% cobalt
%, and each metal element was blended so that the boron content was 8%, and then finely pulverized in the same manner as in Example 1. The atomic percentage of fluorine in the permanent magnet after sintering is 3% in the fine powder.
Terbium fluoride was added to give a permanent magnet, and sintering and aging were performed in the same manner as in Example 1 to obtain a permanent magnet.

磁石特性としては (B H) maxは39.6MGOe 、キュリ一温
度340℃、Brの温度係数−0,05、および耐酸化
性0.6%であった。
As for the magnetic properties, (BH) max was 39.6 MGOe, the Curie temperature was 340°C, the temperature coefficient of Br was -0.05, and the oxidation resistance was 0.6%.

発明の効果] 以上説明したように、本発明の永久磁石は、従来の永久
磁石に比較して高エネルギー積を有し、温度上昇による
減磁率が小さく、耐酸化性に優れているので実用上極め
て有用でおる。
Effects of the Invention] As explained above, the permanent magnet of the present invention has a higher energy product than conventional permanent magnets, has a small demagnetization rate due to temperature rise, and has excellent oxidation resistance, so it is suitable for practical use. It's extremely useful.

Claims (1)

【特許請求の範囲】 一般式R_αFe_(_1_0_0_−_α_−_β_
−_γ_)B_β・F_γ(但しRはYを含む希土類元
素の少なくとも一種)で、α、βおよびγの範囲がそれ
ぞれ原子百分比で、 10≦α≦30 3≦β≦15 0.1≦γ≦10 で、かつ4≦β+γ≦20 であることを特徴とする永久磁石。
[Claims] General formula R_αFe_(_1_0_0_-_α_-_β_
-_γ_) B_β・F_γ (where R is at least one rare earth element including Y), where α, β and γ are each in atomic percentage, 10≦α≦30 3≦β≦15 0.1≦γ≦ 10 and 4≦β+γ≦20.
JP61273985A 1986-11-19 1986-11-19 Permanent magnet Pending JPS63128606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273985A JPS63128606A (en) 1986-11-19 1986-11-19 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273985A JPS63128606A (en) 1986-11-19 1986-11-19 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS63128606A true JPS63128606A (en) 1988-06-01

Family

ID=17535328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273985A Pending JPS63128606A (en) 1986-11-19 1986-11-19 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS63128606A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (en) * 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd Sintered permanent magnet material and its manufacture
WO2005123974A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. R-Fe-B-BASED RARE EARTH PERMANENT MAGNET MATERIAL
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
CN104934212A (en) * 2015-02-15 2015-09-23 宁波招宝磁业有限公司 Preparation method of thermal-stability neodymium-iron-boron magnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (en) * 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd Sintered permanent magnet material and its manufacture
WO2005123974A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. R-Fe-B-BASED RARE EARTH PERMANENT MAGNET MATERIAL
JPWO2005123974A1 (en) * 2004-06-22 2008-04-10 信越化学工業株式会社 R-Fe-B rare earth permanent magnet material
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
JP4702542B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 Manufacturing method of RTBC type sintered magnet
JP4702543B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 R-T-B-C type rare earth sintered magnet
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP4605396B2 (en) * 2006-04-14 2011-01-05 信越化学工業株式会社 Method for producing rare earth permanent magnet material
CN104934212A (en) * 2015-02-15 2015-09-23 宁波招宝磁业有限公司 Preparation method of thermal-stability neodymium-iron-boron magnet

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JPH0531807B2 (en)
JPS60144909A (en) Manufacture of permanent magnet material
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPS60144906A (en) Permanent magnet material
JPS63128606A (en) Permanent magnet
JP3222482B2 (en) Manufacturing method of permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPS6077960A (en) Permanent magnet and its manufacture
JPS60144907A (en) Permanent magnet material
JPH045739B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH045738B2 (en)
JPS6247455A (en) Permanent magnet material having high performance
JPS61253805A (en) Rare-earth permanent magnet
JPH045737B2 (en)
JP3703903B2 (en) Anisotropic bonded magnet
JP3652752B2 (en) Anisotropic bonded magnet
JPH044384B2 (en)
JPH09320876A (en) Manufacture of anisotropic bond magnet
JPS62136553A (en) Permanent magnet material
JPH0320044B2 (en)