JP2006049865A - Corrosion resistant rare earth magnet and manufacturing method thereof - Google Patents

Corrosion resistant rare earth magnet and manufacturing method thereof Download PDF

Info

Publication number
JP2006049865A
JP2006049865A JP2005191650A JP2005191650A JP2006049865A JP 2006049865 A JP2006049865 A JP 2006049865A JP 2005191650 A JP2005191650 A JP 2005191650A JP 2005191650 A JP2005191650 A JP 2005191650A JP 2006049865 A JP2006049865 A JP 2006049865A
Authority
JP
Japan
Prior art keywords
mass
rare earth
fine powder
magnet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191650A
Other languages
Japanese (ja)
Inventor
Ryuji Hamada
隆二 浜田
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005191650A priority Critical patent/JP2006049865A/en
Publication of JP2006049865A publication Critical patent/JP2006049865A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a corrosion resistant rare earth magnet provided with a coating with corrosion resistance and heat resistance. <P>SOLUTION: The rare earth permanent magnet is represented by R-T-M-B (R is at least one kind of rare earth elements containing Y, T is Fe or Fe and Co, M is at least one kind of element selected from among Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, and Ta, and contents of the elements are as follows: 5 mass%≤R≤40 mass%, 50 mass%≤T≤90 mass%, 0 mass%≤M≤8 mass%, and 0.2 mass%≤B≤8 mass%). A compound coating of flake fine powder/metal oxide is formed on the surface of rare earth permanent magnet, which is acquired by heating a process film in a process liquid containing at least one kind of flake fine powder selected from among Al, Mg, Ca, Zn, Si, Mn and alloy of them, and at least one kind of metal sol selected from among Al, Zr, Si, and Ti. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石の耐食性を向上させた耐食性希土類磁石及びその製造方法に関する。   In the present invention, R-T-M-B (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb. , Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, and the content of each element is 5% by mass ≦ R ≦ 40% by mass, 50% by mass ≦ T ≦ 90% by mass, 0% by mass ≦ M ≦ 8% by mass, 0.2% by mass ≦ B ≦ 8% by mass) It relates to a manufacturing method.

希土類永久磁石は、その優れた磁気特性のため、各種電気製品やコンピュータの周辺機器等、幅広い分野で多用されており、重要な電気、電子材料である。特に、Nd−Fe−B系永久磁石は、Sm−Co系永久磁石に比べて主要元素であるNdがSmより豊富に存在すること、Coを多量に使用しないことから原材料費が安価であり、磁気特性もSm−Co系永久磁石をはるかにしのぐ極めて優れた永久磁石である。このため、近年ますますNd−Fe−B系永久磁石の使用量は増大し、用途も広がりつつある。   Rare earth permanent magnets are important electrical and electronic materials because of their excellent magnetic properties and are widely used in various fields such as various electric products and computer peripherals. In particular, the Nd-Fe-B permanent magnet has a lower raw material cost because Nd, which is the main element, is abundant than Sm and does not use a large amount of Co, compared to the Sm-Co permanent magnet. It is a very excellent permanent magnet with magnetic properties far superior to those of Sm-Co permanent magnets. For this reason, the amount of Nd-Fe-B permanent magnets used has been increasing in recent years, and the applications are expanding.

しかし、Nd−Fe−B系永久磁石は、主成分として希土類元素及び鉄を含有するため、湿度をおびた空気中で短時間の内に容易に酸化するという欠点を持っている。このため、磁気回路に組み込んだ場合には、これらの酸化により磁気回路の出力が低下したり、錆が機器周辺を汚染する問題がある。   However, since the Nd—Fe—B permanent magnet contains rare earth elements and iron as main components, it has a drawback of being easily oxidized in a short period of time in humid air. For this reason, when incorporated in a magnetic circuit, there is a problem in that the output of the magnetic circuit is reduced due to these oxidations, and rust contaminates the periphery of the device.

特に最近は、自動車用モータやエレベータ用モータなどのモータ類にもNd−Fe−B系永久磁石が使われはじめているが、これらは高温かつ湿潤な環境での使用を余儀なくされる。また、塩分を含んだ湿気に曝されることも想定しなくてはならず、より高い耐食性を低コストで実現することが要求されている。更に、これらのモータ類は、その製造工程において短時間ではあるが磁石が300℃以上に加熱されることがあり、このような場合には耐熱性も併せて要求される。   Particularly recently, Nd—Fe—B permanent magnets have begun to be used in motors such as automobile motors and elevator motors, but these are forced to be used in high-temperature and humid environments. Moreover, it must be assumed that it is exposed to moisture containing salt, and higher corrosion resistance is required to be realized at low cost. Further, in these motors, the magnet may be heated to 300 ° C. or higher in a short time in the manufacturing process, and in such a case, heat resistance is also required.

Nd−Fe−B系永久磁石の耐食性を改善するため、多くの場合、樹脂塗装、Alイオンプレーティング、Niメッキ等の各種表面処理が施されるが、上記のような厳しい条件にこれらの表面処理で対応することは現段階の技術では難しい。例えば、樹脂塗装は耐食性が不足する上、耐熱性がない。Niメッキにはピンホールがわずかながら存在するため、塩分を含んだ湿気中では錆が発生する。イオンプレーティングは耐熱性、耐食性が概ね良好であるが、大掛かりな装置を必要とし、低コストを実現するのは困難である。   In order to improve the corrosion resistance of Nd-Fe-B permanent magnets, various surface treatments such as resin coating, Al ion plating, and Ni plating are often performed. It is difficult to cope with the processing with the current technology. For example, resin coating lacks corrosion resistance and does not have heat resistance. Since there is a slight pinhole in Ni plating, rust is generated in moisture containing salt. Although ion plating generally has good heat resistance and corrosion resistance, it requires a large-scale apparatus and it is difficult to realize low cost.

なお、本発明に関連する公知文献としては、下記のものがある。
特開2003−64454号公報 特開2003−158006号公報 特開2001−230107号公報 特開2001−230108号公報
In addition, as a well-known document relevant to this invention, there exist the following.
JP 2003-64454 A JP 2003-158006 A JP 2001-230107 A JP 2001-230108 A

本発明は、上記のような過酷な条件での使用に耐えるNd磁石等のR−T−M−B系希土類永久磁石を提供するためになされたもので、該磁石に耐食性、耐熱性を有する皮膜を付与した耐食性希土類磁石及びその製造方法を提供することを目的とする。   The present invention was made to provide an R-T-MB-based rare earth permanent magnet such as an Nd magnet that can withstand use under the above-mentioned severe conditions. The magnet has corrosion resistance and heat resistance. An object of the present invention is to provide a corrosion-resistant rare earth magnet provided with a film and a method for producing the same.

本発明者は、上記目的を達成するため鋭意検討を行った結果、R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末と、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルとを含む処理液を塗布した後、加熱することによって、該磁石表面にフレーク状微粉末/金属酸化物の複合皮膜を形成することにより、耐食性、耐熱性を有する希土類磁石が得られることを知見し、諸条件を確立して本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that R-T-MB (where R is at least one rare earth element including Y, T is Fe or Fe and Co, M is Ti, Nb At least one element selected from Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, The content is expressed by 5 mass% ≦ R ≦ 40 mass%, 50 mass% ≦ T ≦ 90 mass%, 0 mass% ≦ M ≦ 8 mass%, 0.2 mass% ≦ B ≦ 8 mass%, respectively. At least one flaky fine powder selected from Al, Mg, Ca, Zn, Si, Mn and alloys thereof and at least one selected from Al, Zr, Si, Ti on the surface of the rare earth permanent magnet After applying a treatment liquid containing a metal sol of To find that a rare earth magnet having corrosion resistance and heat resistance can be obtained by forming a flaky fine powder / metal oxide composite film on the surface of the magnet, thereby establishing various conditions and completing the present invention. It came to.

従って、本発明は、R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末と、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルとを含む処理液による処理膜を加熱することによって得られるフレーク状微粉末/金属酸化物の複合皮膜を形成してなることを特徴とする耐食性希土類磁石を提供する。また、本発明は、R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末と、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルとを含む処理液を塗布した後、加熱することにより、該磁石表面にフレーク状微粉末/金属酸化物の複合皮膜を形成することを特徴とする耐食性希土類磁石の製造方法を提供する。   Therefore, the present invention provides R-T-M-B (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg , Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, and the content of each element is 5 mass% ≦ R ≦ 40 mass, respectively. %, 50 mass% ≦ T ≦ 90 mass%, 0 mass% ≦ M ≦ 8 mass%, 0.2 mass% ≦ B ≦ 8 mass%) on the surface of the rare earth permanent magnet, Al, Mg, Ca , Zn, Si, Mn, and a treatment film with a treatment liquid containing at least one flaky fine powder selected from these alloys and at least one metal sol selected from Al, Zr, Si, Ti Flake-like fine powder / gold obtained by heating Providing corrosion resistance rare earth magnet, characterized in that by forming a composite film of oxide. Further, the present invention provides R-T-M-B (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg , Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, and the content of each element is 5 mass% ≦ R ≦ 40 mass, respectively. %, 50 mass% ≦ T ≦ 90 mass%, 0 mass% ≦ M ≦ 8 mass%, 0.2 mass% ≦ B ≦ 8 mass%) on the surface of the rare earth permanent magnet, Al, Mg, Ca After applying a treatment liquid containing at least one flaky fine powder selected from Zn, Si, Mn and alloys thereof and at least one metal sol selected from Al, Zr, Si, Ti By heating, flaky fine powder / To provide a method of manufacturing a corrosion-resistant rare earth magnet and forming a composite film of the genus oxide.

本発明によれば、希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末と、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルとを含む処理液を塗布、加熱し、該磁石表面にフレーク状微粉末/金属酸化物の複合皮膜を付与することにより、耐熱性を有する耐食性希土類磁石を安価に提供することができ、産業上その利用価値は極めて高い。   According to the present invention, on the surface of the rare earth permanent magnet, at least one flaky fine powder selected from Al, Mg, Ca, Zn, Si, Mn and alloys thereof, and Al, Zr, Si, Ti By applying and heating a treatment solution containing at least one metal sol selected from among them, and applying a flaky fine powder / metal oxide composite film to the magnet surface, a heat-resistant corrosion-resistant rare earth magnet is inexpensive. The industrial utility value is extremely high.

本発明において、希土類永久磁石としては、Nd−Fe−B系永久磁石等のR−T−M−B(RはYを含む希土類元素の少なくとも一種、好ましくはNd又は主成分としてのNdと他の希土類元素の組み合わせ、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石を使用する。   In the present invention, as the rare earth permanent magnet, R-TMB-B (R is at least one kind of rare earth element including Y, preferably Nd or Nd as a main component and others, such as an Nd-Fe-B permanent magnet). T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, At least one element selected from Mo, W and Ta, and the content of each element is 5% by mass ≦ R ≦ 40% by mass, 50% by mass ≦ T ≦ 90% by mass, 0% by mass ≦ M ≦ 8, respectively. A rare earth permanent magnet represented by (mass%, 0.2 mass% ≦ B ≦ 8 mass%) is used.

ここで、RはYを含む希土類元素、具体的にはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちから選ばれる少なくとも一種の希土類元素であり、特にNdを含むものが好適に用いられ、その含有量は5質量%≦Nd≦37質量%であり、またRの含有量は5質量%≦R≦40質量%、好ましくは10質量%≦R≦35質量%である。   Here, R is a rare earth element including Y, specifically, at least selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. One kind of rare earth elements, particularly those containing Nd, are preferably used, the content of which is 5% by mass ≦ Nd ≦ 37% by mass, and the content of R is 5% by mass ≦ R ≦ 40% by mass, Preferably, 10% by mass ≦ R ≦ 35% by mass.

また、TはFe又はFe及びCoであり、その含有量は50質量%≦T≦90質量%、好ましくは55質量%≦T≦80質量%である。この場合、Tに占めるCoの含有量は、10質量%以下であることが好ましい。   T is Fe or Fe and Co, and the content thereof is 50 mass% ≦ T ≦ 90 mass%, preferably 55 mass% ≦ T ≦ 80 mass%. In this case, the content of Co in T is preferably 10% by mass or less.

一方、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であり、その含有量は0質量%≦M≦8質量%、好ましくは0質量%≦M≦5質量%である。   On the other hand, M is at least one element selected from Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, and Ta. And the content thereof is 0 mass% ≦ M ≦ 8 mass%, preferably 0 mass% ≦ M ≦ 5 mass%.

更に、上記磁石は、Bを0.2質量%≦B≦8質量%、好ましくは0.5質量%≦B≦5質量%含有する。   Further, the magnet contains B in an amount of 0.2 mass% ≦ B ≦ 8 mass%, preferably 0.5 mass% ≦ B ≦ 5 mass%.

本発明に用いられるNd−Fe−B系永久磁石等のR−T−M−B系永久磁石を製造するにあたっては、まず原料金属を真空又は不活性ガス、好ましくはAr雰囲気中で溶解して作製する。原料金属は、純希土類元素、希土類合金、純鉄、フェロボロン、更にはこれらの合金等を使用するが、工業生産において不可避な各種不純物、代表的にはC、N、O、H、P、S等は含まれるものとする。得られた合金は、R2Fe14B相の他にαFe、Rリッチ相、Bリッチ相などが残る場合があり、必要に応じて溶体化処理を行う。その時の条件は、真空又はAr等の不活性雰囲気下700〜1,200℃の温度で1時間以上熱処理すればよい。 In producing an RTMB-based permanent magnet such as the Nd-Fe-B-based permanent magnet used in the present invention, first, the raw material metal is dissolved in a vacuum or an inert gas, preferably in an Ar atmosphere. Make it. As the raw metal, pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof are used, but various impurities inevitable in industrial production, typically C, N, O, H, P, S Etc. shall be included. In the obtained alloy, αFe, R-rich phase, B-rich phase and the like may remain in addition to the R 2 Fe 14 B phase, and solution treatment is performed as necessary. The conditions at that time may be heat-treated for 1 hour or more at a temperature of 700 to 1,200 ° C. in an inert atmosphere such as vacuum or Ar.

次に、作製された原料金属は粗粉砕、微粉砕と段階的に粉砕される。平均粒径は0.5〜20μmの範囲がよい。0.5μm未満では酸化され易く、磁気特性が低下してしまう場合がある。また、20μmを超えると焼結性が悪くなる場合がある。   Next, the produced raw material metal is pulverized in steps of coarse pulverization and fine pulverization. The average particle size is preferably in the range of 0.5 to 20 μm. If it is less than 0.5 μm, it is likely to be oxidized and the magnetic properties may be deteriorated. Moreover, when it exceeds 20 micrometers, sinterability may worsen.

微粉は磁場中成形プレスによって所定の形状に成形され、続いて焼結を行う。焼結は900〜1,200℃の温度範囲で真空又はAr等の不活性雰囲気下にて30分以上行う。焼結後、更に焼結温度以下の低温で30分以上時効熱処理する。   The fine powder is formed into a predetermined shape by a forming press in a magnetic field, followed by sintering. Sintering is performed in a temperature range of 900 to 1,200 ° C. for 30 minutes or more in an inert atmosphere such as vacuum or Ar. After sintering, an aging heat treatment is further performed for 30 minutes or more at a low temperature below the sintering temperature.

磁石を製造する方法としては、上記の方法だけでなく、2種類の組成の異なる合金粉末を混合、焼結して高性能Nd磁石を製造する、いわゆる2合金法を用いてもよい。特許第2853838号公報、特許第2853839号公報、特開平5−21218号公報、特開平5−21219号公報、特開平5−74618号公報、特開平5−182814号公報には、磁性体構成相の種類、特性等を考慮して2種類の合金の組成を決定し、これらを組み合わせることにより、高残留磁束密度と高保磁力、更に高エネルギー積を有するバランスのとれた高性能Nd磁石を製造する方法が提案されており、本発明はこれらの製造法を採用することができる。   As a method for producing a magnet, not only the above method but also a so-called two-alloy method in which two types of alloy powders having different compositions are mixed and sintered to produce a high-performance Nd magnet may be used. In Japanese Patent No. 2853838, Japanese Patent No. 2853839, Japanese Patent Application Laid-Open No. 5-21218, Japanese Patent Application Laid-Open No. 5-21219, Japanese Patent Application Laid-Open No. 5-74618, and Japanese Patent Application Laid-Open No. 5-182814 are disclosed. The composition of the two types of alloys is determined in consideration of the types and characteristics of these, and by combining these, a high-performance Nd magnet with a high residual magnetic flux density, a high coercive force, and a high energy product can be produced. Methods have been proposed, and the present invention can employ these production methods.

本発明における前記永久磁石には、工業生産において不可避な不純物元素、代表的にはC、N、O、H、P、S等が含まれるが、その総和は2質量%以下であることが望ましい。2質量%を超えると永久磁石中の非磁性成分が多くなって、残留磁束密度が小さくなるおそれがある。また、希土類元素がこれら不純物に消費されてしまい、焼結不良になり、保磁力が低くなるおそれがある。不純物の総和は低ければ低いほど残留磁束密度、保磁力ともに高くなるため、好ましい。   The permanent magnet in the present invention contains impurity elements unavoidable in industrial production, typically C, N, O, H, P, S, etc., but the total is desirably 2% by mass or less. . If it exceeds 2 mass%, the nonmagnetic component in the permanent magnet increases, and the residual magnetic flux density may be reduced. Further, rare earth elements are consumed by these impurities, resulting in poor sintering and a low coercive force. The lower the total sum of impurities, the higher the residual magnetic flux density and the coercive force.

本発明においては、前記永久磁石の表面にフレーク状微粉末と金属ゾルとを含む処理液を塗布した後、加熱することによって、該磁石表面にフレーク状微粉末/金属酸化物の複合皮膜を形成する。   In the present invention, a flaky fine powder / metal oxide composite film is formed on the surface of the permanent magnet by applying a treatment liquid containing the flaky fine powder and the metal sol to the surface of the permanent magnet, followed by heating. To do.

ここで、フレーク状微粉末としては、Al、Mg、Ca、Zn、Si、Mnから選ばれる少なくとも一種の金属又は二種以上の元素からなる合金、又はこれらの混合物が使用できる。更に好ましくは、Al、Zn、Si、Mnから選ばれる金属を用いるとよい。また、本発明にて使用するフレーク状微粉末の形状は、平均長径が0.1〜15μm、平均厚さが0.01〜5μmであって、かつアスペクト比(平均長径/平均厚さ)が2以上のものが好ましい。より好ましくは平均長径が1〜10μm、平均厚さが0.1〜0.3μmであって、かつアスペクト比(平均長径/平均厚さ)が10以上のものである。平均長径が0.1μm未満では、フレーク状微粉末が素地に平行に積層せず、密着力が不足するおそれがある。平均長径が15μmを超えると、加熱焼付けの時、蒸発した処理液の溶媒によりフレークが持ち上げられ、素地に平行に積層せず、その結果密着の悪い皮膜になってしまうおそれがある。また、皮膜の寸法精度上、平均長径は15μm以下が望ましい。平均厚さが0.01μm未満のものは、フレークの製造段階でフレーク表面が酸化してしまい、膜が脆くなって耐食性が悪化する場合がある。平均厚さが5μmを超えると、前記処理液中でのフレークの分散が悪くなって沈降し易くなり、処理液が不安定になって、その結果耐食性が悪くなる場合がある。アスペクト比が2未満であるとフレークが素地に平行に積層しにくく、密着不良になるおそれがある。アスペクト比の上限はないが、あまり大きいものはコスト的に好ましくない。通常、アスペクト比の上限は、100である。なお、これらフレーク状微粉末としては市販品を用いてもよく、例えばZnフレークとしては商品名Z1051(Benda−Lutz社製)、Alフレークとしては商品名アルペースト0100M(東洋アルミニウム社製)などを用いることができる。   Here, as the flaky fine powder, at least one metal selected from Al, Mg, Ca, Zn, Si, and Mn, an alloy composed of two or more elements, or a mixture thereof can be used. More preferably, a metal selected from Al, Zn, Si, and Mn is used. Further, the shape of the flaky fine powder used in the present invention has an average major axis of 0.1 to 15 μm, an average thickness of 0.01 to 5 μm, and an aspect ratio (average major axis / average thickness). Two or more are preferred. More preferably, the average major axis is 1 to 10 μm, the average thickness is 0.1 to 0.3 μm, and the aspect ratio (average major axis / average thickness) is 10 or more. If the average major axis is less than 0.1 μm, the flaky fine powder is not laminated in parallel with the substrate, and the adhesion may be insufficient. If the average major axis exceeds 15 μm, the flakes are lifted by the solvent of the evaporated processing solution during baking, and the flakes are not stacked in parallel with the substrate, resulting in a film with poor adhesion. In addition, the average major axis is preferably 15 μm or less in view of the dimensional accuracy of the film. When the average thickness is less than 0.01 μm, the surface of the flakes is oxidized at the production stage of the flakes, the film becomes brittle, and the corrosion resistance may deteriorate. If the average thickness exceeds 5 μm, the dispersion of flakes in the treatment liquid becomes poor and the sediment tends to settle, and the treatment liquid becomes unstable, resulting in poor corrosion resistance. If the aspect ratio is less than 2, the flakes are difficult to be stacked in parallel with the substrate, which may cause poor adhesion. There is no upper limit of the aspect ratio, but a large one is not preferable in terms of cost. Usually, the upper limit of the aspect ratio is 100. In addition, you may use a commercial item as these flaky fine powder, for example, brand name Z1051 (made by Benda-Lutz) as Zn flakes, brand name Alpaste 0100M (made by Toyo Aluminum Co., Ltd.), etc. as Al flakes. Can be used.

また、フレーク状微粉末の平均長径及び平均厚さについては、光学顕微鏡や電子顕微鏡を用いて写真撮影を行って粉末の長径と厚さを測定し、その平均値を求めたものである。   Moreover, about the average major axis and average thickness of flake-like fine powder, photography was performed using an optical microscope or an electron microscope, the major axis and thickness of powder were measured, and the average value was calculated | required.

一方、金属ゾルは、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルが使用できる。このような金属ゾルとしては、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属のアルコキシドが水分添加又は空気中の水分により加水分解されて一部重合された、結合能を持つゾルを用いることができる。   On the other hand, the metal sol can be at least one metal sol selected from Al, Zr, Si, and Ti. As such a metal sol, a sol having a binding ability in which at least one metal alkoxide selected from Al, Zr, Si, and Ti is partially polymerized by adding water or hydrolyzing with water in air. Can be used.

このように、金属ゾルは、上記金属のアルコキシドを加水分解することによって得られたものが使用されるが、この場合、金属アルコキシドとしては、
A(OR)a
(但し、AはAl、Zr、Si又はTiを示し、aはこれら金属の原子価である。また、Rは炭素数1〜4のアルキル基を示す。)
で示されるものが使用し得、これら金属アルコキシドの加水分解は常法によって行うことができる。
As described above, the metal sol is obtained by hydrolyzing the above metal alkoxide. In this case, as the metal alkoxide,
A (OR) a
(However, A represents Al, Zr, Si or Ti, a represents the valence of these metals, and R represents an alkyl group having 1 to 4 carbon atoms.)
The metal alkoxide can be hydrolyzed by a conventional method.

なお、これら金属アルコキシドは、市販品を使用することができる。この際、ゾルの安定性を保つため、ホウ酸やホウ酸塩などのホウ素含有化合物をゾル液の最大10質量%添加することも可能である。また、ホウ酸やホウ酸塩などのホウ素含有化合物は耐食性の向上に寄与する場合もある。   In addition, these metal alkoxide can use a commercial item. At this time, in order to maintain the stability of the sol, it is possible to add a boron-containing compound such as boric acid or borate at a maximum of 10% by mass of the sol solution. In addition, boron-containing compounds such as boric acid and borates may contribute to improvement of corrosion resistance.

前記処理液の溶媒としては、水や有機溶剤が使用し得、処理液中のフレーク状微粉末及び金属ゾルの配合量は後述する複合皮膜中のフレーク状微粉末及び金属酸化物の含有量が達成されるように選定される。   As the solvent of the treatment liquid, water or an organic solvent can be used, and the blending amount of the flaky fine powder and the metal sol in the treatment liquid is the content of the flaky fine powder and the metal oxide in the composite film described later. Selected to be achieved.

この処理液を作製するにあたっては、その性能改善のため、分散剤、沈降防止剤、増粘剤、消泡剤、皮張り防止剤、乾燥剤、硬化剤、たれ防止剤などの各種添加剤を最大10質量%添加してもよい。さらに防錆顔料として、リン酸亜鉛系、亜リン酸亜鉛系、亜リン酸カルシウム系、亜リン酸アルミニウム系、リン酸アルミニウム系の化合物を最大20質量%添加してもよい。これらは金属イオンを封鎖する性質があり、Nd磁石やフレーク状金属微粉末の表面を不動態化することで安定化させる作用がある。   In preparing this treatment liquid, various additives such as dispersants, anti-settling agents, thickeners, antifoaming agents, anti-skinning agents, desiccants, curing agents and anti-sagging agents are added to improve the performance. You may add up to 10 mass%. Further, as a rust preventive pigment, a zinc phosphate-based, zinc phosphite-based, calcium phosphite-based, aluminum phosphite-based, or aluminum phosphate-based compound may be added up to 20% by mass. These have the property of sequestering metal ions, and have the effect of stabilizing by passivating the surface of Nd magnets and flaky metal fine powders.

本発明においては、前記処理液に磁石を浸漬又は該磁石に該処理液を塗布後、加熱処理を行って硬化させる。浸漬及び塗布方法については、特に限定するものではなく、公知の方法で上記処理溶液により皮膜を形成させればよい。また、加熱温度は100℃以上500℃未満にて30分以上、真空、大気、不活性ガス雰囲気等で維持することが望ましい。100℃未満でも硬化させることは可能であるが、長期間放置が必要になり、生産効率上好ましくない。硬化が不十分であると密着力も耐食性も悪くなるおそれがある。また、500℃以上にすると、下地の磁石がダメージを受け、磁気特性劣化の原因になる場合がある。なお、加熱時間の上限は特に制限されないが、通常1時間程度である。   In the present invention, the magnet is immersed in the treatment liquid or coated with the treatment liquid, and then heat-treated to be cured. The dipping and coating methods are not particularly limited, and a film may be formed with the above-described treatment solution by a known method. Further, it is desirable to maintain the heating temperature at 100 ° C. or higher and lower than 500 ° C. for 30 minutes or longer in a vacuum, air, inert gas atmosphere or the like. Although it can be cured even at a temperature lower than 100 ° C., it needs to be left for a long time, which is not preferable in terms of production efficiency. If the curing is insufficient, the adhesion and corrosion resistance may be deteriorated. On the other hand, if the temperature is 500 ° C. or higher, the underlying magnet may be damaged and cause deterioration of magnetic characteristics. The upper limit of the heating time is not particularly limited, but is usually about 1 hour.

本発明における皮膜の形成にあたっては、繰り返して重ね塗りと加熱処理を行ってもよい。   In forming the film in the present invention, repeated coating and heat treatment may be repeated.

加熱により金属ゾルはゲル状態を経由し、金属酸化物になるため、処理膜はフレーク状微粉末が金属酸化物に結合された構造となる。本発明のフレーク状微粉末/金属酸化物の複合皮膜が高い耐食性を示す理由は定かではないが、微粉末がフレーク状であるため、これが素地に概ね平行にそろい、よく磁石を被覆し、遮蔽効果を持つものと考えられる。また、フレーク状微粉末として永久磁石より卑な電位を持つ金属あるいは合金を用いたときは、これらが先に酸化され、下地の磁石の酸化を抑制する、いわゆる犠牲防食効果があると考えられる。更に、生成された皮膜は無機物質であり、耐熱性が高いという特徴も有する。   When heated, the metal sol goes through a gel state and becomes a metal oxide, so that the treated film has a structure in which flaky fine powder is bonded to the metal oxide. The reason why the flaky fine powder / metal oxide composite film of the present invention exhibits high corrosion resistance is not clear, but since the fine powder is flaky, it is aligned almost parallel to the substrate, well covered with a magnet, and shielded. It is considered to have an effect. Further, when a metal or alloy having a base potential lower than that of the permanent magnet is used as the flaky fine powder, it is considered that these are oxidized first and have a so-called sacrificial anticorrosive effect that suppresses oxidation of the underlying magnet. Furthermore, the produced | generated film | membrane is an inorganic substance, and also has the characteristics that heat resistance is high.

本発明で形成される複合皮膜において、フレーク状微粉末の含有量は、好ましくは40質量%以上、より好ましくは45質量%以上であり、更に好ましくは50質量%以上、最も好ましくは60質量%以上である。その上限は適宜選定されるが、99.9質量%以下、より好ましくは99質量%以下、更に好ましくは95質量%以下であることが好ましい。40質量%未満では微粉末が少なすぎて磁石素地を十分に被覆しきれないので耐食性が低下するおそれがある。   In the composite film formed in the present invention, the content of the flaky fine powder is preferably 40% by mass or more, more preferably 45% by mass or more, further preferably 50% by mass or more, and most preferably 60% by mass. That's it. Although the upper limit is appropriately selected, it is preferably 99.9% by mass or less, more preferably 99% by mass or less, and still more preferably 95% by mass or less. If the amount is less than 40% by mass, the amount of fine powder is too small to fully cover the magnet substrate, which may reduce the corrosion resistance.

本発明で形成される複合皮膜において、金属酸化物の含有量は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは5質量%以上であり、また好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下、最も好ましくは40質量%以下である。0.1質量%未満では結合成分が少なすぎて密着力不足になるおそれがある。60質量%を超えると耐食性が低下するおそれがある。   In the composite film formed in the present invention, the content of the metal oxide is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 5% by mass or more, and preferably 60% by mass. % Or less, more preferably 55% by mass or less, still more preferably 50% by mass or less, and most preferably 40% by mass or less. If the amount is less than 0.1% by mass, the bonding component is too small and the adhesion may be insufficient. If it exceeds 60% by mass, the corrosion resistance may decrease.

なお、複合皮膜中、フレーク状微粉末と金属酸化物の総量が100質量%に満たない場合、残部は上記添加剤及び/又は防錆顔料である。   In addition, when the total amount of flaky fine powder and a metal oxide is less than 100 mass% in a composite film, the remainder is the said additive and / or a rust preventive pigment.

本発明における皮膜の厚さは1〜40μm、好ましくは5〜25μmの範囲にあることが望ましい。1μm未満では耐食性が不足する場合があり、40μmを超えると、密着力低下や層間剥離を起こし易くなる場合があり、更に、皮膜を厚くすると外観形状が同一であっても、使用できるR−Fe−B系永久磁石などの希土類永久磁石の体積が小さくなるため、磁石使用上不利が生じる場合がある。   The thickness of the film in the present invention is 1 to 40 μm, preferably 5 to 25 μm. If the thickness is less than 1 μm, the corrosion resistance may be insufficient. If the thickness exceeds 40 μm, adhesion may be reduced and delamination may occur easily. -Since the volume of rare earth permanent magnets, such as a B-type permanent magnet, becomes small, there may be a disadvantage in using the magnet.

また、本発明では磁石の表面に前処理を施してもよい。前処理としては酸洗浄、アルカリ脱脂、ショットブラストの中から選ばれる少なくとも一種類の方法を挙げることができ、具体的には(1)酸洗浄+水洗+超音波洗浄、(2)アルカリ洗浄+水洗、(3)ショットブラスト等から選ばれる少なくとも一種類の処理を行う。   In the present invention, the surface of the magnet may be pretreated. Examples of the pretreatment include at least one method selected from acid cleaning, alkali degreasing, and shot blasting. Specifically, (1) acid cleaning + water cleaning + ultrasonic cleaning, (2) alkali cleaning + At least one treatment selected from washing with water and (3) shot blasting is performed.

(1)で使用する洗浄液としては、硝酸、塩酸、酢酸、クエン酸、蟻酸、硫酸、フッ化水素酸、過マンガン酸、蓚酸、ヒドロキシ酢酸、燐酸の中から選ばれる少なくとも一種を合計で1〜20質量%含む水溶液を用い、これを常温以上80℃以下の温度にして希土類磁石を浸漬する。酸洗浄を行うことにより、表面の酸化皮膜を除去することができ、前記皮膜の密着力を向上させる効果がある。   As the cleaning liquid used in (1), at least one selected from nitric acid, hydrochloric acid, acetic acid, citric acid, formic acid, sulfuric acid, hydrofluoric acid, permanganic acid, oxalic acid, hydroxyacetic acid, and phosphoric acid is 1 to 1 in total. An aqueous solution containing 20% by mass is used, and the rare earth magnet is immersed at a temperature of room temperature to 80 ° C. By performing acid cleaning, the oxide film on the surface can be removed, and there is an effect of improving the adhesion of the film.

(2)で用いることができるアルカリ洗浄液は、水酸化ナトリウム、炭酸ナトリウム、オルソケイ酸ナトリウム、メタケイ酸ナトリウム、燐酸三ナトリウム、シアン化ナトリウム、キレート剤などの少なくとも一種を合計で5〜200g/L含む水溶液であり、これを常温以上90℃以下の温度にして希土類磁石を浸漬すればよい。アルカリ洗浄は磁石表面に付着した油脂類の汚れを除去する効果があり、前記皮膜と磁石の間の密着力を向上させる。   The alkaline cleaning liquid that can be used in (2) contains a total of 5 to 200 g / L of at least one of sodium hydroxide, sodium carbonate, sodium orthosilicate, sodium metasilicate, trisodium phosphate, sodium cyanide, chelating agent, and the like. What is necessary is just to immerse a rare earth magnet by making it the temperature of normal temperature or more and 90 degrees C or less. Alkali cleaning has the effect of removing dirt from oils and fats adhering to the magnet surface, and improves the adhesion between the film and the magnet.

(3)のブラスト材としては、通常のセラミックス、ガラス、プラスチック等を用いることができ、吐出圧力2〜3kgf/cm2にて処理すればよい。ショットブラストは磁石表面の酸化皮膜を乾式で除去でき、やはり密着性を上げる効果がある。 As the blast material of (3), normal ceramics, glass, plastics, etc. can be used, and the treatment may be performed at a discharge pressure of 2 to 3 kgf / cm 2 . Shot blasting can remove the oxide film on the surface of the magnet in a dry manner, and also has the effect of improving adhesion.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
なお、フレーク状微粉末の平均長径及び平均厚さについては、光学顕微鏡を用いて写真撮影を行って20個の粉末の長径と厚さを測定してその平均値を求めた。
また、加熱複合皮膜の膜厚は、皮膜形成した磁石片を切断し、切断面を研磨後、清浄な切断面を光学顕微鏡で測定した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
In addition, about the average long diameter and average thickness of flaky fine powder, the average value was calculated | required by having photographed using the optical microscope, measuring the long diameter and thickness of 20 powders.
The film thickness of the heated composite film was measured by cutting the magnet piece on which the film was formed, polishing the cut surface, and then measuring the clean cut surface with an optical microscope.

[実施例、比較例]
Ar雰囲気の高周波溶解により質量比で32Nd−1.2B−59.8Fe−7Coなる組成の鋳塊を作製した。この鋳塊をジョウクラッシャーで粗粉砕し、更に窒素ガスによるジェットミルで微粉砕を行って平均粒径が3.5μmの微粉末を得た。次に、この微粉末を10kOe磁界が印加された金型内に充填し、1.0t/cm2の圧力で成形した。次いで真空中1,100℃で2時間焼結し、更に550℃で1時間時効処理を施して永久磁石とした。得られた永久磁石から径21mm×厚み5mm寸法の磁石片を切り出し、バレル研磨処理を行った後、超音波水洗を行い、これを試験片とした。
[Examples and Comparative Examples]
An ingot having a composition of 32Nd-1.2B-59.8Fe-7Co by mass ratio was produced by high-frequency melting in an Ar atmosphere. This ingot was coarsely pulverized with a jaw crusher and further finely pulverized with a jet mill using nitrogen gas to obtain a fine powder having an average particle size of 3.5 μm. Next, this fine powder was filled in a mold to which a 10 kOe magnetic field was applied, and molded at a pressure of 1.0 t / cm 2 . Next, sintering was performed in vacuum at 1,100 ° C. for 2 hours, and further aging treatment was performed at 550 ° C. for 1 hour to obtain a permanent magnet. A magnet piece having a diameter of 21 mm × thickness of 5 mm was cut out from the obtained permanent magnet, subjected to barrel polishing treatment, and then subjected to ultrasonic water washing, which was used as a test piece.

実施例1〜4
皮膜形成のための処理液として、アルミニウムフレークと亜鉛フレークを、表1に記載の金属アルコキシドの加水分解液に分散させたゾルを準備した。金属アルコキシドの加水分解液(ゾル)については、金属アルコキシド50質量%、エタノール44質量%、純水5質量%を1モル濃度−塩酸1質量%の触媒下で24時間撹拌することにより準備した。この際処理液は、硬化した複合皮膜中のアルミニウムフレーク(平均長径3μm、平均厚さ0.2μm)が8質量%、亜鉛フレーク(平均長径3μm、平均厚さ0.2μm)が80質量%になるように調整した。この処理液をスプレーガンにて複合皮膜の膜厚が10μmになるように前記試験片に吹き付けた後、熱風乾燥炉で300℃にて大気中で30分加熱して皮膜を形成した。硬化した複合皮膜中のアルミニウム、亜鉛の含有量は上記の通りであり、また残部は表1に記載の金属アルコキシドを加水分解液(ゾル)に由来する酸化物であった。
Examples 1-4
A sol in which aluminum flakes and zinc flakes are dispersed in a metal alkoxide hydrolyzate shown in Table 1 was prepared as a treatment liquid for film formation. The metal alkoxide hydrolyzed solution (sol) was prepared by stirring metal alkoxide 50% by mass, ethanol 44% by mass and pure water 5% by mass under a catalyst of 1 molar concentration-hydrochloric acid 1% by mass for 24 hours. At this time, the treatment liquid is 8% by mass of aluminum flakes (average major axis 3 μm, average thickness 0.2 μm) in the cured composite film, and 80% by mass zinc flakes (average major axis 3 μm, average thickness 0.2 μm). It adjusted so that it might become. This treatment solution was sprayed on the test piece with a spray gun so that the film thickness of the composite film was 10 μm, and then heated in the hot air drying oven at 300 ° C. for 30 minutes to form a film. The contents of aluminum and zinc in the cured composite film were as described above, and the balance was an oxide derived from the hydrolyzed liquid (sol) of the metal alkoxide described in Table 1.

このようにして作製した試験片を以下のような性能試験に供した。性能試験法は以下の通りである。結果を表1に示す。
(1)塩水噴霧試験
JIS−Z−2371中性塩水噴霧試験法による。5%食塩水を35℃にて連続噴霧し、茶錆が発生するまでの時間で評価した。
(2)350℃,4時間加熱後の皮膜外観
350℃にて4時間加熱した後の皮膜の外観変化を目視にて調べた。
The test piece thus produced was subjected to the following performance test. The performance test method is as follows. The results are shown in Table 1.
(1) Salt spray test According to JIS-Z-2371 neutral salt spray test. 5% saline solution was continuously sprayed at 35 ° C., and the time until tea rust was generated was evaluated.
(2) Appearance of the film after heating at 350 ° C. for 4 hours The appearance change of the film after heating at 350 ° C. for 4 hours was examined visually.

Figure 2006049865
Figure 2006049865

比較例1〜4
比較のため、前記試験片に膜厚を10μmに調整したAlイオンプレーティング、Niメッキ、エポキシ樹脂塗装を施したサンプルも作製し、塩水噴霧試験を行った。また、350℃にて4時間加熱した後の皮膜の外観変化を目視にて調べた。結果を表2に示す。本発明の永久磁石は、他の表面処理を施した永久磁石と比べて、耐食性と耐熱性を併せ持っていることがわかる。
Comparative Examples 1-4
For comparison, a sample in which the test piece was subjected to Al ion plating, Ni plating, and epoxy resin coating with a film thickness adjusted to 10 μm was also prepared and subjected to a salt spray test. Moreover, the external appearance change of the film | membrane after heating at 350 degreeC for 4 hours was investigated visually. The results are shown in Table 2. It can be seen that the permanent magnet of the present invention has both corrosion resistance and heat resistance as compared with other surface-treated permanent magnets.

Figure 2006049865
Figure 2006049865

実施例5〜9
ここでは実施例3にて使用した処理液を用い、膜厚のみ変えたサンプルを作製し、碁盤目密着性試験と塩水噴霧試験を行った。結果を表3に示す。膜厚が薄すぎると耐食性が不足し、厚すぎると密着性が劣る場合がある。
Examples 5-9
Here, using the treatment liquid used in Example 3, samples having different film thicknesses were prepared, and a cross-cut adhesion test and a salt spray test were performed. The results are shown in Table 3. If the film thickness is too thin, the corrosion resistance is insufficient, and if it is too thick, the adhesion may be inferior.

なお、碁盤目密着性試験法は以下の通りである。
(3)碁盤目密着性試験
JIS−K−5400碁盤目試験に準ずる。カッターナイフで皮膜に1mmのマス100個ができるように碁盤目状の切り傷を入れた後、セロファンテープを強く押しつけ、45度の角度に強く引いて剥がし、残った碁盤目の数で密着性を評価した。
The cross-cut adhesion test method is as follows.
(3) Cross-cut adhesion test Conforms to the JIS-K-5400 cross-cut test. After making a grid-like cut so that 100 squares of 1 mm can be formed on the film with a cutter knife, press the cellophane tape strongly, pull it off at an angle of 45 degrees, and peel it off. evaluated.

Figure 2006049865
Figure 2006049865

実施例10〜12
ここでは複合皮膜中におけるフレーク状微粉末の含有割合を変えた以外は実施例2と同様のサンプルを作製し、塩水噴霧試験を行った。処理液に含まれるフレーク状微粉末には、フレーク状アルミニウム粉末、フレーク状亜鉛粉末(ともに平均長径3μm、平均厚さ0.2μm)を質量比で1:10の割合で混合した混合粉末を用いた。処理液中に占める混合粉末の質量比は、複合皮膜中のフレーク状微粉末の含有割合が表4に記載した値になるように調整して決定した。なお、複合皮膜中のフレーク状微粉末以外の残部は実施例2に記載のゾルに由来する酸化物であった。塩水噴霧試験の結果を表4に示す。また、膜厚は10μmになるように調整した。皮膜中のフレーク状微粉末の含有割合が少なすぎると、耐食性が悪くなる場合がある。
Examples 10-12
Here, a sample similar to Example 2 was prepared except that the content ratio of the flaky fine powder in the composite film was changed, and a salt spray test was performed. As the flaky fine powder contained in the treatment liquid, a mixed powder obtained by mixing flaky aluminum powder and flaky zinc powder (both having an average major axis of 3 μm and an average thickness of 0.2 μm) at a mass ratio of 1:10 is used. It was. The mass ratio of the mixed powder occupying in the treatment liquid was determined by adjusting the content ratio of the flaky fine powder in the composite film to the value described in Table 4. The remainder other than the flaky fine powder in the composite film was an oxide derived from the sol described in Example 2. The results of the salt spray test are shown in Table 4. The film thickness was adjusted to 10 μm. When the content ratio of the flaky fine powder in the film is too small, the corrosion resistance may be deteriorated.

Figure 2006049865
Figure 2006049865

実施例13〜25
ここでは使用するフレーク状微粉末の形状を変えた以外は実施例1と同様のサンプルを作製し、碁盤目密着性試験と塩水噴霧試験を行った。膜厚は10μmになるようにした。結果を表5に示す。実施例13〜17より、平均長径が短すぎても長すぎても密着が悪い場合があることがわかる。また、実施例18〜22より平均厚さが薄すぎても厚すぎても耐食性が悪くなる場合がある。実施例23〜25より、アスペクト比が小さすぎると密着不良になる場合がある。
Examples 13-25
Here, a sample similar to Example 1 was prepared except that the shape of the flaky fine powder used was changed, and a cross-cut adhesion test and a salt spray test were performed. The film thickness was 10 μm. The results are shown in Table 5. From Examples 13 to 17, it can be seen that the adhesion may be poor if the average major axis is too short or too long. Moreover, even if average thickness is too thin or too thick from Examples 18-22, corrosion resistance may worsen. From Examples 23 to 25, if the aspect ratio is too small, adhesion may be poor.

Figure 2006049865
Figure 2006049865

実施例26〜29
ここでは処理前に下記の前処理を施した後、実施例1と同様の方法によりサンプルを作製した。
[酸洗浄]
組成:硝酸10%(v/v)、硫酸5%(v/v)
50℃にて30秒間浸漬
[アルカリ洗浄]
組成:水酸化ナトリウム10g/L、メタケイ酸ナトリウム3g/L、燐酸三
ナトリウム10g/L、炭酸ナトリウム8g/L、界面活性剤2g/L
40℃にて2分間浸漬
[ショットブラスト]
#220の酸化アルミニウムを用い、吐出圧力2kgf/cm2にて処理
Examples 26-29
Here, after the following pretreatment was performed before the treatment, a sample was produced in the same manner as in Example 1.
[Acid cleaning]
Composition: nitric acid 10% (v / v), sulfuric acid 5% (v / v)
Immersion for 30 seconds at 50 ° C [alkali cleaning]
Composition: sodium hydroxide 10 g / L, sodium metasilicate 3 g / L, trisodium phosphate 10 g / L, sodium carbonate 8 g / L, surfactant 2 g / L
Immerse for 2 minutes at 40 ° C [shot blast]
Processing using # 220 aluminum oxide at discharge pressure of 2kgf / cm 2

前記皮膜を形成した磁石に120℃,2気圧,200時間のプレッシャークッカー試験を施し、この試験後磁石に対して碁盤目密着性試験を行った。結果を表6に示す。前処理を行うことにより、密着力が向上していることがわかる。   The magnet on which the film was formed was subjected to a pressure cooker test at 120 ° C., 2 atm, and 200 hours, and a cross-cut adhesion test was performed on the magnet after this test. The results are shown in Table 6. It can be seen that the adhesion is improved by performing the pretreatment.

Figure 2006049865
Figure 2006049865

Claims (5)

R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末と、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルとを含む処理液による処理膜を加熱することによって得られるフレーク状微粉末/金属酸化物の複合皮膜を形成してなることを特徴とする耐食性希土類磁石。   R-T-M-B (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn , Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, and the content of each element is 5 mass% ≦ R ≦ 40 mass%, 50 mass% ≦, respectively. T ≦ 90 mass%, 0 mass% ≦ M ≦ 8 mass%, 0.2 mass% ≦ B ≦ 8 mass%) on the surface of the rare earth permanent magnet, Al, Mg, Ca, Zn, Si, Mn And at least one flaky fine powder selected from these alloys and at least one metal sol selected from Al, Zr, Si, and Ti, by heating a treatment film with a treatment liquid. Flake-like fine powder / metal oxide composite film Corrosion-resistant rare-earth magnet, characterized in that formed comprising. 複合皮膜を構成するフレーク状微粉末の形状が、平均長径0.1〜15μm、平均厚さ0.01〜5μm、アスペクト比(平均長径/平均厚さ)2以上であるものであって、複合皮膜内におけるフレーク状微粉末の含有割合が40質量%以上であることを特徴とする請求項1に記載の耐食性希土類磁石。   The shape of the flaky fine powder composing the composite film has an average major axis of 0.1 to 15 μm, an average thickness of 0.01 to 5 μm, and an aspect ratio (average major axis / average thickness) of 2 or more. The corrosion-resistant rare earth magnet according to claim 1, wherein the content ratio of the flaky fine powder in the coating is 40% by mass or more. 前記金属ゾルが、Al、Zr、Si、Tiの中から選ばれる金属のアルコキシドを加水分解することによって得られたものである請求項1又は2記載の耐食性希土類磁石。   The corrosion-resistant rare earth magnet according to claim 1 or 2, wherein the metal sol is obtained by hydrolyzing an alkoxide of a metal selected from Al, Zr, Si, and Ti. R−T−M−B(RはYを含む希土類元素の少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、各元素の含有量がそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%)で表記される希土類永久磁石の表面に、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末と、Al、Zr、Si、Tiの中から選ばれる少なくとも一種の金属ゾルとを含む処理液を塗布した後、加熱することにより、該磁石表面にフレーク状微粉末/金属酸化物の複合皮膜を形成することを特徴とする耐食性希土類磁石の製造方法。   R-T-M-B (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn , Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, and the content of each element is 5 mass% ≦ R ≦ 40 mass%, 50 mass% ≦, respectively. T ≦ 90 mass%, 0 mass% ≦ M ≦ 8 mass%, 0.2 mass% ≦ B ≦ 8 mass%) on the surface of the rare earth permanent magnet, Al, Mg, Ca, Zn, Si, Mn And applying a treatment liquid containing at least one flaky fine powder selected from these alloys and at least one metal sol selected from Al, Zr, Si, Ti, and then heating, Flakes fine powder / metal oxide composite on the magnet surface Method for producing a corrosion-resistant rare earth magnet and forming a film. 前記希土類永久磁石の表面を酸洗浄、アルカリ脱脂、ショットブラストの中から選ばれる少なくとも一種の前処理を施した後、前記処理液による処理を行うようにした請求項4に記載の耐食性希土類磁石の製造方法。
5. The corrosion-resistant rare earth magnet according to claim 4, wherein the surface of the rare earth permanent magnet is subjected to at least one pretreatment selected from acid cleaning, alkali degreasing, and shot blasting, and then treated with the treatment liquid. Production method.
JP2005191650A 2004-06-30 2005-06-30 Corrosion resistant rare earth magnet and manufacturing method thereof Pending JP2006049865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191650A JP2006049865A (en) 2004-06-30 2005-06-30 Corrosion resistant rare earth magnet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004194026 2004-06-30
JP2005191650A JP2006049865A (en) 2004-06-30 2005-06-30 Corrosion resistant rare earth magnet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006049865A true JP2006049865A (en) 2006-02-16

Family

ID=36028003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191650A Pending JP2006049865A (en) 2004-06-30 2005-06-30 Corrosion resistant rare earth magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006049865A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119551A1 (en) 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2018127716A (en) * 2017-02-06 2018-08-16 国立大学法人東北大学 Rare-earth-iron-nitrogen based magnetic powder and method for producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280404A (en) * 1990-03-29 1991-12-11 Kawasaki Steel Corp Permanent magnet of excellent corrosion-resisting property
JP2001076914A (en) * 1998-12-17 2001-03-23 Sumitomo Special Metals Co Ltd Rare-earth based permanent magnet and manufacture thereof
JP2001143949A (en) * 1999-08-30 2001-05-25 Sumitomo Special Metals Co Ltd Method of manufacturing rare-earth permanent magnet having anticorrosion coating film
JP2001172782A (en) * 1999-12-16 2001-06-26 Ishizuka Glass Co Ltd Treating agent for magnetic stock, magnetic member with coating film and producing method therefor
JP2001230107A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Corrosion-resistant rare earth magnet
JP2001230108A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Method of manufacturing corrosion-resistant rare earth magnet
JP2002237407A (en) * 1999-01-27 2002-08-23 Sumitomo Special Metals Co Ltd Rare-earth-based sintered magnet
JP2003041303A (en) * 2001-07-30 2003-02-13 Tdk Corp Metal member and manufacturing method therefor
JP2004006910A (en) * 1998-12-17 2004-01-08 Sumitomo Special Metals Co Ltd Rare earth-based permanent magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280404A (en) * 1990-03-29 1991-12-11 Kawasaki Steel Corp Permanent magnet of excellent corrosion-resisting property
JP2001076914A (en) * 1998-12-17 2001-03-23 Sumitomo Special Metals Co Ltd Rare-earth based permanent magnet and manufacture thereof
JP2004006910A (en) * 1998-12-17 2004-01-08 Sumitomo Special Metals Co Ltd Rare earth-based permanent magnet
JP2002237407A (en) * 1999-01-27 2002-08-23 Sumitomo Special Metals Co Ltd Rare-earth-based sintered magnet
JP2001143949A (en) * 1999-08-30 2001-05-25 Sumitomo Special Metals Co Ltd Method of manufacturing rare-earth permanent magnet having anticorrosion coating film
JP2001172782A (en) * 1999-12-16 2001-06-26 Ishizuka Glass Co Ltd Treating agent for magnetic stock, magnetic member with coating film and producing method therefor
JP2001230107A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Corrosion-resistant rare earth magnet
JP2001230108A (en) * 2000-02-15 2001-08-24 Shin Etsu Chem Co Ltd Method of manufacturing corrosion-resistant rare earth magnet
JP2003041303A (en) * 2001-07-30 2003-02-13 Tdk Corp Metal member and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
EP1890301A1 (en) * 2006-04-14 2008-02-20 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
EP1890301A4 (en) * 2006-04-14 2010-04-21 Shinetsu Chemical Co Method for producing rare earth permanent magnet material
JP4605396B2 (en) * 2006-04-14 2011-01-05 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP4656323B2 (en) * 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
WO2007119551A1 (en) 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
KR101361556B1 (en) 2006-04-14 2014-02-12 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing rare earth permanent magnet material
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
JP2018127716A (en) * 2017-02-06 2018-08-16 国立大学法人東北大学 Rare-earth-iron-nitrogen based magnetic powder and method for producing the same

Similar Documents

Publication Publication Date Title
JP2008263208A (en) Corrosion-resistant rare earth magnet
JP4162884B2 (en) Corrosion-resistant rare earth magnet
US20090212893A1 (en) Corrosion resistant rare earth magnets and process for production thereof
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
JP6536816B2 (en) RTB based sintered magnet and motor
JP2001076914A (en) Rare-earth based permanent magnet and manufacture thereof
KR100607293B1 (en) Fe-B-R BASED PERMANENT MAGNET HAVING CORROSION-RESISTANT FILM, AND PROCESS FOR PRODUCING THE SAME
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JPWO2011081170A1 (en) Corrosion-resistant magnet and manufacturing method thereof
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
JP2006049864A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP3351768B2 (en) Method for producing Fe-BR based permanent magnet having corrosion resistant film
JP2006049863A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP3877552B2 (en) Method for manufacturing metal member
JP3208057B2 (en) Corrosion resistant permanent magnet
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
KR20070030745A (en) Corrosion-resistant rare earth magnets and process for production thereof
JP4225063B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same
JP2922601B2 (en) Resin molded magnet
JP3411605B2 (en) Corrosion resistant permanent magnet
JP2903403B2 (en) Permanent magnet with excellent corrosion resistance
JP2003224024A (en) Method for producing corrosion resistant permanent magnet
JPH0680609B2 (en) Method for manufacturing permanent magnet having excellent oxidation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101208