JP4702542B2 - Manufacturing method of RTBC type sintered magnet - Google Patents

Manufacturing method of RTBC type sintered magnet Download PDF

Info

Publication number
JP4702542B2
JP4702542B2 JP2005349185A JP2005349185A JP4702542B2 JP 4702542 B2 JP4702542 B2 JP 4702542B2 JP 2005349185 A JP2005349185 A JP 2005349185A JP 2005349185 A JP2005349185 A JP 2005349185A JP 4702542 B2 JP4702542 B2 JP 4702542B2
Authority
JP
Japan
Prior art keywords
mass
rare earth
type
powder
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005349185A
Other languages
Japanese (ja)
Other versions
JP2007157901A (en
Inventor
晃一 廣田
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005349185A priority Critical patent/JP4702542B2/en
Priority to US11/606,088 priority patent/US7988795B2/en
Priority to KR1020060120376A priority patent/KR101287719B1/en
Priority to TW095144855A priority patent/TWI391961B/en
Priority to CN2006101636217A priority patent/CN1983471B/en
Priority to EP06256182A priority patent/EP1793392B1/en
Publication of JP2007157901A publication Critical patent/JP2007157901A/en
Application granted granted Critical
Publication of JP4702542B2 publication Critical patent/JP4702542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、R−T−B−C型焼結磁石の製造方法に関し、特にモーターや電子部品、電気機器の産業分野で有用な、変動する磁界中において渦電流による発熱を抑え、損失を低減した高い磁気特性を有するR−T−B−C型焼結磁石の製造方法に関するものである。   The present invention relates to a method for manufacturing a RTBC type sintered magnet, and is particularly useful in the industrial field of motors, electronic components, and electrical equipment, and suppresses heat generation due to eddy currents in a varying magnetic field and reduces loss. The present invention relates to a method for manufacturing an RTBC type sintered magnet having high magnetic properties.

希土類磁石は、組成、製造方法の開発、効率化により(BH)maxで50MGOe以上、保磁力(iHc)で30kOe以上の高特性磁石の製造が可能になり、これまで使用されていたボイスコイルモーター(VCM)やCD、DVDのピックアップセンサーなどのコンピュータ関連、MRIなどの医療関連分野をはじめ、近年ではモーターやセンサーなどの電気・電子部品などの分野での使用も広がっている。   Rare earth magnets can be manufactured with high-performance magnets with a composition (BH) max of 50 MGOe or more and a coercive force (iHc) of 30 kOe or more by the development and efficiency improvement of the composition, manufacturing method, and the voice coil motor used so far. (VCM), CD and DVD pick-up sensors and other computer-related fields, MRI and other medical-related fields, and in recent years, electric and electronic parts such as motors and sensors have also been used.

例えば、永久磁石式モーターでは、従来、安価なフェライト磁石が使用されてきたが、モーターの小型、高効率化の要求に対し、希土類磁石への置き換えが進んでいる。一般に使用されている希土類磁石のうち、Sm−Co系磁石はキュリー温度が高いため、磁気特性の温度変化が小さい。また耐蝕性も高く、表面処理を必要としない。しかし、組成上、多くのCoを含むため非常に高価である。一方、Nd−Fe−B系磁石は永久磁石の中で飽和磁化が最も高く、また安価なFeを主成分とすることから安価である。しかし、キュリー点が低いため、磁気特性の温度変化が大きく、耐熱性に劣る。同時に耐蝕性も劣っているため、用途によって適切な表面処理を施す必要がある。   For example, in a permanent magnet type motor, an inexpensive ferrite magnet has been conventionally used. However, replacement with a rare earth magnet is progressing in response to a demand for miniaturization and high efficiency of the motor. Among commonly used rare earth magnets, Sm—Co magnets have a high Curie temperature, and therefore the temperature change of magnetic characteristics is small. It also has high corrosion resistance and does not require surface treatment. However, the composition is very expensive because it contains a lot of Co. On the other hand, Nd-Fe-B magnets have the highest saturation magnetization among the permanent magnets and are inexpensive because they contain inexpensive Fe as a main component. However, since the Curie point is low, the temperature change of the magnetic characteristics is large and the heat resistance is poor. At the same time, the corrosion resistance is also inferior, so it is necessary to perform an appropriate surface treatment depending on the application.

希土類磁石は金属であるため、比電気抵抗は、フェライト磁石の比電気抵抗と比較すると、2桁低い150μΩ・cm程度である。従ってモーターなどの回転機器でこの希土類磁石を使用すると、変動磁場が磁石に印加するため電磁誘導により発生する渦電流が流れ、その電流によるジュール熱により永久磁石が発熱する。永久磁石の温度が高くなると、特にNd−Fe−B系焼結磁石の場合、磁気特性の温度変化が大きいため、磁気特性が低下し、その結果モーターの効率も劣化する。この劣化を渦電流損失という。   Since the rare earth magnet is a metal, the specific electric resistance is about 150 μΩ · cm, which is two orders of magnitude lower than the specific electric resistance of the ferrite magnet. Therefore, when this rare earth magnet is used in a rotating device such as a motor, an eddy current generated by electromagnetic induction flows because a fluctuating magnetic field is applied to the magnet, and the permanent magnet generates heat due to Joule heat caused by the current. When the temperature of the permanent magnet is increased, especially in the case of an Nd—Fe—B based sintered magnet, since the temperature change of the magnetic property is large, the magnetic property is lowered, and as a result, the efficiency of the motor is also deteriorated. This deterioration is called eddy current loss.

この対策として、
(1)磁石の保磁力を上げる、
(2)磁石を磁化方向に小分割する、
(3)磁石内部に絶縁層を設ける、
(4)磁石の比電気抵抗を上げるなどの方法が検討、提案されている。
As a countermeasure,
(1) Increase the coercive force of the magnet,
(2) The magnet is subdivided in the magnetization direction.
(3) An insulating layer is provided inside the magnet.
(4) Methods such as increasing the specific electrical resistance of magnets have been studied and proposed.

(1)の方法は、Nd−Fe−Bの一部をDyなどの重希土類で置換して結晶磁気異方性を高め、保磁力を上げる。しかし、一部置換する重希土類は資源的に乏しく、高価であるため、結果的に磁石単体のコストを上げるため好ましくない。
(2)の方法は、磁石を分割し、磁束が透過する面積を小さくするか、磁束が透過する面積の縦横比を最適化することで発熱量を抑制する。分割数を上げることで発熱量はより低減できるが、加工コストが高くなり、好ましくない。
(3)の方法は、外部磁界の変動が磁石の磁化方向に平行な場合は有効であるが、実際のモーターでは外部磁界の変動方向が一定しない場合には有効ではない。
(4)の方法は、絶縁相を添加することにより室温での比電気抵抗は増大するが、絶縁体の選び方によっては密度化が困難なため、磁気特性並びに耐食性が劣化する。また、密度化のために特殊な焼結方法を採用する必要がある。
In the method (1), a portion of Nd—Fe—B is substituted with a heavy rare earth such as Dy to increase the magnetocrystalline anisotropy and increase the coercive force. However, heavy rare earth elements that are partially substituted are scarce in resources and expensive, and as a result, the cost of a single magnet is increased, which is not preferable.
In the method (2), the amount of heat generation is suppressed by dividing the magnet and reducing the area through which the magnetic flux passes or by optimizing the aspect ratio of the area through which the magnetic flux passes. Increasing the number of divisions can further reduce the amount of heat generation, but this is not preferable because the processing cost increases.
The method (3) is effective when the fluctuation of the external magnetic field is parallel to the magnetization direction of the magnet, but is not effective when the fluctuation direction of the external magnetic field is not constant in an actual motor.
In the method (4), the specific electrical resistance at room temperature is increased by adding an insulating phase, but depending on the method of selecting an insulator, it is difficult to increase the density, so that the magnetic properties and corrosion resistance deteriorate. Moreover, it is necessary to adopt a special sintering method for densification.

なお、本発明に関連する先行文献として、下記のものが挙げられる。
特開2003−070214号公報 特開2001−068317号公報 特開2002−064010号公報 特開平10−163055号公報 特開2003−022905号公報
In addition, the following are mentioned as prior literature relevant to the present invention.
Japanese Patent Laid-Open No. 2003-070214 JP 2001-068317 A JP 2002-0664010 A JP 10-163055 A JP 2003-022905 A

そこで、本発明は、変動する磁界中において、渦電流による発熱を抑え、損失を低減した高い磁気特性を有するR−T−B−C型焼結磁石の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing an RTBC type sintered magnet having high magnetic characteristics that suppresses heat generation due to eddy current and reduces loss in a changing magnetic field. .

本発明者は、かかる課題を解決するために種々検討した結果、R−T−B−C型低損失焼結磁石(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、TはFe又はFeとその他の少なくとも1種の遷移金属である)を製造するに際し、25質量%≦R≦35質量%、0.8質量%≦B≦1.4質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、残部はTからなるR−T−B−Cを主相とする合金粉末(I)と、50質量%≦R≦65質量%、0.3質量%≦B≦0.9質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、0.1質量%≦Cu≦5.0質量%、残部がTであるRリッチな組成のR−T−B−C型焼結助剤合金(II)と、R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末(III)を適量混合後、窒素気流中のジェットミルで微粉砕することにより、Rリッチな組成のR−T−B−C型焼結助剤合金粉(II)とR−O1-x−F1+2x及び/又はR−Fy粉末(III)を細かく分散させることが有効であることを見出した。 As a result of various studies conducted by the present inventor to solve such problems, the R-T-B-C type low-loss sintered magnet (where R is at least one selected from Ce, Pr, Nd, Tb, and Dy). In producing a rare earth element, T is Fe or Fe and at least one other transition metal), 25 mass% ≦ R ≦ 35 mass%, 0.8 mass% ≦ B ≦ 1.4 mass% 0.01% by mass ≦ C ≦ 0.5% by mass, 0.1% by mass ≦ Al ≦ 1.0% by mass, and the balance is an alloy powder containing R—T—B—C composed of T as a main phase (I ), 50 mass% ≦ R ≦ 65 mass%, 0.3 mass% ≦ B ≦ 0.9 mass%, 0.01 mass% ≦ C ≦ 0.5 mass%, 0.1 mass% ≦ Al ≦ 1 0.0% by mass, 0.1% by mass ≦ Cu ≦ 5.0% by mass, R—T—B—C type sintering additive alloy (II) having an R-rich composition in which the balance is T, and R O 1-x -F 1 + 2x ( where, R represents Ce, Pr, Nd, Tb, at least one rare earth element selected from Dy, x is an arbitrary real number of 0 to 1) and / or R-F y (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, and Dy, y is 2 or 3) After mixing an appropriate amount of powder (III), it is pulverized by a jet mill in a nitrogen stream R-TBC type sintering aid alloy powder (II) and R-O1 -x -F1 + 2x and / or R- Fy powder (III) having an R-rich composition It was found that fine dispersion is effective.

従って、本発明は、R−T−B−C型焼結磁石(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、TはFe又はFeとその他の少なくとも1種の遷移金属である)の製造方法において、50質量%≦R≦65質量%、0.3質量%≦B≦0.9質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、0.1質量%≦Cu≦5.0質量%、残部がTであるRリッチな組成のR−T−B−C型焼結助剤合金(II)1〜20質量%と、R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末(III)10〜50質量%と、残りを25質量%≦R≦35質量%、0.8質量%≦B≦1.4質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、残部Tで構成されるR−T−B−Cを主相とする合金粉末(I)とを混合後、窒素気流中のジェットミルで微粉砕し、次いで磁場中成形、焼結、熱処理することを特徴とするR−T−B−C型焼結磁石の製造方法を提供する。 Accordingly, the present invention provides an R-T-B-C type sintered magnet (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, T is Fe or Fe and other 50 mass% ≦ R ≦ 65 mass%, 0.3 mass% ≦ B ≦ 0.9 mass%, 0.01 mass% ≦ C ≦ 0.5 mass) in the production method of at least one transition metal) %, 0.1% by mass ≦ Al ≦ 1.0% by mass, 0.1% by mass ≦ Cu ≦ 5.0% by mass, R-T-B-C type sintering of R-rich composition with the balance being T Auxiliary alloy (II) 1 to 20% by mass and R—O 1-x —F 1 + 2x (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, x at least one of rare earth any real number) and / or R-F y 0-1 (wherein, R represents selected Ce, Pr, Nd, Tb, from Dy Element, y is 2 or 3) 10 to 50% by mass of powder (III), and the rest is 25% by mass ≦ R ≦ 35% by mass, 0.8% by mass ≦ B ≦ 1.4% by mass, 0.01% by mass ≦ C ≦ 0.5% by mass, 0.1% by mass ≦ Al ≦ 1.0% by mass, and after mixing with alloy powder (I) having R—T—B—C composed of the balance T as the main phase The present invention provides a method for producing an R-T-B-C type sintered magnet, which is pulverized by a jet mill in a nitrogen stream and then molded, sintered and heat-treated in a magnetic field.

この場合、R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末(III)の平均粒径が0.5〜50μmであることが好ましい。 In this case, R—O 1−x −F 1 + 2x (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, and Dy, x is any real number from 0 to 1) and / Or R-F y (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, y is 2 or 3) The average particle size of the powder (III) is 0.5 to It is preferable that it is 50 micrometers.

また、R−T−B−Cを主相とする合金粉末(I)と、Rリッチな組成のR−T−B−C型焼結助剤合金(II)と、R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末(III)を混合後、窒素気流中のジェットミルで平均粒径0.01〜30μmに微粉砕し、800〜1,760kA/mの磁場中でプレス圧90〜150MPaで成形後、真空雰囲気中1,000〜1,200℃で焼結し、Ar雰囲気中400〜600℃で時効処理することが好ましい。 Further, alloy powder (I) having R-T-B-C as a main phase, R-T-B-C type sintering aid alloy (II) having an R-rich composition, R-O 1-x -F 1 + 2x (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, x is any real number from 0 to 1) and / or R-F y (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, and Dy, y is 2 or 3) After mixing the powder (III), the average particle size is 0.01- Finely pulverized to 30 μm, molded at a press pressure of 90 to 150 MPa in a magnetic field of 800 to 1,760 kA / m, sintered in a vacuum atmosphere at 1,000 to 1,200 ° C., and then in an Ar atmosphere at 400 to 600 ° C. An aging treatment is preferred.

本発明によれば、高い保磁力及びモーターなどの交番磁界中に曝されるような使用条件でも渦電流の発生が抑えられる大きな比電気抵抗を持ち、なおかつ、比電気抵抗の温度係数が大きな焼結磁石を既存の設備を用いて低コストで製造できる。即ち、本発明の製造方法は、大きな比電気抵抗を持ち、渦電流の発生を抑えたR−T−B−C型の低損失焼結磁石を提供することができる。
特には、本発明の製造方法は、磁石特性を損なわずに、比電気抵抗が180μΩ・cm以上、好ましくは250μΩ・cm以上の低損失焼結磁石を製造することに適している。また、本発明の製造方法は、とりわけ、保持力が1,500〔kA/m〕以上で、角型比が0.92以上での磁石特性を有し、比電気抵抗が250〜450μΩ・cmの範囲にある低損失焼結磁石を製造することに適している。
According to the present invention, there is a high coercive force, a large specific electric resistance that can suppress the generation of eddy currents even under use conditions such as exposure to an alternating magnetic field such as a motor, and a high temperature coefficient of specific electric resistance. A magnet can be manufactured at low cost using existing equipment. That is, the manufacturing method of the present invention can provide an RTBC low-loss sintered magnet having a large specific electric resistance and suppressing generation of eddy currents.
In particular, the production method of the present invention is suitable for producing a low-loss sintered magnet having a specific electric resistance of 180 μΩ · cm or more, preferably 250 μΩ · cm or more without impairing the magnet characteristics. In addition, the manufacturing method of the present invention has magnetic characteristics in which the holding force is 1,500 [kA / m] or more, the squareness ratio is 0.92 or more, and the specific electric resistance is 250 to 450 μΩ · cm. It is suitable for manufacturing a low-loss sintered magnet in the range of.

本発明に係るR−T−B−C型焼結磁石の製造方法は、
(I)R−T−B−Cを主相とする合金粉末(R−T−B−C型磁石用合金)、
(II)Rリッチな組成のR−T−B−C型焼結助剤合金、
(III)R−O1-x−F1+2x及び/又はR−Fy粉末
を混合後、窒素気流中のジェットミルで微粉砕し、次いで磁場中成形、焼結、熱処理するものである。
The manufacturing method of the RTBC type sintered magnet according to the present invention is as follows:
(I) Alloy powder having R-T-B-C as the main phase (R-T-B-C type magnet alloy),
(II) R-T-B-C type sintering aid alloy having an R-rich composition;
(III) R—O 1-x —F 1 + 2x and / or R—F y powders are mixed and then pulverized by a jet mill in a nitrogen stream, and then molded, sintered, and heat treated in a magnetic field. .

但し、RはCe、Pr、Nd、Tb、Dyから選択される1種又は2種以上の希土類元素、TはFe又はFeとCo等の他の少なくとも1種の遷移金属を示し、xは0〜1の任意の実数、yは2又は3である。   Where R is one or more rare earth elements selected from Ce, Pr, Nd, Tb, and Dy, T is Fe or at least one other transition metal such as Fe and Co, and x is 0 Arbitrary real number of ~ 1, y is 2 or 3.

ここで、R−O1-x−F1+2xもしくはR−Fy粉末(III)は、微粉砕前に、Rリッチ組成の焼結助剤合金(II)とともに添加するのがよい。微粉砕を磁石用合金粉、焼結助剤合金粉と同時に行うことで、磁石用合金粉とR−O1-x−F1+2xもしくはR−Fy粉が十分に混合され、微粉砕により得られた磁石用合金の微粉末の表面を微細なR−O1-x−F1+2xもしくはR−Fy粉末でコーティングすることができる。更に、粒度も制御することが可能である。この方法により、R−O1-x−F1+2xもしくはR−Fy相を焼結体中に微細に分散させることができ、その結果、磁気特性を劣化させることなく比電気抵抗を増大することができる。微粉砕後の磁石粉用合金微粉末に添加した場合は、R−O1-x−F1+2xもしくはR−Fy粉との混合が不十分になりやすく、R−O1-x−F1+2xもしくはR−Fy粉が斑状に分布し、磁気特性並びに比電気抵抗が不均一になり、好ましくない。 Here, the R—O 1-x —F 1 + 2x or R—F y powder (III) is preferably added together with the R-rich composition sintering aid alloy (II) before pulverization. Alloy powder for pulverized magnet, by performing at the same time as the sintering aid alloy powder, alloy powder and R-O 1-x -F 1 + 2x or R-F y powder magnet are mixed well, pulverized The surface of the fine powder of the magnet alloy obtained by the above can be coated with fine R—O 1-x —F 1 + 2x or R—F y powder. Further, the particle size can be controlled. By this method, the R-O 1-x -F 1 + 2x or R-F y phase can be finely dispersed in the sintered body, and as a result, the specific electrical resistance is increased without deteriorating the magnetic properties. can do. When added to finely pulverized alloy powder for magnet powder, mixing with R- O1 -x -F1 + 2x or R- Fy powder tends to be insufficient, and R-O1 -x- F 1 + 2x or R-F y powder is distributed in a patchy manner, and magnetic characteristics and specific electrical resistance become nonuniform, which is not preferable.

R−O1-x−F1+2xもしくはR−Fy粉末において、RはCe、Pr、Nd、Tb、Dyといった磁石構成元素である。アルカリ金属、アルカリ土類金属のフッ化物並びに前記以外の希土類フッ化物の場合、焼結による密度化が阻害され、磁気特性が劣化する。 In the R-O1 -x -F1 + 2x or R- Fy powder, R is a magnet constituent element such as Ce, Pr, Nd, Tb, and Dy. In the case of alkali metal, alkaline earth metal fluorides and rare earth fluorides other than those described above, densification by sintering is hindered, and magnetic properties deteriorate.

R−O1-x−F1+2xもしくはR−Fy粉末の添加量は、10〜50質量%、特に10〜30質量%であることが好ましい。50質量%を超えると、通常の真空焼結では密度が上がらず、HIPなど特殊な焼結を採用する必要がある。10質量%より少ないと比電気抵抗の上昇に効果が見られない。 The amount of R-O1 -x -F1 + 2x or R- Fy powder added is preferably 10 to 50 mass%, more preferably 10 to 30 mass%. If it exceeds 50% by mass, the density does not increase in normal vacuum sintering, and it is necessary to employ special sintering such as HIP. If it is less than 10% by mass, no effect is seen in the increase of specific electric resistance.

添加する際の粉末の粒径は、50μm以下であればよいが、好ましくは30μm以下、より好ましくは15μm以下がよい。微粉砕後の粉末の平均粒径は3μm以下、好ましくは1μm以下であればよい。前記の方法でR−O1-x−F1+2xもしくはR−Fy粉を焼結体中に微細に分散させることで、焼結体の室温での比電気抵抗を増大させることができる。 The particle size of the powder at the time of addition should just be 50 micrometers or less, Preferably it is 30 micrometers or less, More preferably, 15 micrometers or less are good. The average particle size of the finely pulverized powder may be 3 μm or less, preferably 1 μm or less. The specific electrical resistance at room temperature of the sintered body can be increased by finely dispersing the R- O1 -x -F1 + 2x or R- Fy powder in the sintered body by the above-described method. .

本発明の製造方法においては、50質量%≦R≦65質量%、0.3質量%≦B≦0.9質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、0.1質量%≦Cu≦5.0質量%(好ましくは0.1質量%≦Cu≦1.0質量%)、残部がTであるRリッチな組成のR−T−B−C型焼結助剤合金(II)1〜20質量%、特に3〜15質量%が添加されるが、この添加量が1質量%未満であると、焼結が困難になり、焼結後の密度が十分に上昇せず、また、この添加量が20質量%を超えると、十分な磁気特性を得ることができないなど不都合が生じて好ましくない。   In the production method of the present invention, 50 mass% ≦ R ≦ 65 mass%, 0.3 mass% ≦ B ≦ 0.9 mass%, 0.01 mass% ≦ C ≦ 0.5 mass%, 0.1 mass % ≦ Al ≦ 1.0% by mass, 0.1% by mass ≦ Cu ≦ 5.0% by mass (preferably 0.1% by mass ≦ Cu ≦ 1.0% by mass), the balance being T-rich composition R-T-B-C type sintering aid alloy (II) of 1 to 20% by mass, particularly 3 to 15% by mass, is added, and if this addition amount is less than 1% by mass, sintering is performed. It becomes difficult, the density after sintering does not increase sufficiently, and if the amount added exceeds 20% by mass, it is not preferable because sufficient magnetic properties cannot be obtained.

本発明において配合されるR−T−B−Cを主相とする合金粉末(I)は、磁石用合金であり、25質量%≦R≦35質量%、0.8質量%≦B≦1.4質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、残部Tで構成されるものであるが、これはR2−Fe14−(B,C)型金属間化合物を主相とする合金で、その混合量は残部であるが、質量割合としてRリッチな組成のR−T−B−C型焼結助剤合金(II)の2.3〜19倍、特に5.0〜19倍が好ましい。 The alloy powder (I) containing R-T-B-C as the main phase blended in the present invention is an alloy for magnets, and is 25 mass% ≦ R ≦ 35 mass%, 0.8 mass% ≦ B ≦ 1. .4% by mass, 0.01% by mass ≦ C ≦ 0.5% by mass, 0.1% by mass ≦ Al ≦ 1.0% by mass, and the balance T. This is R 2 —Fe. 14- (B, C) type intermetallic compound as the main phase, the mixing amount is the balance, but the R-T-B-C type sintering aid alloy (R-rich composition as a mass ratio) It is preferably 2.3 to 19 times, particularly 5.0 to 19 times that of II).

本発明の製造方法において、上記(I),(II),(III)成分を混合後、窒素気流中のジェットミルで微粉砕し、磁場中成形、焼結、熱処理することにより、R−T−B−C型焼結磁石を製造するが、この場合、微粉砕は、窒素気流中のジェットミルで平均粒径0.01〜30μm、より好ましくは0.1〜10μm、更に好ましくは0.5〜10μmに微粉砕し、800〜1,760kA/m、特に1,000〜1,760kA/mの磁場中でプレス圧90〜150MPa、特に100〜120MPaで成形後、真空雰囲気中1,000〜1,200℃で焼結し、Ar雰囲気中400〜600℃で時効処理することにより、R−T−B−C型焼結磁石を製造することが好ましい。   In the production method of the present invention, after mixing the components (I), (II), and (III), the mixture is finely pulverized by a jet mill in a nitrogen stream, and molded, sintered, and heat-treated in a magnetic field to obtain RT. -B-C type sintered magnet is produced. In this case, fine pulverization is carried out by jet milling in a nitrogen stream with an average particle size of 0.01 to 30 [mu] m, more preferably 0.1 to 10 [mu] m, still more preferably 0.8. Finely pulverized to 5 to 10 μm, molded at a press pressure of 90 to 150 MPa, particularly 100 to 120 MPa in a magnetic field of 800 to 1,760 kA / m, particularly 1,000 to 1,760 kA / m, and then 1,000 in a vacuum atmosphere It is preferable to produce an R—T—B—C type sintered magnet by sintering at ˜1,200 ° C. and aging treatment at 400-600 ° C. in an Ar atmosphere.

このようにして得られる本発明のR−T−B−C型焼結磁石は、以下の組成であることが好ましい。
R =25〜35質量%
B =0.8〜1.4質量%
C =0.01〜0.5質量%
Al=0.1〜1.0質量%
Cu=0.1〜5.0質量%(好ましくは0.1〜1.0質量%)
残部がT及び不可避的不純物(O,N,Si,P,S,Cl,Na,K,Mg,Ca等)
The RTBC type sintered magnet of the present invention thus obtained preferably has the following composition.
R = 25-35% by mass
B = 0.8 to 1.4% by mass
C = 0.01-0.5 mass%
Al = 0.1 to 1.0% by mass
Cu = 0.1-5.0 mass% (preferably 0.1-1.0 mass%)
The balance is T and inevitable impurities (O, N, Si, P, S, Cl, Na, K, Mg, Ca, etc.)

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to these Examples.

[実施例1〜3、比較例1]
実施例1〜3において、R−T−B−C型磁石用合金は、Cを0.04質量%含んだ純度99質量%以上のNdと、Cを0.04質量%含んだ純度99質量%以上のDyと、純度99質量%以上のFe、Alと、フェロボロンを所定量秤量して、Ar雰囲気で高周波溶解し、Ar雰囲気中で単ロール法にて冷却して、合金薄帯状のものを製造した。
なお、得られたR−T−B−C型磁石用合金の組成は、Nd25質量%、Dy3質量%、Al0.2質量%、B1質量%、C0.01質量%、その他はFeである。
次に、製造された合金薄帯を水素化粗粉砕で粗粉砕した。水素化粗粉砕は、常温で2時間水素吸蔵処理を行い、その後、真空中で600℃で2時間加熱処理して脱水素化処理を行った。
一方、R−T−B−C型焼結助剤合金は、Cを0.04質量%含んだ純度99質量%以上のNdと、Cを0.04質量%含んだ純度99質量%以上のDyと、純度99質量%以上のFe、Co、Cu、Alと、フェロボロンを所定量秤量して、Ar雰囲気で高周波溶解し、合金を製造した。
なお、得られたR−T−B−C型焼結助剤合金の組成は、Nd45質量%、Dy13質量%、Al0.2質量%、B0.5質量%、Co20質量%、Cu1.2質量%、C0.02質量%、その他はFeである。
[Examples 1 to 3, Comparative Example 1]
In Examples 1 to 3, the R-T-B-C type magnet alloy has Nd with a purity of 99 mass% or more containing 0.04 mass% of C and a purity of 99 mass with 0.04 mass% of C. % Of Dy, Fe and Al with a purity of 99% by mass, and ferroboron are weighed in predetermined amounts, melted in a high frequency in an Ar atmosphere, cooled by a single roll method in an Ar atmosphere, and an alloy ribbon Manufactured.
In addition, the composition of the obtained alloy for RTBC type magnets is Nd25 mass%, Dy 3 mass%, Al 0.2 mass%, B1 mass%, C 0.01 mass%, and others are Fe.
Next, the produced alloy ribbon was coarsely pulverized by hydrogenation coarse pulverization. In the hydrogenation coarse pulverization, hydrogen storage treatment was performed at room temperature for 2 hours, and then heat treatment was performed at 600 ° C. for 2 hours in vacuum to perform dehydrogenation treatment.
On the other hand, the R-T-B-C type sintering aid alloy has a purity of 99% by mass or more containing 0.04% by mass of C and a purity of 99% by mass or more containing 0.04% by mass of C. Dy, Fe, Co, Cu, Al having a purity of 99% by mass or more, and ferroboron were weighed in predetermined amounts and melted at high frequency in an Ar atmosphere to produce an alloy.
The composition of the obtained RTBC type sintering aid alloy is Nd 45 mass%, Dy 13 mass%, Al 0.2 mass%, B 0.5 mass%, Co 20 mass%, Cu 1.2 mass. %, C0.02 mass%, and the others are Fe.

上記のように得られた磁石用R−T−B−C型合金粉とR−T−B−C型焼結助剤合金粉を8:2(質量比)で秤量し、この混合粉とNdF3粉をそれぞれ95:5、85:15、65:35(質量比)で秤量し、Vブレンダーで混合を行った。混合粉は窒素気流中のジェットミルで微粉砕し、平均粒径4.8μm程度の微粉末を得た。その後、これらの微粉末を成形装置の金型に充填し、955kA/mの磁界中で配向させ、磁界に対して垂直方向に98.1MPの圧力でプレス成形し、1,050℃で2時間、真空雰囲気中で焼結した後、冷却し、更に500℃で1時間、Ar雰囲気中で熱処理して、各種組成の永久磁石材料を作製した。
表1に得られた焼結磁石の磁気特性並びに四端子法にて測定した比電気抵抗を示す。同表より、NdF3添加量の増加に伴い、無添加のものと比較し残留磁化(Br)は減少したが、保磁力(iHc)はほとんど変化ないことがわかる。
なお、同様な方法で、NdF3を添加していないものを作製し、比較例1とした。
The R-T-B-C type alloy powder for magnets and the R-T-B-C type sintering aid alloy powder obtained as described above were weighed at 8: 2 (mass ratio), and this mixed powder and NdF 3 powder was weighed at 95: 5, 85:15, and 65:35 (mass ratio), respectively, and mixed with a V blender. The mixed powder was finely pulverized by a jet mill in a nitrogen stream to obtain a fine powder having an average particle size of about 4.8 μm. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 955 kA / m, press-molded at a pressure of 98.1 MP in a direction perpendicular to the magnetic field, and at 1,050 ° C. for 2 hours. After being sintered in a vacuum atmosphere, it was cooled and further heat treated at 500 ° C. for 1 hour in an Ar atmosphere to prepare permanent magnet materials having various compositions.
Table 1 shows the magnetic properties of the sintered magnets obtained and the specific electrical resistance measured by the four probe method. From the table, it can be seen that as the amount of NdF 3 added increases, the remanent magnetization (Br) decreases compared to the case of no addition, but the coercive force (iHc) hardly changes.
In a similar manner, to prepare those without added NdF 3, and Comparative Example 1.

Figure 0004702542
Figure 0004702542

[実施例4〜6]
実施例4〜6において、R−T−B−C型磁石用合金は、Cを0.08質量%含んだ純度99質量%以上のNdと、Cを0.12質量%含んだ純度99質量%以上のDyと、純度99質量%以上のFe、Alと、フェロボロンを所定量秤量して、Ar雰囲気で高周波溶解し、Ar雰囲気中で単ロール法にて冷却して、合金薄帯状のものを製造した。
なお、得られたR−T−B−C型磁石用合金の組成は、Nd25質量%、Dy3質量%、Al0.2質量%、B1質量%、C0.02質量%、その他はFeである。
次に、製造された合金薄帯を水素化粗粉砕で粗粉砕した。水素化粗粉砕は、常温で2時間水素吸蔵処理を行い、その後、真空中で600℃で2時間加熱処理して脱水素化処理を行った。
一方、R−T−B−C型焼結助剤合金は、Cを0.06質量%含んだ純度99質量%以上のNdと、Cを0.10質量%含んだ純度99質量%以上のDyと、純度99質量%以上のFe、Co、Cu、Alと、フェロボロンを所定量秤量して、Ar雰囲気で、高周波溶解し、合金を製造した。
なお、得られたR−T−B−C型焼結助剤合金の組成は、Nd45質量%、Dy13質量%、Al0.2質量%、B0.5質量%、Co20質量%、Cu1.2質量%、C0.03質量%、その他はFeである。
[Examples 4 to 6]
In Examples 4 to 6, the R-T-B-C type magnet alloy has Nd of 99% by mass or more containing 0.08% by mass of C and 99% by mass of C containing 0.12% by mass of C. % Of Dy, Fe and Al with a purity of 99% by mass, and ferroboron are weighed in predetermined amounts, melted in a high frequency in an Ar atmosphere, cooled by a single roll method in an Ar atmosphere, and an alloy ribbon Manufactured.
In addition, the composition of the obtained alloy for RTBC type magnets is Nd25 mass%, Dy 3 mass%, Al 0.2 mass%, B1 mass%, C0.02 mass%, and others are Fe.
Next, the produced alloy ribbon was coarsely pulverized by hydrogenation coarse pulverization. In the hydrogenation coarse pulverization, hydrogen storage treatment was performed at room temperature for 2 hours, and then heat treatment was performed at 600 ° C. for 2 hours in vacuum to perform dehydrogenation treatment.
On the other hand, the R-T-B-C type sintering aid alloy has a purity of 99% by mass or more containing 0.06% by mass of C and a purity of 99% by mass or more containing 0.10% by mass of C. Dy, Fe, Co, Cu, Al having a purity of 99% by mass or more, and ferroboron were weighed in predetermined amounts and melted at high frequency in an Ar atmosphere to produce an alloy.
The composition of the obtained RTBC type sintering aid alloy is Nd 45 mass%, Dy 13 mass%, Al 0.2 mass%, B 0.5 mass%, Co 20 mass%, Cu 1.2 mass. %, C0.03% by mass, and the others are Fe.

上記のように得られたR−T−B−C型磁石用合金粉とR−T−B−C型焼結助剤合金粉を8:2(質量比)で秤量し、この混合粉とDyF3、NdF3+DyF3(NdF3:DyF3=1:1の質量比)、NdOFとの質量比が85:15になるように秤量し、Vミキサーにより混合し、N2ガス中で、ジェットミルにより、微粉砕を行った。この時、得られた微粉の平均粒径は3.0〜4.8μmである。
その後、これらの微粉末を成形装置の金型に充填し、955kA/mの磁界中で配向させ、磁界に対して垂直方向に98.1MPaの圧力でプレス成形した。得られた成形体を1,050℃で2時間、真空雰囲気中で焼結した後、冷却し、更に500℃で1時間、Ar雰囲気中で熱処理して、各種組成の永久磁石材料を作製した。表2に得られた焼結磁石の磁気特性並びに四端子法にて測定した比電気抵抗を示す。DyF3を添加することにより保磁力(iHc)が増大していることがわかる。また、比電気抵抗の上昇も確認できる。
The R-T-B-C type magnet alloy powder obtained above and the R-T-B-C type sintering aid alloy powder were weighed at 8: 2 (mass ratio), and this mixed powder and DyF 3 , NdF 3 + DyF 3 (mass ratio of NdF 3 : DyF 3 = 1: 1), weighed so that the mass ratio with NdOF is 85:15, mixed by V mixer, and in N 2 gas, Fine pulverization was performed by a jet mill. At this time, the average particle size of the fine powder obtained is 3.0 to 4.8 μm.
Thereafter, these fine powders were filled in a mold of a molding apparatus, oriented in a magnetic field of 955 kA / m, and press-molded at a pressure of 98.1 MPa in a direction perpendicular to the magnetic field. The obtained compact was sintered in a vacuum atmosphere at 1,050 ° C. for 2 hours, then cooled, and further heat-treated in an Ar atmosphere at 500 ° C. for 1 hour to prepare permanent magnet materials of various compositions. . Table 2 shows the magnetic properties of the sintered magnets obtained and the specific electrical resistance measured by the four probe method. It can be seen that the coercive force (iHc) is increased by adding DyF 3 . Also, an increase in specific electrical resistance can be confirmed.

Figure 0004702542
Figure 0004702542

[比較例2〜5]
R−T−B−C型磁石用合金は、Cを0.04質量%含んだ純度99質量%以上のNdと、Cを0.04質量%含んだ純度99質量%以上のDyと、純度99質量%以上のFe、Alと、フェロボロンを所定量秤量して、Ar雰囲気で、高周波溶解し、Ar雰囲気中で単ロール法にて冷却して、合金薄帯状のものを製造した。
なお、得られたR−T−B−C型磁石用合金の組成は、Nd25質量%、Dy3質量%、Al0.2質量%、B1質量%、C0.01質量%、その他はFeである。
次に、製造された合金薄帯を水素化粗粉砕で粗粉砕した。水素化粗粉砕は、常温で2時間水素吸蔵処理を行い、その後、真空中で600℃で2時間加熱処理して脱水素化処理を行った。
一方、R−T−B−C型焼結助剤合金は、Cを0.04質量%含んだ純度99質量%以上のNdと、Cを0.04質量%含んだ純度99質量%以上のDyと、純度99質量%以上のFe、Co、Cu、Alと、フェロボロンを所定量秤量して、Ar雰囲気で高周波溶解し、合金を製造した。
なお、得られたR−T−B−C型焼結助剤合金の組成は、Nd45質量%、Dy13質量%、Al0.2質量%、B0.5質量%、Co20質量%、Cu1.2質量%、C0.02質量%、その他はFeである。
[Comparative Examples 2 to 5]
The R-T-B-C type magnet alloy includes Nd having a purity of 99% by mass or more containing 0.04% by mass of C, Dy having a purity of 99% by mass or more containing 0.04% by mass of C, purity A predetermined amount of 99% by mass or more of Fe, Al, and ferroboron were weighed, melted at a high frequency in an Ar atmosphere, and cooled by a single roll method in an Ar atmosphere to produce an alloy ribbon.
In addition, the composition of the obtained alloy for RTBC type magnets is Nd25 mass%, Dy 3 mass%, Al 0.2 mass%, B1 mass%, C 0.01 mass%, and others are Fe.
Next, the produced alloy ribbon was coarsely pulverized by hydrogenation coarse pulverization. In the hydrogenation coarse pulverization, hydrogen storage treatment was performed at room temperature for 2 hours, and then heat treatment was performed at 600 ° C. for 2 hours in vacuum to perform dehydrogenation treatment.
On the other hand, the R-T-B-C type sintering aid alloy has a purity of 99% by mass or more containing 0.04% by mass of C and a purity of 99% by mass or more containing 0.04% by mass of C. Dy, Fe, Co, Cu, Al having a purity of 99% by mass or more, and ferroboron were weighed in predetermined amounts and melted at high frequency in an Ar atmosphere to produce an alloy.
The composition of the obtained RTBC type sintering aid alloy is Nd 45 mass%, Dy 13 mass%, Al 0.2 mass%, B 0.5 mass%, Co 20 mass%, Cu 1.2 mass. %, C0.02 mass%, and the others are Fe.

上記のように得られたR−T−B−C型磁石用合金粉とR−T−B−C型焼結助剤合金粉を8:2(質量比)に秤量し、Vミキサーにより混合し、N2ガス中で、ジェットミルにより微粉砕を行った。
この時、得られた微粉の平均粒径は5.0μmである。
このようにして得られた微粉とDyF3、CaF2、Nd23、Dy23とが質量比が90:10、もしくは80:20になるように秤量し、Vミキサーにより20分間、混合した。混合後の粉末には、所々に添加したフッ化物の凝集粉末が確認された。
その後、これらの微粉末を成形装置の金型に充填し、955kA/mの磁界中で配向させ、磁界に対して垂直方向に98.1MPの圧力でプレス成形し、1,050℃で2時間、真空雰囲気中で焼結した後、冷却し、更に500℃で1時間、Ar雰囲気中で熱処理して、各種組成の永久磁石材料を作製し、比較例2〜5とした。
The R-T-B-C type magnet alloy powder and R-T-B-C type sintering aid alloy powder obtained as described above are weighed to 8: 2 (mass ratio) and mixed by a V mixer. Then, it was finely pulverized with a jet mill in N 2 gas.
At this time, the average particle diameter of the obtained fine powder is 5.0 μm.
The fine powder thus obtained and DyF 3 , CaF 2 , Nd 2 O 3 , and Dy 2 O 3 were weighed so that the mass ratio was 90:10 or 80:20, and then for 20 minutes with a V mixer. Mixed. In the powder after mixing, agglomerated powder of fluoride added in some places was confirmed.
Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 955 kA / m, press-molded at a pressure of 98.1 MP in a direction perpendicular to the magnetic field, and at 1,050 ° C. for 2 hours. Then, after sintering in a vacuum atmosphere, it was cooled and further heat-treated at 500 ° C. for 1 hour in an Ar atmosphere to produce permanent magnet materials of various compositions, which were Comparative Examples 2 to 5.

表3に比較例2〜5で得られた焼結磁石の磁気特性並びに四端子法にて測定した比電気抵抗を示す。表3の結果より、比較例における方法では、比電気抵抗は向上するものの、磁気特性の劣化を抑えることはできない。   Table 3 shows the magnetic properties of the sintered magnets obtained in Comparative Examples 2 to 5 and the specific electric resistance measured by the four-terminal method. From the results in Table 3, although the specific electrical resistance is improved by the method in the comparative example, the deterioration of the magnetic characteristics cannot be suppressed.

Figure 0004702542
Figure 0004702542

Claims (3)

R−T−B−C型焼結磁石(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、TはFe又はFeとその他の少なくとも1種の遷移金属である)の製造方法において、50質量%≦R≦65質量%、0.3質量%≦B≦0.9質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、0.1質量%≦Cu≦5.0質量%、残部がTであるRリッチな組成のR−T−B−C型焼結助剤合金1〜20質量%と、R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末10〜50質量%と、残りを25質量%≦R≦35質量%、0.8質量%≦B≦1.4質量%、0.01質量%≦C≦0.5質量%、0.1質量%≦Al≦1.0質量%、残部Tで構成されるR−T−B−Cを主相とする合金粉末とを混合後、窒素気流中のジェットミルで微粉砕し、次いで磁場中成形、焼結、熱処理することを特徴とするR−T−B−C型焼結磁石の製造方法。 R-T-B-C type sintered magnet (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, T is Fe or Fe and at least one other transition metal) 50 mass% ≦ R ≦ 65 mass%, 0.3 mass% ≦ B ≦ 0.9 mass%, 0.01 mass% ≦ C ≦ 0.5 mass%, 0.1 mass R—T—B—C type sintering additive alloys 1 to 20 having an R-rich composition in which% ≦ Al ≦ 1.0% by mass, 0.1% by mass ≦ Cu ≦ 5.0% by mass and the balance being T % By mass and R—O 1-x -F 1 + 2x (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, and Dy, x is an arbitrary real number from 0 to 1) and / or R-F y (provided that at least one rare earth element R is selected Ce, Pr, Nd, Tb, from Dy, y is 2 or 3) powder 1 -50 mass% and the rest 25 mass% ≦ R ≦ 35 mass%, 0.8 mass% ≦ B ≦ 1.4 mass%, 0.01 mass% ≦ C ≦ 0.5 mass%, 0.1 mass% % ≦ Al ≦ 1.0 mass%, mixed with an alloy powder mainly composed of R—T—B—C composed of the balance T, then finely pulverized with a jet mill in a nitrogen stream, and then molded in a magnetic field , Sintering and heat treatment, a method for producing an RTBC type sintered magnet. R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末の平均粒径が0.5〜50μmであることを特徴とする請求項1記載のR−T−B−C型焼結磁石の製造方法。 R-O1 -x- F1 + 2x (where R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, x is any real number from 0 to 1) and / or R -F y (where, R represents Ce, Pr, Nd, Tb, at least one rare earth element selected from Dy, y is 2 or 3), wherein the average particle size of the powder is 0.5~50μm The manufacturing method of the RTBC type | mold sintered magnet of Claim 1 characterized by the above-mentioned. R−T−B−Cを主相とする合金粉末と、Rリッチな組成のR−T−B−C型焼結助剤合金と、R−O1-x−F1+2x(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、xは0〜1の任意の実数)及び/又はR−Fy(但し、RはCe、Pr、Nd、Tb、Dyから選択される少なくとも1種の希土類元素、yは2又は3)粉末を混合後、窒素気流中のジェットミルで平均粒径0.01〜30μmに微粉砕し、800〜1,760kA/mの磁場中でプレス圧90〜150MPaで成形後、真空雰囲気中1,000〜1,200℃で焼結し、Ar雰囲気中400〜600℃で時効処理することを特徴とする請求項1又は2記載のR−T−B−C型焼結磁石の製造方法。
Alloy powder having R-T-B-C as the main phase, R-T-B-C type sintering aid alloy having R-rich composition, and R-O 1-x -F 1 + 2x (however, R is at least one rare earth element selected from Ce, Pr, Nd, Tb, Dy, x is any real number from 0 to 1) and / or R- Fy (where R is Ce, Pr, Nd, At least one rare earth element selected from Tb and Dy, y is 2 or 3) After mixing the powder, it is finely pulverized to a mean particle size of 0.01 to 30 μm by a jet mill in a nitrogen stream, and 800 to 1,760 kA 2. After forming at a press pressure of 90 to 150 MPa in a magnetic field of / m, sintering at 1,000 to 1,200 ° C. in a vacuum atmosphere, and aging treatment at 400 to 600 ° C. in an Ar atmosphere. Or the manufacturing method of the RTBC type | mold sintered magnet of 2 description.
JP2005349185A 2005-12-02 2005-12-02 Manufacturing method of RTBC type sintered magnet Active JP4702542B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005349185A JP4702542B2 (en) 2005-12-02 2005-12-02 Manufacturing method of RTBC type sintered magnet
US11/606,088 US7988795B2 (en) 2005-12-02 2006-11-30 R-T-B—C rare earth sintered magnet and making method
KR1020060120376A KR101287719B1 (en) 2005-12-02 2006-12-01 R-t-b-c type rare earth sintered magnet and making method
TW095144855A TWI391961B (en) 2005-12-02 2006-12-01 R-T-B-C type rare earth sintered magnet and a manufacturing method thereof
CN2006101636217A CN1983471B (en) 2005-12-02 2006-12-01 R-T-B-C type rare earth sintered magnet and making method thereof
EP06256182A EP1793392B1 (en) 2005-12-02 2006-12-04 R-T-B-C rare earth sintered magnet and making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005349185A JP4702542B2 (en) 2005-12-02 2005-12-02 Manufacturing method of RTBC type sintered magnet

Publications (2)

Publication Number Publication Date
JP2007157901A JP2007157901A (en) 2007-06-21
JP4702542B2 true JP4702542B2 (en) 2011-06-15

Family

ID=38165917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349185A Active JP4702542B2 (en) 2005-12-02 2005-12-02 Manufacturing method of RTBC type sintered magnet

Country Status (2)

Country Link
JP (1) JP4702542B2 (en)
CN (1) CN1983471B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2017859T3 (en) * 2007-07-20 2012-09-17 Siemens Ag Magnetic blank and method of making them
JP5472236B2 (en) * 2011-08-23 2014-04-16 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet
EP3059743B1 (en) * 2011-12-27 2020-11-25 Daido Steel Co., Ltd. Ndfeb system sintered magnet
EP2693451A4 (en) 2011-12-27 2014-07-30 Intermetallics Co Ltd Sintered neodymium magnet
WO2013100010A1 (en) 2011-12-27 2013-07-04 インターメタリックス株式会社 Sintered neodymium magnet
WO2013122255A1 (en) * 2012-02-13 2013-08-22 Tdk株式会社 R-t-b sintered magnet
DE112013000958T5 (en) * 2012-02-13 2014-10-30 Tdk Corporation Sintered magnet based on R-T-B
CN103377789B (en) * 2012-05-17 2017-02-22 京磁材料科技股份有限公司 Rare-earth permanent magnet and manufacturing method thereof
WO2014156181A1 (en) 2013-03-29 2014-10-02 中央電気工業株式会社 Starting-material alloy for r-t-b type magnet and process for producing same
CN103680918B (en) * 2013-12-11 2016-08-17 烟台正海磁性材料股份有限公司 A kind of method preparing high-coercivity magnet
JP6380750B2 (en) * 2014-04-15 2018-08-29 Tdk株式会社 Permanent magnet and variable magnetic flux motor
CN107492429A (en) * 2017-08-09 2017-12-19 江西金力永磁科技股份有限公司 A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP6950595B2 (en) * 2018-03-12 2021-10-13 Tdk株式会社 RTB system permanent magnet
CN111081443B (en) * 2020-01-07 2023-05-09 福建省长汀金龙稀土有限公司 R-T-B permanent magnet material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171102A (en) * 1986-01-23 1987-07-28 Shin Etsu Chem Co Ltd Rare earth permanent magnet and manufacture of same
JPS63128606A (en) * 1986-11-19 1988-06-01 Asahi Chem Ind Co Ltd Permanent magnet
JPS63255902A (en) * 1987-04-13 1988-10-24 Hitachi Metals Ltd R-b-fe sintered magnet and manufacture thereof
JPH05182813A (en) * 1991-12-26 1993-07-23 Shin Etsu Chem Co Ltd Manufacture of rare earth permanent magnet
JPH10163055A (en) * 1996-11-29 1998-06-19 Hitachi Metals Ltd Manufacture of high electric resistance rare earth permanent magnet
JP2001230107A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Corrosion-resistant rare earth magnet
JP2001230108A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Method of manufacturing corrosion-resistant rare earth magnet
JP2003282312A (en) * 2002-03-22 2003-10-03 Inter Metallics Kk R-Fe-(B,C) SINTERED MAGNET IMPROVED IN MAGNETIZABILITY AND ITS MANUFACTURING METHOD

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880013194A (en) * 1987-04-06 1988-11-30 원본미기재 Permanent magnet and its manufacturing method
DE69911138T2 (en) * 1998-10-14 2004-07-22 Hitachi Metals, Ltd. Sintered R-T-B permanent magnet
JP3997413B2 (en) * 2002-11-14 2007-10-24 信越化学工業株式会社 R-Fe-B sintered magnet and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171102A (en) * 1986-01-23 1987-07-28 Shin Etsu Chem Co Ltd Rare earth permanent magnet and manufacture of same
JPS63128606A (en) * 1986-11-19 1988-06-01 Asahi Chem Ind Co Ltd Permanent magnet
JPS63255902A (en) * 1987-04-13 1988-10-24 Hitachi Metals Ltd R-b-fe sintered magnet and manufacture thereof
JPH05182813A (en) * 1991-12-26 1993-07-23 Shin Etsu Chem Co Ltd Manufacture of rare earth permanent magnet
JPH10163055A (en) * 1996-11-29 1998-06-19 Hitachi Metals Ltd Manufacture of high electric resistance rare earth permanent magnet
JP2001230107A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Corrosion-resistant rare earth magnet
JP2001230108A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Method of manufacturing corrosion-resistant rare earth magnet
JP2003282312A (en) * 2002-03-22 2003-10-03 Inter Metallics Kk R-Fe-(B,C) SINTERED MAGNET IMPROVED IN MAGNETIZABILITY AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2007157901A (en) 2007-06-21
CN1983471A (en) 2007-06-20
CN1983471B (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4702542B2 (en) Manufacturing method of RTBC type sintered magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
TWI391961B (en) R-T-B-C type rare earth sintered magnet and a manufacturing method thereof
EP0134304B1 (en) Permanent magnets
JP6090550B1 (en) R-T-B system sintered magnet and manufacturing method thereof
CA1315571C (en) Magnetic materials and permanent magnets
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JPH0510806B2 (en)
JP4702543B2 (en) R-T-B-C type rare earth sintered magnet
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
JP6142792B2 (en) Rare earth magnets
JP6541038B2 (en) RTB based sintered magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP6142793B2 (en) Rare earth magnets
JPH056322B2 (en)
JP6474043B2 (en) R-T-B sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JPH1083908A (en) High-resistance rare-earth magnet and manufacture thereof
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JP7548688B2 (en) RTB based sintered magnet
JP2720027B2 (en) Ultra low temperature permanent magnet material
JPH0536494B2 (en)
JP2983902B2 (en) Ultra low temperature permanent magnet material
JPH089752B2 (en) Method for manufacturing R1R2FeCoB-based permanent magnet
JPH0346963B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

R150 Certificate of patent or registration of utility model

Ref document number: 4702542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150