JP2001230108A - Method of manufacturing corrosion-resistant rare earth magnet - Google Patents

Method of manufacturing corrosion-resistant rare earth magnet

Info

Publication number
JP2001230108A
JP2001230108A JP2000036083A JP2000036083A JP2001230108A JP 2001230108 A JP2001230108 A JP 2001230108A JP 2000036083 A JP2000036083 A JP 2000036083A JP 2000036083 A JP2000036083 A JP 2000036083A JP 2001230108 A JP2001230108 A JP 2001230108A
Authority
JP
Japan
Prior art keywords
rare earth
corrosion
magnet
permanent magnet
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000036083A
Other languages
Japanese (ja)
Other versions
JP3781095B2 (en
Inventor
Ryuji Hamada
隆二 浜田
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000036083A priority Critical patent/JP3781095B2/en
Publication of JP2001230108A publication Critical patent/JP2001230108A/en
Application granted granted Critical
Publication of JP3781095B2 publication Critical patent/JP3781095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion-resistant high-performance rare earth permanent magnet at a low cost. SOLUTION: Fine powder of one metal selected out of Al, Mg, Ca, Zn, Si, Mn and alloy thereof and an oxide of one or more elements selected out of Si, Mn, Zn, Mo, Cr, and P are compounded into a composite, the composite is formed into a corrosion-resistant film, and the film is provided on the pretreated surface of a rare earth permanent magnet of R-T-M-B (R is, at least, a rare earth element including Y, T denotes Fe of Fe and Co, and M is at least one element selected out of Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, and Ta, and the contents of the elements are represented as follows: 5 wt.%<=R<=40 wt.%, 50 wt.%<=T<= 90 wt.%, 0.1 wt.%<=M<=8 wt.%, and 0.2 wt.%<=B<=80 wt.%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐食性を有する
耐食性希土類磁石の製造方法に関する。
The present invention relates to a method for producing a corrosion-resistant rare earth magnet having high corrosion resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】希土類
永久磁石は、その優れた磁気特性のため各種電気製品や
コンピュータの周辺機器等、幅広い分野で多用されてお
り、重要な電気、電子材料である。特にNd−Fe−B
系永久磁石は、Sm−Co系永久磁石に比べて主要元素
であるNdがSmより豊富に存在すること、Coを多量
に使用しないことから原材料費が安価であり、磁気特性
もSm−Co系永久磁石をはるかにしのぐ極めて優れた
永久磁石である。このため、近年ますますNd−Fe−
B系永久磁石の使用量は増大し、用途も広がりつつあ
る。
2. Description of the Related Art Rare earth permanent magnets are widely used in a wide range of fields such as various electric products and computer peripherals because of their excellent magnetic properties, and are used in important electric and electronic materials. is there. Especially Nd-Fe-B
Compared with Sm-Co-based permanent magnets, Nd, which is a main element, is more abundant than Sm-based permanent magnets, and raw materials are inexpensive because Co is not used in large amounts. It is a very good permanent magnet far beyond the permanent magnet. For this reason, in recent years Nd-Fe-
The usage of B-based permanent magnets is increasing, and the applications are expanding.

【0003】磁気特性向上のための開発研究はNd−F
e−B系永久磁石の発明以来精力的に行われているが、
その1つとして、2種類の組成の異なる合金粉末を混
合、焼結して高性能Nd磁石を製造する、いわゆる2合
金法がある。特許第2853838号、特許第2853
839号、特開平5−21218号、特開平5−212
19号、特開平5−74618号、特開平5−1828
14号公報には、磁性体構成相の種類、特性等を考慮し
て2種類の合金の組成を決定し、これらを組み合わせる
ことにより、高残留磁束密度と高保磁力、更に高エネル
ギー積を有するバランスのとれた高性能Nd磁石を製造
する方法が提案されている。
[0003] Development research for improving the magnetic properties is based on Nd-F.
It has been energetically performed since the invention of the eB-based permanent magnet,
As one of them, there is a so-called two-alloy method in which two kinds of alloy powders having different compositions are mixed and sintered to produce a high-performance Nd magnet. Patent No. 2853838, Patent No. 2853
No. 839, JP-A-5-21218, JP-A-5-212
No. 19, JP-A-5-74618, JP-A-5-1828
No. 14 discloses that the composition of two types of alloys is determined in consideration of the types and characteristics of constituent phases of a magnetic substance, and by combining them, a balance having a high residual magnetic flux density, a high coercive force and a high energy product is obtained. There has been proposed a method for producing a reliable high-performance Nd magnet.

【0004】しかし、Nd−Fe−B系永久磁石は、主
成分として希土類元素及び鉄を含有するため、湿度をお
びた空気中で短時間の内に容易に酸化するという欠点を
持っている。このため、磁気回路に組み込んだ場合に
は、これらの酸化により磁気回路の出力が低下したり、
錆が機器周辺を汚染する問題がある。前記の特許公報及
び公開特許公報で提案されている2合金法で作成された
Nd−Fe−B系永久磁石は、Coを含んだ組成を有す
るため、耐食性はある程度向上しているが、それでも用
途によっては不十分である。
[0004] However, since the Nd-Fe-B permanent magnet contains a rare earth element and iron as main components, it has a disadvantage that it is easily oxidized in humid air in a short time. Therefore, when incorporated in a magnetic circuit, the output of the magnetic circuit decreases due to these oxidations,
There is a problem that rust contaminates around the equipment. The Nd—Fe—B-based permanent magnet produced by the two-alloy method proposed in the above-mentioned patent publication and the published patent publication has a composition containing Co, so that the corrosion resistance is improved to some extent. Is not enough.

【0005】特に、最近は自動車用モータやエレベータ
用モータなどのモータ類にもNd−Fe−B系永久磁石
が使われはじめているが、これらは高温かつ湿潤な環境
での使用を余儀なくされる。また、塩分を含んだ湿気に
曝されることも想定しなくてはならず、より高い耐食性
を低コストで実現することが要求されている。更に、こ
れらのモータ類は、その製造工程において、短時間では
あるが磁石が300℃以上に加熱されることがあり、こ
のような場合には耐熱性も併せて要求される。
[0005] In particular, recently, Nd-Fe-B permanent magnets have begun to be used in motors such as motors for automobiles and motors for elevators, but these must be used in a high-temperature and humid environment. In addition, it must be assumed that it will be exposed to moisture containing salt, and it is required to realize higher corrosion resistance at low cost. Further, in these motors, the magnet may be heated to 300 ° C. or higher for a short time in the manufacturing process, and in such a case, heat resistance is also required.

【0006】Nd−Fe−B系永久磁石の耐食性を改善
するため、多くの場合、樹脂塗装、Alイオンプレーテ
ィング、Niメッキ等の各種表面処理が施されるが、上
記のような厳しい条件にこれらの表面処理で対応するこ
とは現段階の技術では難しい。例えば、樹脂塗装は耐食
性が不足する上、耐熱性がない。Niメッキにはピンホ
ールがわずかながら存在するため、塩分を含んだ湿気中
では錆が発生する。イオンプレーティングは耐熱性、耐
食性は概ね良好であるが、大掛かりな装置を必要とし、
低コストを実現するのは困難である、などの問題があ
る。
In order to improve the corrosion resistance of Nd-Fe-B permanent magnets, various surface treatments such as resin coating, Al ion plating, and Ni plating are applied in many cases. It is difficult to cope with these surface treatments with current technology. For example, resin coating lacks corrosion resistance and does not have heat resistance. Since a small number of pinholes are present in Ni plating, rust occurs in moisture containing salt. Ion plating generally has good heat resistance and corrosion resistance, but requires large-scale equipment,
It is difficult to achieve low cost.

【0007】本発明は、上記事情に鑑み、高性能で、か
つ上記のような過酷な条件での使用に耐える希土類永久
磁石を提供するためになされたもので、高性能希土類永
久磁石の表面に、前処理を施した後、耐食性、耐熱性を
有する皮膜を密着性よく付与した、耐食性高性能希土類
磁石の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has been made to provide a rare-earth permanent magnet that is high-performance and can withstand use under the above-mentioned severe conditions. It is an object of the present invention to provide a method for producing a corrosion-resistant high-performance rare-earth magnet in which a film having corrosion resistance and heat resistance is applied with good adhesion after pre-treatment.

【0008】[0008]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、高性能でかつ耐食性を有するNd−Fe−B
系永久磁石について鋭意検討した結果、R−T−M−B
(RはYを含む希土類元素の少なくとも一種、TはFe
又はFe及びCo、MはTi,Nb,Al,V,Mn,
Sn,Ca,Mg,Pb,Sb,Zn,Si,Zr,C
r,Ni,Cu,Ga,Mo,W,Taから選ばれる少
なくとも一種の元素であって、各元素の含有量がそれぞ
れ5wt%≦R≦40wt%、50wt%≦T≦90w
t%、0.1wt%≦M≦8wt%、0.2wt%≦B
≦8wt%)で表記される合金、特に該合金1と、R−
Fe−Co−M−B(R及びMは上記と同様であり、各
元素の含有量が30wt%≦R≦90wt%、0wt%
≦Fe≦50wt%、5wt%≦Co≦70wt%、0
wt%≦M≦8wt%、0wt%≦B≦2wt%)で表
記される合金2とを混合し、製造される希土類永久磁石
の表面に、好ましくは前処理を施した後、Al,Mg,
Ca,Zn,Si,Mn及びこれらの合金の中から選ば
れる少なくとも一種の金属の微粉末と、Si,Mn,Z
n,Mo,Cr,Pから選ばれる少なくとも一種以上の
元素の酸化物を複合して形成される皮膜を密着性よく付
与することにより、耐食性、耐熱性に優れた希土類磁石
を提供できることを知見し、諸条件を確立して本発明を
完成させた。
Means for Solving the Problems and Embodiments of the Invention The present inventor has proposed a high performance and corrosion resistant Nd-Fe-B.
As a result of intensive studies on the system permanent magnet, RTMB
(R is at least one kind of rare earth element including Y, T is Fe
Or Fe, Co, and M are Ti, Nb, Al, V, Mn,
Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, C
At least one element selected from the group consisting of r, Ni, Cu, Ga, Mo, W and Ta, and the content of each element is 5 wt% ≦ R ≦ 40 wt% and 50 wt% ≦ T ≦ 90 w, respectively.
t%, 0.1wt% ≦ M ≦ 8wt%, 0.2wt% ≦ B
≦ 8 wt%), in particular, the alloy 1 and R-
Fe—Co—MB (R and M are the same as above, and the content of each element is 30 wt% ≦ R ≦ 90 wt%, 0 wt%
≦ Fe ≦ 50 wt%, 5 wt% ≦ Co ≦ 70 wt%, 0
(wt% ≦ M ≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt%), and after pretreatment is preferably performed on the surface of the manufactured rare earth permanent magnet, Al, Mg,
A fine powder of at least one metal selected from Ca, Zn, Si, Mn and alloys thereof, and Si, Mn, Z
It has been found that a rare-earth magnet excellent in corrosion resistance and heat resistance can be provided by providing a film formed by combining oxides of at least one element selected from n, Mo, Cr, and P with good adhesion. The present invention was completed by establishing various conditions.

【0009】即ち、本発明は、(1)R−T−M−B
(RはYを含む希土類元素の少なくとも一種、TはFe
又はFe及びCo、MはTi,Nb,Al,V,Mn,
Sn,Ca,Mg,Pb,Sb,Zn,Si,Zr,C
r,Ni,Cu,Ga,Mo,W,Taから選ばれる少
なくとも一種の元素であって、各元素の含有量がそれぞ
れ5wt%≦R≦40wt%、50wt%≦T≦90w
t%、0.1wt%≦M≦8wt%、0.2wt%≦B
≦8wt%)で表記される希土類永久磁石の表面に、前
処理を施した後、Al,Mg,Ca,Zn,Si,Mn
及びこれらの合金の中から選ばれる少なくとも一種の金
属微粉末と、Si,Mn,Zn,Mo,Cr,Pから選
ばれる少なくとも一種以上の元素の酸化物を複合して形
成される耐食性皮膜を付与したことを特徴とする耐食性
希土類磁石の製造方法、及び、(2)上記(1)の製造
方法において、希土類永久磁石が、R−T−M−B(R
はYを含む希土類元素の少なくとも一種、TはFe又は
Fe及びCo、MはTi,Nb,Al,V,Mn,S
n,Ca,Mg,Pb,Sb,Zn,Si,Zr,C
r,Ni,Cu,Ga,Mo,W,Taから選ばれる少
なくとも一種の元素であって、各元素の含有量がそれぞ
れ5wt%≦R≦40wt%、50wt%≦T≦90w
t%、0.1wt%≦M≦8wt%、0.2wt%≦B
≦8wt%)で表記される合金1と、R−Fe−Co−
M−B(R及びMは上記と同じであって、各元素の含有
量が30wt%≦R≦90wt%、0wt%≦Fe≦5
0wt%、5wt%≦Co≦70wt%、0wt%≦M
≦8wt%、0wt%≦B≦2wt%)で表記される合
金2とを混合し、製造されたものである耐食性希土類磁
石の製造方法を提供する。
That is, the present invention relates to (1) RTMB
(R is at least one kind of rare earth element including Y, T is Fe
Or Fe, Co, and M are Ti, Nb, Al, V, Mn,
Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, C
At least one element selected from the group consisting of r, Ni, Cu, Ga, Mo, W and Ta, and the content of each element is 5 wt% ≦ R ≦ 40 wt% and 50 wt% ≦ T ≦ 90 w, respectively.
t%, 0.1wt% ≦ M ≦ 8wt%, 0.2wt% ≦ B
≦ 8 wt%), after performing a pretreatment on the surface of the rare earth permanent magnet, Al, Mg, Ca, Zn, Si, Mn
And a corrosion-resistant film formed by combining at least one kind of metal fine powder selected from alloys thereof and an oxide of at least one kind of element selected from Si, Mn, Zn, Mo, Cr and P. And (2) In the method of (1), the rare-earth permanent magnet is formed of R-T-M-B (R
Is at least one of the rare earth elements containing Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, S
n, Ca, Mg, Pb, Sb, Zn, Si, Zr, C
At least one element selected from the group consisting of r, Ni, Cu, Ga, Mo, W and Ta, and the content of each element is 5 wt% ≦ R ≦ 40 wt% and 50 wt% ≦ T ≦ 90 w, respectively.
t%, 0.1wt% ≦ M ≦ 8wt%, 0.2wt% ≦ B
≦ 8 wt%) and R—Fe—Co—
MB (R and M are the same as above, and the content of each element is 30 wt% ≦ R ≦ 90 wt%, 0 wt% ≦ Fe ≦ 5
0 wt%, 5 wt% ≦ Co ≦ 70 wt%, 0 wt% ≦ M
≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt%) and a method for producing a corrosion-resistant rare earth magnet, which is produced by mixing with alloy 2.

【0010】以下、本発明を詳細に説明する。本発明に
用いられるNd−Fe−B系永久磁石を製造するにあた
っては、R−T−M−B(RはYを含む希土類元素の少
なくとも一種、TはFe又はFe及びCo、MはTi,
Nb,Al,V,Mn,Sn,Ca,Mg,Pb,S
b,Zn,Si,Zr,Cr,Ni,Cu,Ga,M
o,W,Taから選ばれる少なくとも一種の元素であっ
て、各元素の含有量がそれぞれ5wt%≦R≦40wt
%、50wt%≦T≦90wt%、0.1wt%≦M≦
8wt%、0.2wt%≦B≦8wt%)で表記される
希土類永久磁石、特にR−T−M−B(RはYを含む希
土類元素の少なくとも一種、TはFe又はFe及びC
o、MはTi,Nb,Al,V,Mn,Sn,Ca,M
g,Pb,Sb,Zn,Si,Zr,Cr,Ni,C
u,Ga,Mo,W,Taから選ばれる少なくとも一種
の元素であって、各元素の含有量がそれぞれ5wt%≦
R≦40wt%、50wt%≦T≦90wt%、0.1
wt%≦M≦8wt%、0.2wt%≦B≦8wt%)
で表記される合金1と、R−Fe−Co−M−B(R及
びMは上記と同じであって、各元素の含有量が30wt
%≦R≦90wt%、0wt%≦Fe≦50wt%、5
wt%≦Co≦70wt%、0wt%≦M≦8wt%、
0wt%≦B≦2wt%)で表記される合金2とを混合
し、いわゆる2合金法で製造される希土類永久磁石を用
意する。
Hereinafter, the present invention will be described in detail. In manufacturing the Nd-Fe-B permanent magnet used in the present invention, R-T-M-B (R is at least one rare earth element including Y, T is Fe or Fe and Co, M is Ti,
Nb, Al, V, Mn, Sn, Ca, Mg, Pb, S
b, Zn, Si, Zr, Cr, Ni, Cu, Ga, M
at least one element selected from o, W, and Ta, and the content of each element is 5 wt% ≦ R ≦ 40 wt, respectively.
%, 50 wt% ≦ T ≦ 90 wt%, 0.1 wt% ≦ M ≦
8 wt%, 0.2 wt% ≦ B ≦ 8 wt%), rare earth permanent magnets, in particular, RTMB (R is at least one kind of rare earth element including Y, T is Fe or Fe and C
o and M are Ti, Nb, Al, V, Mn, Sn, Ca, M
g, Pb, Sb, Zn, Si, Zr, Cr, Ni, C
at least one element selected from u, Ga, Mo, W and Ta, and the content of each element is 5 wt% ≦
R ≦ 40 wt%, 50 wt% ≦ T ≦ 90 wt%, 0.1
(wt% ≦ M ≦ 8wt%, 0.2wt% ≦ B ≦ 8wt%)
And R-Fe-Co-MB (R and M are the same as above, and the content of each element is 30 wt.
% ≦ R ≦ 90 wt%, 0 wt% ≦ Fe ≦ 50 wt%, 5
wt% ≦ Co ≦ 70 wt%, 0 wt% ≦ M ≦ 8 wt%,
(0 wt% ≦ B ≦ 2 wt%) to prepare a rare-earth permanent magnet manufactured by a so-called two-alloy method.

【0011】ここで、合金1はR2Fe14B化合物相
(RはYを含む希土類元素の少なくとも一種)を主成分
とし、焼結後は主としてNd磁石の主相になるものが好
ましい。合金1は原料金属を真空又は不活性ガス、好ま
しくはAr雰囲気中で溶解して作成する。原料金属は純
希土類元素、希土類合金、純鉄、フェロボロン、更には
これらの合金等を使用するが、工業生産において不可避
な各種不純物、代表的にはC,N,O,H,P,S等は
含まれるものとする。得られた合金はR2Fe14B相の
他にαFe、Rリッチ相、Bリッチ相などが残る場合が
あるが、高性能Nd磁石の作成にあたっては合金1の中
のR2Fe14B相が多い方が望ましいので、必要に応じ
て溶体化処理を行う。その時の条件は真空又はAr雰囲
気下、700〜1,200℃の温度で1時間以上熱処理
すればよい。
Here, it is preferable that the alloy 1 has an R 2 Fe 14 B compound phase (R is at least one of rare earth elements including Y) as a main component and becomes a main phase of an Nd magnet after sintering. The alloy 1 is prepared by melting raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. As the raw material metal, a pure rare earth element, a rare earth alloy, pure iron, ferroboron, or an alloy thereof is used. Various impurities inevitable in industrial production, typically, C, N, O, H, P, S, etc. Shall be included. In the obtained alloy, αFe, R-rich phase, B-rich phase, etc. may remain in addition to the R 2 Fe 14 B phase. However, when producing a high-performance Nd magnet, the R 2 Fe 14 B phase in the alloy 1 was used. Therefore, a solution treatment is performed if necessary. The heat treatment may be performed at a temperature of 700 to 1200 ° C. for 1 hour or more in a vacuum or Ar atmosphere.

【0012】一方、合金2は、R−Fe−Co−M−B
(各元素の含有量が30wt%≦R≦90wt%、0w
t%≦Fe≦50wt%、5wt%≦Co≦70wt
%、0wt%≦M≦8wt%、0wt%≦B≦2wt
%)で表記され、更にRとしてPr,Dy又はTbを必
須とすることが好ましく、合金1と同じく原料金属を真
空又は不活性ガス、好ましくはAr雰囲気中で溶解して
作成する。原料金属は純希土類元素、希土類合金、純
鉄、フェロボロン、純コバルト、更にはこれらの合金等
を使用するが、工業生産において不可避な各種不純物、
代表的にはC,N,O,H,P,S等は含まれるものと
する。この組成において得られた合金には、R 21 14
相(T1はFe,Coを主体とする遷移金属元素)、R
リッチ相、並びにRT2 4L相、RT2 3相、RT2 2相、R
22 7B相、RT2 5相(T2はFe,Coを主体とする遷
移金属元素、同遷移金属及びMのうち1種又は2種、L
はB又はBとM)等が出現する。これらの相の融点はい
ずれもR2Fe14B相の融点以下のため、合金2は、焼
結温度において適度な粘度を持ち、粒の配向を乱さず粒
界をクリーニングする液相成分となる。合金2は酸化し
易い希土類元素を多く含む組成であるが、Coを用いる
ことにより、酸化を抑制している。
On the other hand, alloy 2 is made of R-Fe-Co-MB
(The content of each element is 30 wt% ≦ R ≦ 90 wt%, 0 w
t% ≦ Fe ≦ 50 wt%, 5 wt% ≦ Co ≦ 70 wt
%, 0 wt% ≦ M ≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt
%) And R must be Pr, Dy or Tb.
It is preferable to use the same raw material metal as alloy 1
Dissolved in an empty or inert gas, preferably an Ar atmosphere
create. Raw metal is pure rare earth element, rare earth alloy, pure
Iron, ferroboron, pure cobalt, and alloys of these
Is used, but various impurities inevitable in industrial production,
Typically, C, N, O, H, P, S, etc. are included
I do. The alloy obtained in this composition contains R TwoT1 14B
Phase (T1Is a transition metal element mainly composed of Fe and Co), R
Rich phase and RTTwo FourL phase, RTTwo ThreePhase, RTTwo TwoPhase, R
TwoTTwo 7Phase B, RTTwo FivePhase (TTwoIs a transition mainly composed of Fe and Co
One or two of a transition metal element, the same transition metal and M, L
Represents B or B and M). The melting points of these phases
The gap is also RTwoFe14Since the melting point of the phase B is lower than that of the alloy 2, the alloy 2
It has a moderate viscosity at the setting temperature and does not disturb the orientation of the grains.
It becomes a liquid phase component that cleans the field. Alloy 2 oxidizes
It is a composition containing a large amount of rare earth elements, but Co is used.
This suppresses oxidation.

【0013】上記で述べた合金1と合金2をそれぞれ別
々に粉砕した後、それらの粉末を所定の比に混合する。
粉砕は一般に粗粉砕、微粉砕と段階的に行われるが、混
合はどの段階で行ってもよい。但し、2つの合金粉末は
ほぼ同じ平均粒径で均一に混合されることが好ましく、
平均粒径は0.5〜20μmの範囲がよい。0.5μm
未満では酸化され易く磁気特性が低下してしまうおそれ
がある。また、20μmを超えると焼結性が悪くなるお
それがある。
After separately pulverizing the alloys 1 and 2 described above, the powders are mixed at a predetermined ratio.
The pulverization is generally performed stepwise as coarse pulverization and fine pulverization, but mixing may be performed at any stage. However, it is preferable that the two alloy powders are uniformly mixed with substantially the same average particle size,
The average particle size is preferably in the range of 0.5 to 20 μm. 0.5 μm
If it is less than 0, it is liable to be oxidized and magnetic properties may be deteriorated. If it exceeds 20 μm, the sinterability may deteriorate.

【0014】合金1と合金2の粉末の混合比は合金1が
70〜99wt%、合金2が1〜30wt%が好まし
い。合金2が1wt%未満だと液相成分が少なすぎて焼
結密度が上がらず、十分な保磁力が得られない場合があ
る。合金2が30wt%を超えると焼結後の非磁性相の
割合が大きすぎて残留磁束密度が小さくなるおそれがあ
る。
The mixing ratio of the powders of alloy 1 and alloy 2 is preferably 70 to 99 wt% for alloy 1 and 1 to 30 wt% for alloy 2. If the content of the alloy 2 is less than 1 wt%, the liquid phase component is too small, the sintering density does not increase, and a sufficient coercive force may not be obtained. If the alloy 2 exceeds 30 wt%, the proportion of the nonmagnetic phase after sintering is too large, and the residual magnetic flux density may be reduced.

【0015】混合された混合微粉は、磁場中成形プレス
によって所定の形状に成形され、続いて焼結を行う。焼
結は900〜1,200℃の温度範囲で真空又はAr雰
囲気下にて30分以上行い、焼結後、更に焼結温度以下
の低温で30分以上時効熱処理することが好ましい。
The mixed fine powder is formed into a predetermined shape by a forming press in a magnetic field, and then sintered. The sintering is preferably performed in a temperature range of 900 to 1,200 ° C. for 30 minutes or more in a vacuum or Ar atmosphere.

【0016】本発明におけるNd−Fe−B系永久磁石
においては、粒界周辺部にPr,Dy及び/又はTbの
濃度偏析を有するものがよい。これは液相成分の合金2
に含まれるPr,Tb,Dyが主相の中に完全に拡散せ
ず、焼結後も粒界近傍に存在するためであるが、このこ
とが磁石の保磁力をより向上させる効果を持っている。
このため、同じ組成であってもより高い磁気特性を持つ
磁石が製造できる。
The Nd-Fe-B permanent magnet according to the present invention preferably has a concentration segregation of Pr, Dy and / or Tb around the grain boundary. This is alloy 2 of liquid phase component
This is because Pr, Tb, and Dy contained in the alloy do not completely diffuse into the main phase and exist near the grain boundaries even after sintering. This has the effect of further improving the coercive force of the magnet. I have.
Therefore, a magnet having higher magnetic characteristics can be manufactured even with the same composition.

【0017】本発明におけるNd−Fe−B系永久磁石
は、磁気特性が残留磁束密度Brで1.1T以上、保磁
力iHcで796kA/m以上、最大エネルギー積(B
H)maxで239kJ/m3以上であることが好まし
く、更に工業生産において不可避な不純物元素、代表的
にはC,N,O,H,P,S等が含まれるが、その総和
は2wt%以下であることが望ましい。2wt%を超え
ると永久磁石中の非磁性成分が多くなって残留磁束密度
が小さくなるおそれがある。また、希土類元素がこれら
不純物に消費されてしまい、焼結不良になり、保磁力が
低くなるおそれがある。不純物の総和は低ければ低いほ
ど残留磁束密度、保磁力共に高くなり好ましい。
The Nd—Fe—B permanent magnet according to the present invention has a magnetic property of 1.1 T or more in residual magnetic flux density Br, 796 kA / m or more in coercive force iHc, and a maximum energy product (B
H) max is preferably 239 kJ / m 3 or more, and further contains impurity elements inevitable in industrial production, typically C, N, O, H, P, S, etc., but the total amount is 2 wt%. It is desirable that: If it exceeds 2 wt%, the non-magnetic component in the permanent magnet increases, and the residual magnetic flux density may decrease. In addition, rare earth elements are consumed by these impurities, which may result in poor sintering and lower coercive force. The lower the total amount of impurities, the higher the residual magnetic flux density and coercive force, which is preferable.

【0018】本発明におけるNd−Fe−B系永久磁石
の焼結体密度は7.2g/cc以上が望ましい。7.2
g/cc未満では保磁力が十分に得られない場合があ
る。また、抗折力は150MPa以上、ビッカース硬さ
で500以上が望ましい。抗折力が150MPa未満、
ビッカース硬さで500未満の永久磁石は、実際にモー
タなどで使用された時に破損するおそれがある。
The sintered body density of the Nd-Fe-B permanent magnet according to the present invention is desirably 7.2 g / cc or more. 7.2
If it is less than g / cc, a sufficient coercive force may not be obtained. Further, the bending strength is desirably 150 MPa or more, and the Vickers hardness is desirably 500 or more. Flexural strength less than 150 MPa,
A permanent magnet having a Vickers hardness of less than 500 may be damaged when actually used in a motor or the like.

【0019】本発明においては、上記希土類永久磁石の
表面に、Al,Mg,Ca,Zn,Si,Mn及びこれ
らの合金から選ばれる少なくとも一種の金属の微粉末
と、Si,Mn,Zn,Mo,Cr,Pから選ばれる少
なくとも一種の元素の酸化物とを複合して形成される耐
食性皮膜を形成する。
In the present invention, a fine powder of at least one metal selected from the group consisting of Al, Mg, Ca, Zn, Si, Mn and alloys thereof is formed on the surface of the rare-earth permanent magnet, and Si, Mn, Zn, Mo. , Cr, P to form a corrosion-resistant film formed by compounding with an oxide of at least one element selected from the group consisting of:

【0020】ここで、上記金属微粉末としては、フレー
ク状微粉末であることが好ましく、その形状は、平均長
径が0.1〜15μm、平均厚さが0.01〜5μmで
あって、かつアスペクト比(平均長径/平均厚さ)が2
以上のものが好ましい。より好ましくは、平均長径が1
〜10μm、平均厚さが0.1〜0.3μmであって、
かつアスペクト比(平均長径/平均厚さ)が10以上の
ものである。平均長径が0.1μm未満では、フレーク
状微粉末が素地に平行に積層せず、密着力が不足するお
それがある。平均長径が15μmを超えると、加熱焼付
けの時、蒸発した水分によりフレークが持ち上げられ、
素地に平行に積層せず、その結果密着の悪い皮膜になっ
てしまう場合がある。また、皮膜の寸法精度上、平均長
径は15μm以下が望ましい。平均厚さが0.01μm
未満のものは、フレークの製造段階でフレーク表面が酸
化してしまい、膜が脆くなって耐食性が悪化し易い傾向
となり、平均厚さが5μmを超えると、前記分散水溶液
中でのフレークの分散が悪くなって沈降し易くなり、処
理液が不安定になって、その結果耐食性が悪くなるおそ
れがある。アスペクト比が2未満だとフレークが素地に
平行に積層しにくく密着不良になるおそれがある。アス
ペクト比の上限はないが、あまり大きいものはコスト的
に高くなり、通常50以下である。
Here, the metal fine powder is preferably a flake-like fine powder, which has an average major axis of 0.1 to 15 μm, an average thickness of 0.01 to 5 μm, and Aspect ratio (average major axis / average thickness) of 2
The above are preferred. More preferably, the average major axis is 1
10 to 10 μm, the average thickness is 0.1 to 0.3 μm,
And the aspect ratio (average major axis / average thickness) is 10 or more. If the average major axis is less than 0.1 μm, the flake-like fine powder will not be laminated in parallel with the substrate, and the adhesion may be insufficient. If the average major axis exceeds 15 μm, the flakes are lifted by the evaporated water during heating and baking,
The film may not be laminated parallel to the substrate, resulting in a film having poor adhesion. Further, from the viewpoint of the dimensional accuracy of the film, the average major axis is desirably 15 μm or less. Average thickness 0.01μm
If the average thickness exceeds 5 μm, the dispersion of the flakes in the aqueous dispersion becomes poor when the flake surface is oxidized in the flake production stage, the film becomes brittle and the corrosion resistance tends to deteriorate. It becomes worse and tends to settle, and the treatment liquid becomes unstable, and as a result, the corrosion resistance may be deteriorated. When the aspect ratio is less than 2, flakes are difficult to be laminated in parallel with the base material, and there is a possibility that poor adhesion may occur. There is no upper limit on the aspect ratio, but an excessively large one results in high cost, usually 50 or less.

【0021】本発明で形成される皮膜において、上記金
属微粉末、特にフレーク状微粉末の含有量は70wt%
以上であり、より好ましくは75wt%以上である。7
0wt%未満では微粉末が少なすぎて、磁石素地を十分
に被覆しきれないので耐食性が低下するおそれがある。
また、Si,Mn,Zn,Mo,Cr,Pから選ばれる
少なくとも一種の元素の酸化物は30wt%以下、より
好ましくは25wt%以下(0を含まず)を添加するこ
とがよい。
In the film formed according to the present invention, the content of the metal fine powder, particularly the flake-like fine powder, is 70 wt%.
And more preferably 75% by weight or more. 7
If the content is less than 0 wt%, the amount of fine powder is too small to sufficiently cover the magnet substrate, and thus the corrosion resistance may be reduced.
The oxide of at least one element selected from Si, Mn, Zn, Mo, Cr, and P is preferably added in an amount of 30 wt% or less, more preferably 25 wt% or less (excluding 0).

【0022】本発明において、上記耐食性皮膜を形成す
る方法は、上記金属微粉末と上記酸化物との分散水溶液
に上記永久磁石を浸漬、又は該水溶液を永久磁石に塗布
する方法が採用し得るが、この場合、まず磁石の表面に
前処理を施すことが好ましい。前処理としては、酸処
理、アルカリ処理、ブラスト処理の中から選ばれ、
(1)酸洗浄、水洗、超音波洗浄、(2)アルカリ洗
浄、水洗、(3)ショットブラスト等から選ばれる少な
くとも一種類の処理を行えばよい。(1)で使用する洗
浄液としては、硝酸、塩酸、酢酸、クエン酸、蟻酸、硫
酸、フッ化水素酸、過マンガン酸、しゅう酸、ヒドロキ
シ酢酸、燐酸の中から選ばれる少なくとも一種以上を合
計で1〜20wt%含む水溶液を用い、これを常温以上
80℃以下の温度にして希土類磁石を浸漬する。酸洗浄
を行うことにより、表面の酸化皮膜を除去することがで
き、前記皮膜の密着力を向上させる効果がある。(2)
で用いることができるアルカリ洗浄液は、水酸化ナトリ
ウム、炭酸ナトリウム、オルソケイ酸ナトリウム、メタ
ケイ酸ナトリウム、燐酸三ナトリウム、シアン化ナトリ
ウム、キレート剤などの少なくとも一種以上を合計で5
g/L以上200g/L以下含む水溶液であり、これを
常温以上90℃以下の温度にして希土類磁石を浸漬すれ
ばよい。アルカリ洗浄は磁石表面に付着した油脂類の汚
れを除去する効果があり、前記皮膜と磁石の間の密着力
を向上させる。(3)のブラスト材としては通常のセラ
ミックス、ガラス、プラスチック等を用いることがで
き、吐出圧力2〜3kgf/cm2にて処理すればよ
い。ショットブラストは磁石表面の酸化皮膜を乾式で除
去でき、やはり密着性を上げる効果がある。
In the present invention, as a method for forming the corrosion resistant film, a method in which the permanent magnet is immersed in an aqueous dispersion of the metal fine powder and the oxide or a method in which the aqueous solution is applied to the permanent magnet can be adopted. In this case, it is preferable to first perform a pretreatment on the surface of the magnet. Pretreatment is selected from acid treatment, alkali treatment, and blast treatment.
At least one type of treatment selected from (1) acid washing, water washing, ultrasonic washing, (2) alkali washing, water washing, and (3) shot blasting may be performed. The washing liquid used in (1) is at least one selected from nitric acid, hydrochloric acid, acetic acid, citric acid, formic acid, sulfuric acid, hydrofluoric acid, permanganic acid, oxalic acid, hydroxyacetic acid, and phosphoric acid in total. A rare-earth magnet is immersed in an aqueous solution containing 1 to 20 wt% at a temperature not lower than room temperature and not higher than 80 ° C. By performing the acid cleaning, the oxide film on the surface can be removed, which has the effect of improving the adhesion of the film. (2)
The alkaline washing liquid that can be used in the above is at least one of sodium hydroxide, sodium carbonate, sodium orthosilicate, sodium metasilicate, trisodium phosphate, sodium cyanide, a chelating agent and the like in a total of 5 or more.
It is an aqueous solution containing g / L or more and 200 g / L or less. Alkali washing has the effect of removing dirt from oils and fats attached to the magnet surface, and improves the adhesion between the film and the magnet. As the blast material of (3), ordinary ceramics, glass, plastic, and the like can be used, and the treatment may be performed at a discharge pressure of 2 to 3 kgf / cm 2 . Shot blasting can remove the oxide film on the magnet surface in a dry manner, and also has the effect of increasing the adhesion.

【0023】前処理に続いて、金属微粉末と上記酸化物
の分散水溶液に永久磁石を浸漬、又は該水溶液を永久磁
石に塗布する。浸漬又は塗布後、加熱処理を行うが、温
度は300℃以上350℃未満にて30分以上維持する
ことが望ましい。300℃未満では成膜が不十分で密着
力も耐食性も悪くなるおそれがある。また、350℃以
上にすると、下地の磁石がダメージを受け、磁気特性劣
化の原因になり得る。
Subsequent to the pretreatment, a permanent magnet is immersed in an aqueous solution of a dispersion of the metal fine powder and the oxide, or the aqueous solution is applied to the permanent magnet. After immersion or application, a heat treatment is performed, and the temperature is desirably maintained at 300 ° C. or more and less than 350 ° C. for 30 minutes or more. If the temperature is lower than 300 ° C., the film formation is insufficient and the adhesion and the corrosion resistance may be deteriorated. If the temperature is 350 ° C. or higher, the underlying magnet may be damaged, which may cause deterioration of magnetic properties.

【0024】本発明における皮膜の形成にあたっては、
繰り返して重ね塗りと加熱処理を行ってもよい。本発明
における皮膜は、金属微粉末、特にフレーク状微粉末が
不定形酸化物により結合された構造となる。これが高い
耐食性を示す理由は定かではないが、微粉末がフレーク
状である場合、これが素地に概ね平行にそろい、よく磁
石を被覆し、遮蔽効果を持つものと考えられる。また、
フレーク状微粉末として永久磁石より卑な電位を持つ金
属あるいは合金を用いたときは、これらが先に酸化さ
れ、下地の磁石の酸化を抑制する効果があると考えられ
る。また、この皮膜は無機物であるため、有機皮膜に比
べて耐熱性が高いという特徴も有する。
In forming the film in the present invention,
Repeated coating and heat treatment may be performed repeatedly. The film in the present invention has a structure in which metal fine powder, particularly flake-like fine powder, is bound by an amorphous oxide. It is not clear why this shows high corrosion resistance, but when the fine powder is in the form of flakes, it is considered to be substantially parallel to the substrate, cover the magnet well, and have a shielding effect. Also,
When a metal or an alloy having a potential lower than that of the permanent magnet is used as the flake-like fine powder, it is considered that these are oxidized first and have an effect of suppressing the oxidation of the underlying magnet. Further, since this film is an inorganic material, it also has a feature that its heat resistance is higher than that of an organic film.

【0025】このように得られた本発明の皮膜の平均厚
さは1〜40μmの範囲にあることが望ましい。1μm
未満では耐食性が不足する場合があり、40μmを超え
ると、密着力低下や層間剥離を起こし易くなる場合が生
じる。更に、皮膜を厚くすると、外観形状が同一であっ
ても、使用できるR−Fe−B系永久磁石の体積が小さ
くなるため、磁石使用上も好ましくない。
The average thickness of the coating of the present invention thus obtained is desirably in the range of 1 to 40 μm. 1 μm
If it is less than 40 μm, the corrosion resistance may be insufficient, and if it is more than 40 μm, the adhesion may be reduced or delamination may easily occur. Further, when the coating is thick, even if the appearance is the same, the volume of the usable R-Fe-B-based permanent magnet is reduced, which is not preferable in terms of magnet use.

【0026】[0026]

【実施例】以下、実施例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to the following Examples.

【0027】まず、下記方法により希土類永久磁石を製
造した。Ar雰囲気の高周波溶解により、重量比で28
Nd−69.8Fe−1Co−1B−0.2Alなる組
成の鋳塊を作製し、Ar雰囲気下で1,070℃にて2
0時間溶体化処理した。これを合金1とする。次に、同
じく重量比で47Nd−13Dy−18.3Fe−20
Co−0.5B−1Cu−0.2Alなる組成の鋳塊を
Ar雰囲気の高周波溶解にて作製した。これを合金2と
する。合金1と合金2のインゴットをそれぞれ別に窒素
雰囲気下にてジョウクラッシャーで粗粉砕し、続いて合
金1の粗粉93wt%に合金2の粗粉7wt%を秤量し
て、窒素置換したVブレンダーにて30分混合した。こ
の混合粗粉を、更に窒素ガス下にてジェットミルで微粉
砕し、平均粒径が3μmの微粉末を得た。この微粉末
を、15kOe磁界が印加された金型内に充填し、1.
0t/cm2の圧力でプレス成形した。この成形体はA
r雰囲気下にて1,070℃で2時間焼結し、更に53
0℃で1時間時効処理を施して永久磁石とした。得られ
た永久磁石から径21mm×厚み10mm寸法の磁石片
を切り出し、バレル研磨処理を行った後、超音波水洗を
行い、これを磁石試験片とした。
First, a rare earth permanent magnet was manufactured by the following method. 28 weight ratio by high frequency melting in Ar atmosphere
An ingot having a composition of Nd-69.8Fe-1Co-1B-0.2Al was prepared, and was heated at 1,070 ° C. under an Ar atmosphere at 2 ° C.
Solution treatment was performed for 0 hour. This is called alloy 1. Next, also at a weight ratio of 47Nd-13Dy-18.3Fe-20.
An ingot having a composition of Co-0.5B-1Cu-0.2Al was produced by high frequency melting in an Ar atmosphere. This is called alloy 2. The alloy 1 and alloy 2 ingots were separately coarsely pulverized with a jaw crusher under a nitrogen atmosphere, and then the alloy 1 coarse powder 93 wt% and the alloy 2 coarse powder 7 wt% were weighed and transferred to a nitrogen-blended V blender. And mixed for 30 minutes. This mixed coarse powder was further pulverized with a jet mill under nitrogen gas to obtain a fine powder having an average particle size of 3 μm. This fine powder is filled in a mold to which a magnetic field of 15 kOe is applied.
Press molding was performed at a pressure of 0 t / cm 2 . This molded product is A
sintering at 1,070 ° C for 2 hours in an atmosphere of
After aging at 0 ° C. for 1 hour, a permanent magnet was obtained. A magnet piece having a diameter of 21 mm and a thickness of 10 mm was cut out from the obtained permanent magnet, subjected to barrel polishing, and then subjected to ultrasonic water washing to obtain a magnet test piece.

【0028】この磁石の磁気特性をBHトレーサーで測
定したところ、残留磁束密度Brが14.4T、保磁力
iHcが1,110kA/m、最大エネルギー積が39
8kJ/m3であった。この磁石におけるDyの元素分
布をEPMAにて調べたところ、主相の粒界付近にDy
の分布が多く存在し、主相の中央にはDyの分布が少な
かった。
When the magnetic properties of this magnet were measured with a BH tracer, the residual magnetic flux density Br was 14.4 T, the coercive force iHc was 1,110 kA / m, and the maximum energy product was 39.
It was 8 kJ / m 3 . When the element distribution of Dy in this magnet was examined by EPMA, Dy was found near the grain boundary of the main phase.
And the distribution of Dy was small in the center of the main phase.

【0029】この磁石に含まれる各種不純物元素、具体
的にはC,N,O,H,P,S等の重量を、不活性ガス
融解赤外吸収法、不活性ガス融解熱伝導度測定法、燃焼
赤外吸収法等を用いて測定したところ、その総和は0.
5wt%であった。焼結体密度は7.55g/ccであ
った。JIS−R−1601に準じた3点曲げ法にて抗
折力を測定したところ、240MPaであった。ビッカ
ース硬度計を用いて9.807Nの荷重にてビッカース
硬さを測定したところ、600であった。
The weight of various impurity elements contained in this magnet, specifically, C, N, O, H, P, S, etc., was measured by an inert gas fusion infrared absorption method, an inert gas fusion thermal conductivity measurement method. When measured using a combustion infrared absorption method or the like, the total sum was 0.1.
It was 5 wt%. The density of the sintered body was 7.55 g / cc. When the transverse rupture strength was measured by a three-point bending method according to JIS-R-1601, it was 240 MPa. It was 600 when the Vickers hardness was measured with a load of 9.807 N using a Vickers hardness meter.

【0030】次に、皮膜形成のための処理液として、フ
レーク状アルミニウム粉末2wt%、フレーク状亜鉛粉
末20wt%(共に平均長径3μm、平均厚さ0.2μ
m)、無水クロム酸4wt%が含まれた分散水溶液を準
備した。前記磁石試験片表面に表1に示した前処理を行
い、この分散水溶液に前記試験片を浸漬した後、10μ
mの膜厚になるように回転数を調整したスピンコータで
余滴を除去し、熱風乾燥炉で330℃にて30分加熱し
て前記皮膜を形成した。前処理の詳細は次の通りであ
る。酸洗浄 組成:硝酸10%(v/v)、硫酸5%(v/v) 50℃にて30分間浸漬アルカリ洗浄 組成:水酸化ナトリウム10g/L、メタケイ酸ナトリ
ウム3g/L、燐酸三ナトリウム10g/L、炭酸ナト
リウム8g/L、界面活性剤2g/L 40℃にて2分間浸漬ショットブラスト #220の酸化アルミニウムを用い、吐出圧力2kgf
/cm2にて処理
Next, flake-form aluminum powder 2 wt% and flake-form zinc powder 20 wt% (both having an average major axis of 3 μm and an average thickness of 0.2 μm)
m), a dispersion aqueous solution containing 4 wt% of chromic anhydride was prepared. The surface of the magnet test piece was subjected to the pretreatment shown in Table 1, and the test piece was immersed in this aqueous dispersion solution.
Excess droplets were removed with a spin coater whose rotation speed was adjusted to a film thickness of m, and the coating was formed by heating at 330 ° C. for 30 minutes in a hot-air drying furnace. Details of the pre-processing are as follows. Acid cleaning composition: nitric acid 10% (v / v), sulfuric acid 5% (v / v) Immersion at 50 ° C. for 30 minutes Alkaline cleaning composition: sodium hydroxide 10 g / L, sodium metasilicate 3 g / L, trisodium phosphate 10 g / L, sodium carbonate 8 g / L, surfactant 2 g / L, immersion at 40 ° C. for 2 minutes using aluminum oxide of shot blast # 220, discharge pressure 2 kgf
/ Cm 2

【0031】次いで、得られた皮膜に対して下記方法で
碁盤目密着性試験を行った。碁盤目密着性試験 (1)JIS−K−5400碁盤目試験に準ずる。カッ
ターナイフで皮膜に1mmのマス100個ができるよう
に碁盤目状の切り傷を入れた後、セロファンテープを強
く押しつけ、45度の角度に強く引いて剥がし、残った
碁盤目の数で密着性を評価する。 (2)皮膜を形成した磁石に120℃、2気圧、200
時間のプレッシャークッカー試験を施し、この試験後磁
石に対して碁盤目密着性試験を行った。試験内容はJI
S−K−5400碁盤目試験に準じ、カッターナイフで
皮膜に1mmのマス100個ができるように碁盤目状の
切り傷を入れた後、セロファンテープを強く押しつけ、
45度の角度に強く引いて剥がし、残った碁盤目の数で
密着性を評価した。前処理をしなかった比較例1と併せ
て表1に結果を示す。前処理を行うことにより、更に密
着力が向上していることがわかる。
Next, a cross-cut adhesion test was performed on the obtained film by the following method. Cross-cut adhesion test (1) According to JIS-K-5400 cross-cut test. After making a cut in a grid pattern so that 100 pieces of 1 mm square are formed on the film with a cutter knife, strongly press the cellophane tape, pull it strongly at an angle of 45 degrees and peel it off. evaluate. (2) The magnet on which the film was formed was applied at 120 ° C., 2 atm, 200
A time cooker test was performed, and after this test, a cross-cut adhesion test was performed on the magnet. Exam contents are JI
According to the SK-5400 grid test, after making a grid-shaped cut in the film with a cutter knife so that 100 squares of 1 mm were formed, the cellophane tape was strongly pressed.
The film was strongly pulled at an angle of 45 degrees and peeled off, and the adhesion was evaluated by the number of crosses remaining. Table 1 shows the results together with Comparative Example 1 in which no pretreatment was performed. It can be seen that the adhesion is further improved by performing the pretreatment.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明によれば、高性能希土類永久磁石
の表面に、好ましくは前処理を施した後、Al,Mg,
Ca,Zn,Si,Mn及びこれらの合金の中から選ば
れる少なくとも一種の金属の微粉末と、Si,Mn,Z
n,Mo,Cr,Pから選ばれる少なくとも一種以上の
元素の酸化物を複合して形成される皮膜を密着性よく付
与することにより、耐食性高性能希土類永久磁石を安価
に提供することができ、産業上その利用価値は極めて高
い。
According to the present invention, the surface of a high performance rare earth permanent magnet is preferably subjected to a pretreatment, and then the Al, Mg,
A fine powder of at least one metal selected from Ca, Zn, Si, Mn and alloys thereof, and Si, Mn, Z
By providing a film formed by combining oxides of at least one element selected from n, Mo, Cr, and P with good adhesion, a corrosion-resistant high-performance rare earth permanent magnet can be provided at low cost. Its utility value is extremely high in industry.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K026 AA01 AA02 AA21 BA03 BA06 BA08 BB08 CA18 CA21 CA23 CA29 CA41 DA16 EA02 EA07 EA08 5E040 AA04 AA19 BC01 CA01 HB06 HB11 HB14 HB15 NN01 NN05 5E062 CC03 CD04 CE04 CF01 CG02 CG05 CG07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K026 AA01 AA02 AA21 BA03 BA06 BA08 BB08 CA18 CA21 CA23 CA29 CA41 DA16 EA02 EA07 EA08 5E040 AA04 AA19 BC01 CA01 HB06 HB11 HB14 HB15 NN01 NN05 5E062 CC03 CG04 CF04 CE

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 R−T−M−B(RはYを含む希土類元
素の少なくとも一種、TはFe又はFe及びCo、Mは
Ti,Nb,Al,V,Mn,Sn,Ca,Mg,P
b,Sb,Zn,Si,Zr,Cr,Ni,Cu,G
a,Mo,W,Taから選ばれる少なくとも一種の元素
であって、各元素の含有量がそれぞれ5wt%≦R≦4
0wt%、50wt%≦T≦90wt%、0.1wt%
≦M≦8wt%、0.2wt%≦B≦8wt%)で表記
される希土類永久磁石の表面に、前処理を施した後、A
l,Mg,Ca,Zn,Si,Mn及びこれらの合金の
中から選ばれる少なくとも一種の金属の微粉末と、S
i,Mn,Zn,Mo,Cr,Pから選ばれる少なくと
も一種以上の元素の酸化物を複合して形成される耐食性
皮膜を付与したことを特徴とする耐食性希土類磁石の製
造方法。
1. RTMB (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg, P
b, Sb, Zn, Si, Zr, Cr, Ni, Cu, G
a, Mo, W, Ta, and at least one element selected from the group consisting of 5 wt% ≦ R ≦ 4
0 wt%, 50 wt% ≦ T ≦ 90 wt%, 0.1 wt%
≦ M ≦ 8 wt%, 0.2 wt% ≦ B ≦ 8 wt%), after performing a pretreatment on the surface of the rare earth permanent magnet,
a fine powder of at least one metal selected from the group consisting of S, Mg, Ca, Zn, Si, Mn and alloys thereof;
A method for producing a corrosion-resistant rare earth magnet, characterized by providing a corrosion-resistant film formed by compounding an oxide of at least one element selected from i, Mn, Zn, Mo, Cr, and P.
【請求項2】 請求項1において、希土類永久磁石が、
R−T−M−B(RはYを含む希土類元素の少なくとも
一種、TはFe又はFe及びCo、MはTi,Nb,A
l,V,Mn,Sn,Ca,Mg,Pb,Sb,Zn,
Si,Zr,Cr,Ni,Cu,Ga,Mo,W,Ta
から選ばれる少なくとも一種の元素であって、各元素の
含有量がそれぞれ5wt%≦R≦40wt%、50wt
%≦T≦90wt%、0.1wt%≦M≦8wt%、
0.2wt%≦B≦8wt%)で表記される合金1と、
R−Fe−Co−M−B(R及びMは上記と同じであっ
て、各元素の含有量が30wt%≦R≦90wt%、0
wt%≦Fe≦50wt%、5wt%≦Co≦70wt
%、0wt%≦M≦8wt%、0wt%≦B≦2wt
%)で表記される合金2を混合し、製造されたものであ
る耐食性希土類磁石の製造方法。
2. The rare earth permanent magnet according to claim 1,
R-T-M-B (R is at least one rare earth element including Y, T is Fe or Fe and Co, M is Ti, Nb, A
1, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn,
Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta
At least one element selected from the group consisting of: 5 wt% ≦ R ≦ 40 wt%, 50 wt%
% ≦ T ≦ 90 wt%, 0.1 wt% ≦ M ≦ 8 wt%,
0.2 wt% ≦ B ≦ 8 wt%)
R—Fe—Co—MB (R and M are the same as above, and the content of each element is 30 wt% ≦ R ≦ 90 wt%, 0
wt% ≦ Fe ≦ 50 wt%, 5 wt% ≦ Co ≦ 70 wt
%, 0 wt% ≦ M ≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt
%), A method for producing a corrosion-resistant rare earth magnet, which is produced by mixing alloy 2 represented by (%).
【請求項3】 上記永久磁石の表面を前処理として、酸
洗浄、アルカリ処理、ブラスト処理から選択される処理
を施した後、上記耐食性皮膜を付与するようにした請求
項1又は2記載の耐食性希土類磁石の製造方法。
3. The corrosion resistance according to claim 1, wherein the surface of the permanent magnet is subjected to a treatment selected from acid cleaning, alkali treatment, and blast treatment as a pretreatment, and then the corrosion resistant film is applied. Rare earth magnet manufacturing method.
【請求項4】 耐食性皮膜の平均厚みが1〜40μmで
ある請求項1,2又は3記載の耐食性希土類磁石の製造
方法。
4. The method for producing a corrosion-resistant rare earth magnet according to claim 1, wherein the average thickness of the corrosion-resistant coating is 1 to 40 μm.
【請求項5】 耐食性皮膜を構成する金属粉末がフレー
ク状微粉末で、形状が平均長径で0.1〜15μm、平
均厚さで0.01〜5μm、アスペクト比(平均長径/
平均厚さ)が2以上であるものであって、皮膜内におけ
るフレーク状微粉末の含有割合が70wt%以上である
請求項1乃至4のいずれか1項記載の耐食性希土類磁石
の製造方法。
5. The metal powder constituting the corrosion resistant film is a flake-like fine powder having a shape having an average major axis of 0.1 to 15 μm, an average thickness of 0.01 to 5 μm, and an aspect ratio (average major axis /
The method for producing a corrosion-resistant rare earth magnet according to any one of claims 1 to 4, wherein the average thickness is 2 or more, and the content of the flake-like fine powder in the coating is 70% by weight or more.
JP2000036083A 2000-02-15 2000-02-15 Method for producing corrosion-resistant rare earth magnet Expired - Lifetime JP3781095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036083A JP3781095B2 (en) 2000-02-15 2000-02-15 Method for producing corrosion-resistant rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036083A JP3781095B2 (en) 2000-02-15 2000-02-15 Method for producing corrosion-resistant rare earth magnet

Publications (2)

Publication Number Publication Date
JP2001230108A true JP2001230108A (en) 2001-08-24
JP3781095B2 JP3781095B2 (en) 2006-05-31

Family

ID=18560172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036083A Expired - Lifetime JP3781095B2 (en) 2000-02-15 2000-02-15 Method for producing corrosion-resistant rare earth magnet

Country Status (1)

Country Link
JP (1) JP3781095B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051678A1 (en) * 2002-11-29 2004-06-17 Neomax Co., Ltd. Method for producing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method for work piece, and method for forming coating film on work piece
WO2005096326A1 (en) * 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same
JP2005286175A (en) * 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet and its manufacturing method
JP2006049865A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2006049863A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2006049864A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2007103522A (en) * 2005-09-30 2007-04-19 Tdk Corp Rare earth magnet
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
CN100361239C (en) * 2002-11-29 2008-01-09 株式会社新王磁材 Method for producing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method for work piece, and method for forming coatin
JP2009038197A (en) * 2007-08-01 2009-02-19 Ulvac Japan Ltd Manufacturing method of sintered body, and neodymium iron boron-based sintered magnet manufactured by the method
JP2015534586A (en) * 2012-08-20 2015-12-03 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Zinc-magnesium corrosion-resistant pigment, corrosion-resistant paint, and method for producing the corrosion-resistant pigment
WO2020138094A1 (en) * 2018-12-25 2020-07-02 ダイセルポリマー株式会社 Rare earth magnet precursor or rare earth magnet molding having roughened structure on surface and method for manufacturing same
WO2021214972A1 (en) * 2020-04-24 2021-10-28 三菱電機株式会社 Refrigeration cycle apparatus and compressor
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
CN115198260A (en) * 2022-06-22 2022-10-18 中国科学院赣江创新研究院 Method for improving corrosion resistance of neodymium iron boron magnet

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051678A1 (en) * 2002-11-29 2004-06-17 Neomax Co., Ltd. Method for producing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method for work piece, and method for forming coating film on work piece
CN100361239C (en) * 2002-11-29 2008-01-09 株式会社新王磁材 Method for producing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method for work piece, and method for forming coatin
US7335392B2 (en) 2002-11-29 2008-02-26 Neomax Co., Ltd. Method for producing corrosion-resistant rare earth metal-based permanent magnet
JP4534553B2 (en) * 2004-03-30 2010-09-01 Tdk株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP2005286175A (en) * 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet and its manufacturing method
WO2005096326A1 (en) * 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same
US9903009B2 (en) 2004-03-31 2018-02-27 Tdk Corporation Rare earth magnet and method for manufacturing same
JP2006049865A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2006049863A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2006049864A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2007103522A (en) * 2005-09-30 2007-04-19 Tdk Corp Rare earth magnet
JP4665694B2 (en) * 2005-09-30 2011-04-06 Tdk株式会社 Rare earth magnet manufacturing method
JP4702543B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 R-T-B-C type rare earth sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
JP4702542B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 Manufacturing method of RTBC type sintered magnet
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2009038197A (en) * 2007-08-01 2009-02-19 Ulvac Japan Ltd Manufacturing method of sintered body, and neodymium iron boron-based sintered magnet manufactured by the method
JP2015534586A (en) * 2012-08-20 2015-12-03 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Zinc-magnesium corrosion-resistant pigment, corrosion-resistant paint, and method for producing the corrosion-resistant pigment
US9718965B2 (en) 2012-08-20 2017-08-01 Eckart Gmbh Zinc-magnesium anticorrosion pigments, anticorrosion paint, and method for the production of said anticorrosion pigments
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
JP2022002318A (en) * 2018-12-25 2022-01-06 ダイセルミライズ株式会社 Rare earth magnet precursor or rare earth magnet molding, and composite molding employing the same
JPWO2020138094A1 (en) * 2018-12-25 2021-11-18 ダイセルミライズ株式会社 Rare earth magnet precursors or rare earth magnet molded bodies having a roughened structure on the surface and their manufacturing methods
JP2022000907A (en) * 2018-12-25 2022-01-04 ダイセルミライズ株式会社 Manufacturing method of rare earth magnet precursor or rare earth magnet molded body having roughened structure on surface
CN113228207A (en) * 2018-12-25 2021-08-06 大赛璐美华株式会社 Rare earth magnet precursor or rare earth magnet molded body having roughened surface structure on surface, and method for producing same
WO2020138094A1 (en) * 2018-12-25 2020-07-02 ダイセルポリマー株式会社 Rare earth magnet precursor or rare earth magnet molding having roughened structure on surface and method for manufacturing same
JP7100185B2 (en) 2018-12-25 2022-07-12 ダイセルミライズ株式会社 Rare earth magnet precursor or rare earth magnet molded body and composite molded body using it
US11810713B2 (en) 2018-12-25 2023-11-07 Daicel Miraizu Ltd. Rare earth magnet precursor or rare earth magnet molded body having roughened structure on surface and method for manufacturing same
WO2021214972A1 (en) * 2020-04-24 2021-10-28 三菱電機株式会社 Refrigeration cycle apparatus and compressor
JPWO2021214972A1 (en) * 2020-04-24 2021-10-28
JP7075503B2 (en) 2020-04-24 2022-05-25 三菱電機株式会社 Refrigeration cycle device and compressor
CN115198260A (en) * 2022-06-22 2022-10-18 中国科学院赣江创新研究院 Method for improving corrosion resistance of neodymium iron boron magnet

Also Published As

Publication number Publication date
JP3781095B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP4162884B2 (en) Corrosion-resistant rare earth magnet
EP2752857B1 (en) R-T-B rare earth sintered magnet
JP2008263208A (en) Corrosion-resistant rare earth magnet
JP6269279B2 (en) Permanent magnet and motor
CN101521068B (en) Rare earth permanent magnet and method of manufacturing the same
CN108417334B (en) R-T-B sintered magnet
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
CN104752049A (en) Process For Preparing Rare Earth Magnets
EP1024506A1 (en) Rare earth metal-based permanent magnet, and process for producing the same
JP6536816B2 (en) RTB based sintered magnet and motor
EP1734539B1 (en) Corrosion-resistant rare earth magnets and process for production thereof
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JPWO2011081170A1 (en) Corrosion-resistant magnet and manufacturing method thereof
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP2006049864A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
US9850559B2 (en) Permanent magnet and variable magnetic flux motor
JP3877552B2 (en) Method for manufacturing metal member
JP3232037B2 (en) High corrosion resistance R-Fe-B bonded magnet with excellent crushing strength
JP4539288B2 (en) Rare earth sintered magnet
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JP2922601B2 (en) Resin molded magnet
JP2006049863A (en) Corrosion resistant rare earth magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3781095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150317

Year of fee payment: 9

EXPY Cancellation because of completion of term