JPH0680609B2 - Method for manufacturing permanent magnet having excellent oxidation resistance - Google Patents

Method for manufacturing permanent magnet having excellent oxidation resistance

Info

Publication number
JPH0680609B2
JPH0680609B2 JP61297263A JP29726386A JPH0680609B2 JP H0680609 B2 JPH0680609 B2 JP H0680609B2 JP 61297263 A JP61297263 A JP 61297263A JP 29726386 A JP29726386 A JP 29726386A JP H0680609 B2 JPH0680609 B2 JP H0680609B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atom
treatment
atomic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61297263A
Other languages
Japanese (ja)
Other versions
JPS63150905A (en
Inventor
隆樹 浜田
浩子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61297263A priority Critical patent/JPH0680609B2/en
Publication of JPS63150905A publication Critical patent/JPS63150905A/en
Publication of JPH0680609B2 publication Critical patent/JPH0680609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、耐酸性化のすぐれたFe-B-R系永久磁石の製
造方法に係り、特にFe-B-R系永久磁石の耐酸化性を改善
する化成処理を工業的に容易にし、かつ耐酸化性を著し
く向上させ得る化成処理の前処理を有するFe-B-R系永久
磁石の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a Fe—BR permanent magnet having excellent acid resistance, and particularly to a chemical conversion treatment for improving the oxidation resistance of a Fe—BR permanent magnet. The present invention relates to a method for producing a Fe-BR permanent magnet having a pretreatment for a chemical conversion treatment that can be made relatively easy and can significantly improve oxidation resistance.

背景技術 出願人は先に、高価なSmやCoを含有しない新しい高性能
永久磁石として、Fe-B-R系(RはYを含む希土類元素の
うち少なくとも1種)永久磁石を提案した(特願昭57-1
45072号)。
BACKGROUND ART The applicant has previously proposed a Fe-BR-based (R is at least one of rare earth elements including Y) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm or Co (Japanese Patent Application No. Sho. 57-1
No. 45072).

この永久磁石は、RとしてNdやPrを中心とする資源的に
豊富な軽希土類を用い、Feを主成分として25MGOe以上の
極めて高いエネルギー積を示す、すぐれた永久磁石であ
る。
This permanent magnet is an excellent permanent magnet that uses Nd or Pr as a resource rich abundant light rare earth as R, and has an extremely high energy product of 25 MGOe or more with Fe as a main component.

しかしながら、上記のすぐれた磁気特性を有するFe-B-R
系磁気異方性焼結体からなる永久磁石は主成分として、
空気中で酸化して次第に安定な酸化物を生成し易い希土
類元素、特にNd及び鉄を含有するため、磁気回路に組込
んだ際に、磁石表面に生成する酸化物により、磁気回路
の出力低下及び磁気回路間のばらつきを惹起し、また、
表面酸化物の脱落による周辺機器への汚染の問題があっ
た。
However, Fe-BR having the above-mentioned excellent magnetic properties
The main component of the permanent magnet is a magnetic anisotropy sintered body.
Since it contains rare earth elements, especially Nd and iron, which easily oxidize in air and gradually produce stable oxides, the output of the magnetic circuit decreases due to the oxides formed on the magnet surface when incorporated into the magnetic circuit. And causes variations between magnetic circuits, and
There was a problem of contamination of peripheral devices due to the dropping of surface oxides.

そこで出願人は、先に上記のFe-B-R系永久磁石の耐食性
の改善のため、磁石体表面に化成処理を施して、燐酸塩
被膜またはクロム酸塩被膜を被着した永久磁石、及び前
記化成被膜上に、スプレー法、浸漬法、または電着塗装
法にて、耐酸化樹脂層を被膜した永久磁石(特開昭60-6
3903号、特開昭60-63902号、特開昭60-63901号)を提案
した。
Therefore, in order to improve the corrosion resistance of the Fe-BR permanent magnet, the applicant has previously performed a chemical conversion treatment on the surface of the magnet body, and a permanent magnet coated with a phosphate coating or a chromate coating, and the above-mentioned chemical conversion coating. A permanent magnet coated with an oxidation-resistant resin layer by a spray method, a dipping method, or an electrodeposition coating method on the coating film (JP-A-60-6).
3903, JP-A-60-63902, JP-A-60-63901).

しかし、前記化成被膜を被覆した永久磁石は、耐食性の
十分なる改善が得られないため、前記化成被膜表面に耐
酸化樹脂層を形成した場合、樹脂層との密着性は改善さ
れるが、十分なる耐食性の向上は得られなかった。
However, since the permanent magnet coated with the chemical conversion coating does not sufficiently improve the corrosion resistance, when an oxidation resistant resin layer is formed on the surface of the chemical conversion coating, the adhesion with the resin layer is improved, but No improvement in corrosion resistance was obtained.

発明の目的 この発明は、Fe-B-R系焼結磁石体に設けた化成被膜の耐
食性改善を目的とし、化成被膜処理を工業的に容易に
し、かつ耐酸化性を著しく向上させ得るFe-B-R系永久磁
石の製造方法を目的としている。
OBJECT OF THE INVENTION The present invention aims to improve the corrosion resistance of the chemical conversion coating provided on the Fe-BR sintered magnet body, facilitates the chemical conversion coating treatment industrially, and can significantly improve the oxidation resistance of Fe-BR. It aims at a method of manufacturing a permanent magnet.

発明の構成と効果 この発明は、Fe-B-R系焼結磁石に施す燐酸塩あるいはク
ロム酸塩による化成処理法を改良し、耐酸化性の改善向
上を計るため、化成処理並びにその前処理について、種
々検討した結果、以下の知見を得て、この発明を完成し
たものである。
Structure and effect of the present invention, the present invention is to improve the chemical conversion treatment method of phosphate or chromate applied to the Fe-BR system sintered magnet, in order to improve the improvement of the oxidation resistance, the chemical conversion treatment and its pretreatment, As a result of various studies, the following findings were obtained and the present invention was completed.

Fe-B-R系焼結磁石体表面を化成処理するにあたり、その
前処理として、シュウ酸処理することにより、化成被膜
の耐酸化性が著しく改善されることを知見した。
It was found that the oxidation resistance of the chemical conversion coating is remarkably improved by pre-treating the surface of the Fe-BR sintered magnet body by the oxalic acid treatment.

この効果は、焼結磁石体中の酸化し易いR、特にNdのシ
ュウ酸による不動態化が計られたものと考えられる。し
かし、シュウ酸溶液によるNdの不動態化処理には、長時
間を要して工業的ではないため、さらに検討を重ねた結
果、シュウ酸処理に先立ち、Fe-B-R系焼結磁石体を、燐
酸溶液あるいはギ酸、酒石酸などの有機酸処理すること
により、磁石体中のNdは不動態化が短時間に行われ、耐
酸化性が著しく改善されることを知見した。
It is considered that this effect is due to the passivation of easily oxidizable R in the sintered magnet body, especially Nd by oxalic acid. However, the passivation treatment of Nd with an oxalic acid solution requires a long time and is not industrial, and as a result of further studies, the Fe-BR sintered magnet was It was found that Nd in the magnet body is passivated in a short time and the oxidation resistance is remarkably improved by treating with a phosphoric acid solution or an organic acid such as formic acid or tartaric acid.

すなわち、この発明は、R(RはNd、Pr、Dy、Ho、Tbの
うち少なくとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種からな
る)10原子%〜30原子%、 B2原子%〜28原子%、 Fe65原子〜80原子%を主成分とし、主相が正方晶相から
なる焼結磁石体表面に、 前記磁石体中のRの不動態化処理した後、化成処理する
ことを特徴とする耐酸化性のすぐれた永久磁石の製造方
法である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or further La, Ce, Sm, Gd,
(At least one of Er, Eu, Tm, Yb, Lu, Y) 10 atom% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom to 80 atom% as main components, and the main phase is square A method for producing a permanent magnet having excellent oxidation resistance, which comprises subjecting a surface of a sintered magnet body composed of a crystal phase to passivation treatment of R in the magnet body, and then performing a chemical conversion treatment.

さらに、この発明を詳述すると、前記組成及び結晶相を
有する焼結磁石体を、燐酸溶液あるいは有機酸溶液によ
り短時間、スプレー法、浸漬法、上記処理法にて処理し
た後、シュウ酸溶液にて、前記同様スプレー法、浸漬
法、蒸気処理法により処理して、Fe-B-R系焼結磁石体中
の酸化し易い成分R、特にNdの不動態化を促進した後、
化成処理を行うことを特徴とするもので、更に、耐酸化
性を改善するために、後続工程にて電着塗装法またはス
プレー法、浸漬法等により、樹脂被膜、あるいは金属め
っき被膜を形成するものである。
More specifically, the present invention will be described in detail. A sintered magnet body having the above composition and crystal phase is treated with a phosphoric acid solution or an organic acid solution for a short time by a spray method, a dipping method, or the above treatment method, and then an oxalic acid solution. In the same manner as above, after treatment by a spray method, a dipping method, or a steam treatment method to promote the passivation of the easily oxidizable component R, particularly Nd, in the Fe-BR sintered magnet body,
A chemical conversion treatment is performed, and in order to further improve oxidation resistance, a resin film or a metal plating film is formed in a subsequent step by an electrodeposition coating method, a spray method, a dipping method, or the like. It is a thing.

発明の好ましい実施態様 この発明において、焼結磁石体中のR、特にNdの不動態
化処理の第1段階の燐酸、ギ酸、シュウ酸溶液による処
理法としては、浸漬法、スプレー法、蒸気処理法等があ
るが、作業能率、品質安定化の点からは浸漬法が好まし
く、浸漬条件としては溶液濃度は100wt%〜10wt%、溶
液温度5℃〜25℃、浸漬時間としては30秒以下が好まし
い。
Preferred Embodiments of the Invention In the present invention, as a treatment method with a phosphoric acid, formic acid, or oxalic acid solution in the first step of the passivation treatment of R in the sintered magnet body, particularly Nd, a dipping method, a spray method, a steam treatment is used. However, the immersion method is preferable from the viewpoints of work efficiency and quality stabilization. As the immersion conditions, the solution concentration is 100 wt% to 10 wt%, the solution temperature is 5 ° C to 25 ° C, and the immersion time is 30 seconds or less. preferable.

また、第2段階のシュウ酸溶液による処理法としては、
浸漬法、スプレー法、蒸気処理法等があるが、浸漬法が
作業能率、品質安定化の点より好ましく、浸漬条件とし
ては溶液濃度はシュウ酸飽和溶液、溶液温度20℃〜120
℃、特に60℃〜80℃が好ましく、また浸漬時間として
は、1時間以内、特に1分〜15分が好ましい。
In addition, as the treatment method with the oxalic acid solution in the second stage,
Although there are dipping method, spraying method, steam treatment method, etc., the dipping method is preferable in terms of work efficiency and quality stabilization. As dipping conditions, the solution concentration is oxalic acid saturated solution, solution temperature 20 ° C to 120 ° C.
C., especially 60.degree. C. to 80.degree. C., is preferred, and the immersion time is preferably within 1 hour, particularly 1 minute to 15 minutes.

また、この発明による化成処理被膜としては、燐酸亜
鉛、燐酸マンガン等の燐酸塩被膜が好ましく、化成被膜
厚みとしては、燐酸塩被膜の場合は耐酸化性、強度、コ
ストの点より10μm以下、クロム酸塩被膜の場合は5μ
m以下が好ましい。
The chemical conversion treatment film according to the present invention is preferably a phosphate film such as zinc phosphate and manganese phosphate, and the chemical conversion film thickness is 10 μm or less in terms of oxidation resistance, strength and cost in the case of a phosphate film. 5μ for acid salt coating
m or less is preferable.

さらに、耐食性を改善するためには、前記化成処理被膜
上に、浸漬法、スプレー法、電着塗装法により、耐酸化
性樹脂を被着したり、あるいは無電界めっきまたは電解
めっき法により、Ni、Cu、Zn等の耐酸化性金属または合
金めっき、あるいはこれらの複合めっき層を被着しても
よい。
Further, in order to improve the corrosion resistance, on the chemical conversion treatment film, by dipping method, spray method, electrodeposition coating method, by applying an oxidation resistant resin, or by electroless plating or electrolytic plating method, Ni , Cu, Zn or other oxidation resistant metal or alloy plating, or a composite plating layer of these may be deposited.

この発明において、浸漬法、スプレー法により化成被膜
上に被着する樹脂としては、エポキシ樹脂、ウレタン樹
脂、弗素樹脂、フラン樹脂、ポリシロキサン樹脂等が好
ましく、また電着塗装法により被着する樹脂としては、
エポキシ樹脂、アクリル樹脂等が好ましい。
In the present invention, the resin to be deposited on the chemical conversion coating by the dipping method or the spray method is preferably an epoxy resin, a urethane resin, a fluorine resin, a furan resin, a polysiloxane resin, or the like, and a resin to be deposited by the electrodeposition coating method. as,
Epoxy resin and acrylic resin are preferred.

永久磁石の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の8原子%〜30原子%を占めるが、Nd、Pr、Dy、Ho、Tb
のうち少なくとも1種、あるいはさらに、La、Ce、Sm、
Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含
むものが好ましい。
Reasons for Limiting Components of Permanent Magnet The rare earth element R used in the permanent magnet material of the present invention occupies 8 atom% to 30 atom% of the composition, but Nd, Pr, Dy, Ho, Tb
At least one of the above, or further, La, Ce, Sm,
Those containing at least one of Gd, Er, Eu, Tm, Yb, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタル,ジジム等)を入手上
の適宜等の理由により用いることができる。
Also, one type of R is usually sufficient, but it is practically 2
A mixture of one or more kinds (Misch metal, didymium, etc.) can be used for any reason such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、上記系永久磁石における、必須元素であって、10
原子%未満では、結晶構造がq−鉄と同一構造の立方晶
組織となるため、高磁気特性、特に高保磁力が得られ
ず、30原子%を越えると、Rリッチな非磁性相が多くな
り、残留磁束密度(Br)が低下して、すぐれた特性の永
久磁石が得られない。よって、希土類元素は、10原子%
〜30原子%の範囲とする。
R is an essential element in the above-mentioned permanent magnet,
If it is less than 30% by atom, the crystal structure will be a cubic structure having the same structure as q-iron, so that high magnetic properties, especially high coercive force, cannot be obtained. However, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is 10 atomic%
The range is up to 30 atom%.

Bは、この発明による永久磁石における、必須元素であ
って、2原子%未満では、菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を越えると、B
リッチな非磁性相が多くなり、残留磁束密度(Br)が低
下するため、すぐれた永久磁石が得られない。よって、
Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet according to the present invention. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained.
An excellent permanent magnet cannot be obtained because the rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. Therefore,
B is in the range of 2 atomic% to 28 atomic%.

Feは、上記系永久磁石において、必須元素であり、6原
子%未満では残留磁束密度(Br)が低下し、80原子%を
越えると、高い保磁力が得られないので、Feは65原子%
〜80原子%の含有とする。
Fe is an essential element in the above-mentioned permanent magnet, and the residual magnetic flux density (Br) decreases if it is less than 6 atomic%, and a high coercive force cannot be obtained if it exceeds 80 atomic%.
The content is up to 80 atom%.

また、この発明の永久磁石において、Feの一部をCoで置
換することは、得られる磁石の磁気特性を損うことな
く、温度特性を改善することができるが、。Co置換量が
Feの20%を越えると、逆に磁気特性が劣化するため、好
ましくない。Coの置換量がFeとCoの合計量で5原子%〜
15原子%の場合は、(Br)は置換しない場合に比較して
増加するため、高磁束密度を得るために好ましい。
Further, in the permanent magnet of the present invention, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. Co substitution amount is
If it exceeds 20% of Fe, the magnetic properties are deteriorated, which is not preferable. The substitution amount of Co is 5 atom% in the total amount of Fe and Co.
In the case of 15 atom%, (Br) is increased as compared with the case of not substituting, so that it is preferable to obtain a high magnetic flux density.

また、この発明の永久磁石材料は、R,B,Feの他、工業的
生産上不可避的不純物の存在を許容できるが、Bの一部
を4.0原子%以下のC、3.5原子%以下のP、2.5原子%
以下のS、3.5原子%以下のCuのうち少なくとも1種、
合計量で4.0原子%以下で置換することにより、永久磁
石の製造性改善、低価格化が可能である。
Further, the permanent magnet material of the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but part of B is 4.0 atomic% or less of C and 3.5 atomic% or less of P. , 2.5 atom%
At least one of the following S and Cu of 3.5 atomic% or less,
By substituting the total amount by 4.0 atom% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.

また、下記添加元素のうち少なくとも1種は、R-B-Fe系
永久磁石に対してその保磁力、減磁曲線の角型性を改善
あるいは製造性の改善、低価格化に効果があるため添加
することができる。
In addition, at least one of the following additional elements is added to the RB-Fe based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost. be able to.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf at least one kind is added, but when two or more kinds are contained, the maximum content is By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石は平均結晶粒径が1〜80μm
の範囲にある正方晶系の結晶構造を有する化合物を主相
とし、体積比で1%〜50%の非磁性相(酸化物相を除
く)を含むことを特徴とする。
The permanent magnet of the present invention has an average crystal grain size of 1 to 80 μm.
The compound having a tetragonal crystal structure in the range of 1) as the main phase and containing 1% to 50% by volume of the nonmagnetic phase (excluding the oxide phase) is characterized.

この発明による永久磁石は、保磁力iHc≧1kOe、残留磁
束密度Br>4kG、を示し、最大エネルギー積(BH)max
は、(BH)max≧10MGOeを示し、最大値は25MGOe以上に
達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe and a residual magnetic flux density Br> 4 kG, and has a maximum energy product (BH) max.
Indicates (BH) max ≧ 10MGOe, and the maximum value reaches 25MGOe or more.

また、この発明による永久磁石のRの主成分が、その50
%以上をNd及びPrを主とする軽希土類金属が占める場合
で、R12原子%〜20原子%、B4原子%〜24原子%、Fe74
原子%〜80原子%、を主成分とするとき、(BH)max35M
GOe以上のすぐれた磁気特性を示し、特に軽希土類金属
がNdの場合には、その最大値が45MGOe以上に達する。
Further, the main component of R of the permanent magnet according to the present invention is 50
% Of light rare earth metal mainly composed of Nd and Pr, R12 atom% to 20 atom%, B4 atom% to 24 atom%, Fe74
(BH) max35M when the main component is from atomic% to 80 atomic%
It shows excellent magnetic properties over GOe, and its maximum value reaches over 45MGOe especially when the light rare earth metal is Nd.

また、この発明において、60℃、相対温度90%の環境に
長時間放置する耐食試験で、極めて高い耐食性示す永久
磁石として、 Nd11at%〜15at%、Dy0.2at%粗3.0at%、かつNdとDyの
総量が12at%〜17at%であり、B5at%〜8at%、Co0.5at
%〜13at%、Al0.5at%〜4at%、C1000ppm以下を含有
し、残部Fe及び不可避的不純物からなる場合が好まし
い。
Further, in this invention, in a corrosion resistance test of leaving it in an environment of 60 ° C and a relative temperature of 90% for a long time, as a permanent magnet showing extremely high corrosion resistance, Nd11at% ~ 15at%, Dy0.2at% coarse 3.0at%, and Nd and The total amount of Dy is 12at% to 17at%, B5at% to 8at%, Co0.5at
% To 13 at%, Al 0.5 at% to 4 at%, C 1000 ppm or less, and the balance Fe and inevitable impurities are preferable.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、B19.4%を含有
し残部はFe及びAl、Si、C等の不純物からなるフェロボ
ロン合金、純度99.7%以上のNd、Dy、Co、Alを使用し、
これらを高周波溶解し、その後水冷銅鋳型に鋳造した。
Examples Example 1 As a starting material, electrolytic iron having a purity of 99.9%, a ferroboron alloy containing B19.4% and the balance being Fe and impurities such as Al, Si, and C, Nd, Dy, Co having a purity of 99.7% or more. , Using Al,
These were high-frequency melted and then cast in a water-cooled copper mold.

その後インゴットを、粗粉砕し、次に微粉砕し、平均粒
度3μmの微粉末を得た。
Then, the ingot was roughly crushed and then finely crushed to obtain a fine powder having an average particle size of 3 μm.

この微粉末を金型に挿入し、10KOeの磁界中で配向し、
1.5t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 10KOe,
It was molded at a pressure of 1.5 t / cm 2 .

得られた成形体を、1100℃、1時間、Ar中の条件で焼結
し、その後放冷し、さらにAr中で580℃、2時間の時効
処理を施して、この発明による永久磁石を作成した。
The obtained molded body is sintered at 1100 ° C. for 1 hour in Ar, then allowed to cool, and then subjected to aging treatment at 580 ° C. for 2 hours in Ar to produce a permanent magnet according to the present invention. did.

このときの成分組成は、14Nd−7.5B−6Co−2Al−2.0Dy
−Fe残部であった。
The component composition at this time is 14Nd-7.5B-6Co-2Al-2.0Dy.
-Fe balance.

得られた永久磁石から4mm×8mm×10mm寸法に試験片を切
り出し、試験片を脱脂後、下記条件の燐酸溶液処理、シ
ュウ酸溶液処理並びに化成処理として燐酸塩処理を行っ
た。
A test piece having a size of 4 mm × 8 mm × 10 mm was cut out from the obtained permanent magnet, and after degreasing the test piece, a phosphoric acid solution treatment, an oxalic acid solution treatment, and a phosphate treatment were performed under the following conditions.

次いで、各試料の耐酸化性試験、塩水噴霧試験、磁石特
性の測定を行った。その結果を第1表に示す。
Then, an oxidation resistance test, a salt spray test, and measurement of magnet characteristics of each sample were performed. The results are shown in Table 1.

燐酸溶液処理条件 濃度10% 溶液温度10℃ 浸漬時間10秒 シュウ酸溶液処理条件 濃度/過飽和シュウ酸水溶液 溶液温度80℃ 浸漬時間5分 燐酸塩処理条件 亜鉛12g/l 燐酸根100g/l 溶温60℃ 保持時間3分 耐酸化性試験は、上記試験片を80℃の温度、90%の湿度
の雰囲気に放置した場合の発錆までの時間及び発錆状況
にて評価した。
Phosphoric acid solution treatment condition Concentration 10% Solution temperature 10 ° C Immersion time 10 seconds Oxalic acid solution treatment condition Concentration / supersaturated oxalic acid solution Solution temperature 80 ° C Immersion time 5 minutes Phosphate treatment condition Zinc 12g / l Phosphate root 100g / l Melt temperature 60 C. Holding time 3 minutes The oxidation resistance test was evaluated by the time until rusting and the rusting condition when the above test piece was left in an atmosphere at a temperature of 80 ° C. and a humidity of 90%.

また、塩水噴霧試験は、液温35℃の5%NaCl溶液に浸漬
して生成する発錆状況にて評価した。
Further, the salt spray test was evaluated by the rusting condition generated by immersion in a 5% NaCl solution at a liquid temperature of 35 ° C.

また、比較のため、この発明の実施例と同一成分の試験
片に、燐酸溶液及びシュウ酸溶液による不動態化処理を
施すことなく、化成処理した試験片を耐酸化試験とし
て、上記と同一の80℃、湿度90%の雰囲気中にて、また
塩水噴霧試験も前記と同一条件にて試験を行って、発錆
状況及び磁気特性を測定した。その結果を第1表に示
す。
For comparison, a test piece having the same composition as that of the example of the present invention was subjected to the chemical conversion treatment without subjecting it to passivation treatment with a phosphoric acid solution and an oxalic acid solution. A rusting condition and a magnetic property were measured by conducting a salt spray test under the same conditions as above in an atmosphere of 80 ° C. and a humidity of 90%. The results are shown in Table 1.

実施例2 実施例1と同一組成、同一製造条件にて得られた試験片
を、実施例1と同一条件の燐酸溶液処理、シュウ酸溶液
処理及び燐酸亜鉛処理した。
Example 2 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was treated with phosphoric acid solution, oxalic acid solution and zinc phosphate under the same conditions as in Example 1.

さらに、カチオン電着塗料としてエポキシ系のPTU-50
(日本ペイント製)を使用し、温度26℃、電圧210Vで、
樹脂厚25μm〜35μm形成した後、焼き付け条件として
180℃に30分で硬化させて得られた試験片を、実施例1
と同様に、耐酸化性試験、塩水噴霧試験、磁石特性の測
定を行った。その結果を第2表に表す。
Furthermore, as a cationic electrodeposition paint, epoxy-based PTU-50
(Manufactured by Nippon Paint) at a temperature of 26 ° C and a voltage of 210V,
After forming a resin thickness of 25 μm to 35 μm, as a baking condition
A test piece obtained by curing at 180 ° C. for 30 minutes was prepared as in Example 1.
Similarly, the oxidation resistance test, the salt spray test, and the measurement of the magnet characteristics were performed. The results are shown in Table 2.

比較として、前記と同一の試験片を、燐酸溶液処理、シ
ュウ酸溶液処理の不動態化処理を施すことなく、直接前
記と同一条件の化成処理、電着塗装を行って得られた試
験片の耐酸化性試験、塩水噴霧試験、磁石特性の測定を
行い、その結果を第2表に表す。
For comparison, the same test pieces as above were subjected to a chemical conversion treatment under the same conditions as above directly without performing passivation treatment with a phosphoric acid solution or an oxalic acid solution, and a test piece obtained by electrodeposition coating. An oxidation resistance test, a salt spray test, and measurement of magnet characteristics were performed, and the results are shown in Table 2.

実施例3 実施例1と同一組成、同一製造条件にて得られた試験片
を、実施例1と同一の燐酸溶液処理、シュウ酸処理及び
燐酸亜鉛処理を行った。
Example 3 The test piece obtained under the same composition and the same manufacturing conditions as in Example 1 was subjected to the same phosphoric acid solution treatment, oxalic acid treatment and zinc phosphate treatment as in Example 1.

その後、試験片をポリシロキサン樹脂系のMS-1700(シ
リコーン社製)中に浸漬し、室温にて3時間乾燥させた
のち、150℃、15分間の焼付処理を行い、表面に樹脂を
被着した試験片を作製し、実施例1と同様に、耐酸化性
試験、塩水噴霧試験及び磁石特性を測定した。その結果
を第3表に表す。
Then, the test piece is dipped in polysiloxane resin MS-1700 (made by Silicone Co., Ltd.), dried at room temperature for 3 hours, and then baked at 150 ° C. for 15 minutes to deposit the resin on the surface. The prepared test piece was prepared, and the oxidation resistance test, the salt spray test and the magnet characteristics were measured in the same manner as in Example 1. The results are shown in Table 3.

比較のため、前記と同一組成、同一製造条件にて得られ
た試験片を、燐酸溶液処理、シュウ酸溶液処理の不動態
化処理を施すことなく、直接、前記と同じ化成処理、樹
脂浸漬法により表面に樹脂を被着した試験片について、
前記と同様に磁石特性、耐酸化性試験、塩水噴霧試験を
測定した。その結果を第3表に表す。
For comparison, the test pieces obtained under the same composition and the same production conditions as above were directly subjected to the same chemical conversion treatment and resin dipping method as described above without the passivation treatment of the phosphoric acid solution treatment and the oxalic acid solution treatment. For the test piece whose surface is coated with resin,
The magnet characteristics, the oxidation resistance test, and the salt spray test were measured in the same manner as described above. The results are shown in Table 3.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd、Pr、Dy、Ho、Tbのうち少なく
とも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種からなる)10原子
%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体表面に、 前記磁石体中のRの不動態化処理した後、化成処理する
ことを特徴とする耐酸化性のすぐれた永久磁石の製造方
法。
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, T
m, Yb, Lu, and Y) consisting of at least 1) 10 atom% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom% to 80 atom% as main components, and main phase from tetragonal phase A method for producing a permanent magnet having excellent oxidation resistance, comprising the step of passivating R in the magnet body and then chemical conversion treatment on the surface of the sintered magnet body.
JP61297263A 1986-12-12 1986-12-12 Method for manufacturing permanent magnet having excellent oxidation resistance Expired - Lifetime JPH0680609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297263A JPH0680609B2 (en) 1986-12-12 1986-12-12 Method for manufacturing permanent magnet having excellent oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297263A JPH0680609B2 (en) 1986-12-12 1986-12-12 Method for manufacturing permanent magnet having excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPS63150905A JPS63150905A (en) 1988-06-23
JPH0680609B2 true JPH0680609B2 (en) 1994-10-12

Family

ID=17844257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297263A Expired - Lifetime JPH0680609B2 (en) 1986-12-12 1986-12-12 Method for manufacturing permanent magnet having excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JPH0680609B2 (en)

Also Published As

Publication number Publication date
JPS63150905A (en) 1988-06-23

Similar Documents

Publication Publication Date Title
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH053722B2 (en)
JPH0422007B2 (en)
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
JPH0569282B2 (en)
JPH0422008B2 (en)
JPH0680609B2 (en) Method for manufacturing permanent magnet having excellent oxidation resistance
JP2553843B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
JP3208057B2 (en) Corrosion resistant permanent magnet
JPS6377103A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0752684B2 (en) Corrosion resistant permanent magnet
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0554683B2 (en)
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JPH05175024A (en) Rare earth bonded magnet materilal, rare earth bonded magnet and manufacture of the magnet
JPS6338555A (en) Magnet material containing rare earth element and having superior corrosion resistance
JPH0586478B2 (en)
JP2922601B2 (en) Resin molded magnet
JP3411605B2 (en) Corrosion resistant permanent magnet
JP2720038B2 (en) Manufacturing method of permanent magnet
JPS6377104A (en) Rare-earth magnet excellent in corrosion resistance

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term