JP3108400B2 - Permanent magnet with excellent corrosion resistance - Google Patents

Permanent magnet with excellent corrosion resistance

Info

Publication number
JP3108400B2
JP3108400B2 JP10029244A JP2924498A JP3108400B2 JP 3108400 B2 JP3108400 B2 JP 3108400B2 JP 10029244 A JP10029244 A JP 10029244A JP 2924498 A JP2924498 A JP 2924498A JP 3108400 B2 JP3108400 B2 JP 3108400B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
corrosion resistance
less
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10029244A
Other languages
Japanese (ja)
Other versions
JPH10256012A (en
Inventor
隆樹 浜田
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP10029244A priority Critical patent/JP3108400B2/en
Publication of JPH10256012A publication Critical patent/JPH10256012A/en
Application granted granted Critical
Publication of JP3108400B2 publication Critical patent/JP3108400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、R(RはYを含
む希土類元素のうち少なくとも1種)、B、Feを主成
分とする永久磁石に係り、表面に電着塗装による耐食性
樹脂層を設けて永久磁石の耐食性を改善した希土類・ボ
ロン・鉄系永久磁石に関する。 【0002】 【従来の技術】現在の代表的な永久磁石材料は、アルニ
コ、ハードフェライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴ない、コ
バルトを20〜30wt%含むアルニコ磁石の需要は減
り、鉄の酸化物を主成分とする安価なハードフェライト
が磁石材料の主流を占めるようになった。 【0003】一方、希土類コバルト磁石はコバルトを5
0〜60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、他の
磁石に比べて磁気特性が格段に高いため、主として小型
で付加価値の高い磁気回路に多用されるようになった。 【0004】そこで、本発明者は先に、高価なSmやC
oを含有しない新しい高性能永久磁石としてFe‐B‐
R系(RはYを含む希土類元素のうち少なくとも1種)
永久磁石を提案(特願昭57−145072号)した。 【0005】この永久磁石は、RとしてNdやPrを中
心とする資源的に豊富な軽希土類を用い、Feを主成分
として25MGOe以上の極めて高いエネルギー積を示
す、すぐれた永久磁石である。 【0006】 【発明が解決しようとする課題】しかしながら、上記の
すぐれた磁気特性を有するFe‐B‐R系永久磁石は主
成分として、空気中で酸化し易い希土類元素及び鉄を含
有するため、該Fe‐B‐R系永久磁石を磁気回路に組
込んだ場合に、磁石表面に生成する酸化物により、磁気
回路の出力低下及び磁気回路間のばらつきを惹起し、ま
た、表面酸化物の脱落による周辺機器への汚染の問題が
あった。 【0007】そこで、上記のFe‐B‐R系永久磁石の
耐食性の改善のため、磁石体表面にスプレー法あるいは
浸漬法によって、耐食性樹脂層を被覆した永久磁石を提
案(特願昭58‐171907号)した。 【0008】しかし、スプレー法による樹脂の塗装には
方向性があるため、被処理物表面全体に均一な樹脂被膜
を施すのに多大の工程、手間を要し、特に形状が複雑な
異形磁石体に均一厚みの被膜を施すことは困難であり、
また、浸漬法では樹脂被膜厚みが不均一になり、製品寸
法精度が悪い問題があった。 【0009】この発明は、希土類・ボロン・鉄を主成分
とする新規な永久磁石の磁石体表面に均一厚みの耐食性
樹脂層を設け、永久磁石の耐食性を改善し、耐食性のす
ぐれた永久磁石の提供を目的としている。 【0010】 【課題を解決するための手段】この発明は、R(但しR
はYを含む希土類元素のうち少なくとも1種)8原子%
〜30原子%、B2原子%〜28原子%、Fe42原子
%〜90原子%を主成分とし、主相が正方晶相からなる
永久磁石体表面に電着塗装による耐食性樹脂層を有する
ことを特徴する永久磁石である。 【0011】この発明における耐食性樹脂層を磁石体表
面に形成する方法は、永久磁石体を水性塗料中に浸漬
し、該永久磁石体を陽極あるいは陰極とし、該永久磁石
体と対極間に直流電流を給電し、該永久磁石体全体に電
気的に塗装を施し、表面に耐食性樹脂層を形成する電着
塗装法であり、被処理磁石体を陽極にしたアニオン電着
塗装法あるいは被処理磁石体を陰極にしたカチオン電着
塗装法を採用することができる。 【0012】また、この発明の永久磁石用合金は、体積
比で1%〜50%の非磁性相(酸化物相を除く)を含む
ことを特徴とし、焼結磁石の場合には結晶粒径が1〜1
00μmの範囲にある正方晶系の結晶構造を有する化合
物を主相とする。 【0013】したがって、この発明の永久磁石はRとし
てNdやPrを中心とする資源的に豊富な軽希土類を主
に用い、Fe、B、Rを主成分とすることにより、25
MGOe以上の極めて高いエネルギー積並びに高残留磁
束密度、高保持力を有し、かつ高い耐食性を有する、す
ぐれた永久磁石を安価に得ることができる。 【0014】 【発明の実施の形態】 永久磁石の限定理由 この発明の永久磁石に用いる希土類元素Rは、8原子%
〜30原子%のNd、Pr、Dy、Ho、Tbのうち少
なくとも1種、あるいはさらに、La、Ce、Gd、E
r、Eu、Pm、Tm、Sm、Lu、Yb、Yのうち少
なくとも1種を含むものが好ましい。 【0015】又、通例Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。 【0016】R(Yを含む希土類元素のうち少なくとも
1種)は、新規な上記系永久磁石における必須元素であ
って、8原子%未満では結晶構造がα−Feと同一構造
の立方晶組織となるため、高磁気特性、特に高保磁力が
得られず、30原子%を越えるとRリッチな非磁性相が
多くなり、残留磁束密度(Br)が低下して、すぐれた
特性の永久磁石が得られない。よって、Rは8原子%〜
30原子%の範囲とする。 【0017】Bは、新規な上記系永久磁石における必須
元素であって、2原子%未満では菱面体組織となり、高
い保磁力(iHc)は得られず、28原子%を越えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲とする。 【0018】Feは、新規な上記系永久磁石において必
須元素であり、42原子%未満では残留磁束密度(B
r)が低下し、90原子%を越えると高い保磁力が得ら
れないので、Feは42原子%〜90原子%の含有とす
る。 【0019】また、この発明による永久磁石用合金にお
いて、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの50%を越えると、逆
に磁気特性が劣化するため好ましくない。 【0020】また、この発明による永久磁石は、Fe、
B、Rの他、工業的生産上不可避的不純物の存在を許容
できるが、Bの一部を4.0原子%以下のC、3.5原
子%以下のP、2.5原子%以下のS、3.5原子%以
下のCuのうち少なくとも1種、合計量で4.0原子%
以下で置換することにより、永久磁石の製造性改善、低
価格化が可能である。 【0021】また、下記添加元素のうち少なくとも1種
は、Fe‐B‐R系永久磁石に対してその保磁力等を改
善あるいは製造性の改善、低価格化に効果があるため添
加する。しかし、保磁力改善のための添加に伴ない残留
磁束密度(Br)の低下を招来するので、従来のハード
フエライト磁石の残留磁束密度と同等以上となる範囲で
の添加が望ましい。 【0022】9.5原子%以下のAl、4.5原子%以
下のTi、9.5原子%以下のV、8.5原子%以下の
Cr、8.0原子%以下のMn、5原子%以下のBl、
12.5原子%以下のNb、10.5原子%以下のT
a、9.5原子%以下のMo、9.5原子%以下のW、
2.5原子%以下のSb、7原子%以下のGe、3.5
原子%以下のSn、5.5原子%以下のZr、5.5原
子%以下のHfのうち少なくとも1種を添加含有、但
し、2種以上含有する場合は、その最大含有量は当該添
加元素のうち最大値を有するものの原子%以下を含有さ
せることにより、永久磁石の高保磁力化が可能になる。 【0023】結晶相は主相が正方晶であることが不可欠
であり、すぐれた磁気特性を有する焼結永久磁石を作製
するのに効果的である。 【0024】また、この発明の永久磁石は、磁場中プレ
ス成型することにより磁気的異方性磁石が得られ、ま
た、無磁界中でプレス成型することにより、磁気的等方
性磁石を得ることができる。 【0025】この発明による永久磁石は、保磁力iHc
≧1kOe、残留磁束密度Br>4kG、を示し、最大
エネルギー積(BH)maxはハードフェライトと同等
以上となり、最も好ましい組成範囲では、(BH)ma
x≧10MGOeを示し、最大値は25MGOe以上に
達する。 【0026】また、この発明永久磁石用合金のRの主成
分がその50%以上を軽希土類金属が占める場合で、R
12原子%〜20原子%、B4原子%〜24原子%、F
e65原子%〜82原子%、を主成分とするとき、焼結
磁石の場合に最もすぐれた磁気特性を示し、特に軽希土
類金属がNdの場合には、(BH)maxはその最大値
が35MGOe以上に達する。 【0027】製造方法 この発明の電着塗装法において、アニオン電着塗装に使
用される樹脂は、乾性油、ポリエステル、ポリブタジエ
ン、エポキシエステル、ポリアクリル酸エステルなどを
骨核としたポリカルボン酸樹脂であり、通常、有機アミ
ンあるいは苛性カリ等の塩基で中和し、水溶液化あるい
は水分散化されて負に荷電する。 【0028】また、この発明の電着塗装法において、カ
チオン電着塗装に使用される樹脂は、主としてエポキシ
系樹脂、アクリル系樹脂などを骨核にしたポリアミノ樹
脂で、通常有機酸で中和し、水溶液化あるいは水分散化
されて正に荷電する。 【0029】この発明において、永久磁石体表面への電
着塗装によつて得られる耐食性樹脂層の厚みは、5μm
〜30μmの厚みが好ましい。 【0030】さらに、防錆、塗膜補強改善の目的で、上
記の樹脂中に酸化亜鉛、クロム酸亜鉛、クロム酸ストロ
ンチウム、鉛丹などの防錆用顔料を含有していてもよ
く、あるいはベンゾトリアゾールを含有すものでもよ
い。 【0031】この発明において、樹脂中に含有される上
記の顔料は、樹脂量に対して80%以下でよく、またベ
ンゾトリアゾール量は、樹脂量に対して5%以下の含有
でよい。 【0032】 【実施例】 実施例1 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl、Si、C等の不純物か
らなるフェロボロン合金、純度99.7%以上のNdを
使用し、これらを高周波溶解し、その後水冷銅鋳型に鋳
造し、15Nd8B77Fe(原子%)なる組成の鋳塊
を得た。 【0033】その後インゴットを、スタンプミルにより
粗粉砕し、次にボールミルにより粉砕し、粒度3μmの
微粉末を得た。この微粉末を金型に挿入し、12kOe
の磁界中で配向し、1.5t/cm2の圧力で成形し
た。 【0034】得られた成形体を、1100℃、1時間、
Ar中の条件で焼結し、その後放冷し、さらにAr中で
600℃、2時間の時効処理を施して、永久磁石を作製
した。得られた永久磁石から外径20mm×内径10m
m×厚み1.5mm寸法に試験片を切り出した。 【0035】カチオン電着塗料として、エポキシ系のエ
スビアCED、S‐20(神東塗料株式会社製)を使用
し、予めトリクレンにて脱脂した上記試験片を陰極と
し、SUS316材板を陽極とし、温度28℃、電圧1
50V、3分の条件で電着塗装を施した。ついで、水洗
し、風乾したのち、180℃で30分間保持して、表面
に樹脂層を被着したこの発明による永久磁石試料片を作
製した。 【0036】この試験片に耐食性試験と耐食性試験後の
樹脂層の密着強度試験を行なった。また、樹脂層厚みと
耐食性試験前後の磁気特性を測定した。試験結果及び測
定結果は表1,表2に示す。 【0037】耐食性試験は、上記試験片を60℃の温
度、90%の湿度の雰囲気に200時間放置した場合の
試験片の外観状況でもって評価した。また、密着強度試
験は、耐食性試験後の上記試験片を、粘着テープで1m
m間隔の枡目部分を引張り、樹脂層が剥離するか否か
(無剥離桝枡数/全枡目数)で評価した。 【0038】比較例 また、比較のため、上記実施例1の試験片に、エポキシ
系塗料をスプレー法にて、表裏面に2回に分けて塗装
し、さらに、80℃、1時間の乾燥処理を行ない、表面
にスプレー法による塗膜を有する比較試験片を得た。こ
の比較試験片に上記の実施例1と同一の試験及び測定を
行ない、その結果を同様に表1,表2に示す。 【0039】実施例2 出発原料として、純度99.9%の電解鉄、電解コバル
ト、B19.4%を含有し残部はFe及びAl、Si、
C等の不純物からなるフェロボロン合金、純度99.7
%以上のNdを使用し、これらを高周波溶解し、その後
水冷鋼鋳型に鋳造し、16Nd7B10Co67Fe
(原子%)なる組成の鋳塊を得た。 【0040】その後インゴットを、スタンプミルにより
粗粉砕し、次にボールミルにより粉砕し、粒度3μmの
微粉末を得た。この微粉末を金型に挿入し、12kOe
の磁界中で配向し、1.5t/cm2の圧力で成形し
た。 【0041】得られた成形体を、1100℃、1時間、
Ar中の条件で焼結し、その後放冷し、さらにAr中で
600℃、2時間の時効処理を施して、永久磁石を作製
した。得られた永久磁石から外径20mm×内径10m
m×厚み1.5mm寸法に試験片を切り出した。 【0042】アニオン電着塗料として、アクリル系のエ
スビアED、108‐U(神東塗料株式会社製)を使用
し、予めトリクレンにて脱脂した上記試験片を陽極と
し、SUS316材板を陰極とし、温度28℃、電圧2
30V、2分の条件で電着塗装を施した。 【0043】ついで、水洗し、風乾したのち、180℃
で30分間保持して、表面に樹脂層を被着したこの発明
による永久磁石試料片を作製した。 【0044】この試験片に実施例1の同方法の耐食性試
験と耐食性試験後の樹脂層の密着強度試験を行なった。
また、樹脂層厚みと耐食性試験前後の磁気特性を測定し
た。試験結果及び測定結果は表1,表2に示す。 【0045】実施例3 出発原料として、純皮99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl、Si、C等の不純物か
らなるフェロボロン合金、純度99.7%以上のNd及
びDy金属を使用し、これらを高周波溶解し、その後水
冷鋼鋳型に鋳造し、15Nd1.5Dy8B75.5F
e(原子%)なる組成の鋳塊を得た。 【0046】その後インゴットを、スタンプミルにより
粗粉砕し、次にボールミルにより粉砕し、粒度3μmの
微粉末を得た。この微粉末を金型に挿入し、12kOe
の磁界中で配向し、1.5t/cm2の圧力で成形し
た。 【0047】得られた成形体を、1100℃、1時間、
Ar中の条件で焼結し、その後放冷し、さらにAr中で
600℃、2時間の時効処理を施して、永久磁石を作製
した。得られた永久磁石から外径20mm×内径10m
m×厚み1.5mm寸法に試験片を切り出した。 【0048】カチオン電着塗料として、エポキシ系のエ
スビアCED、S‐20(神東塗料株式会社製)を使用
し、上記試験片を陰極とし、SUS316材板を陽極と
し、温度28℃、電圧150V、3分の条件で電着塗装
を施した。 【0049】ついで、水洗し、風乾したのち、180℃
で30分間保持して、表面に樹脂層を被着したこの発明
による永久磁石試料片を作製した。 【0050】この試験片に耐食性試験と耐食性試験後の
樹脂層の密着強度試験を行なった。また、被膜層厚みと
耐食性試験前後の磁気特性を測定した。試験結果及び測
定結果は表1,表2に示す。 【0051】 【表1】 【0052】 【表2】【0053】 【発明の効果】表1,表2の試験及び測定結果に明らか
なように、この発明の電着塗装による樹脂層を有する永
久磁石は、比較例に対して膜厚が所要厚みで、かつ格段
にすぐれた均一度が得られているため、永久磁石表面の
酸化が確実に防止されており、磁気特性の劣化がなく、
比較例に対して磁気特性が著しく向上する。 【0054】すなわち、この発明は、Fe‐B‐R系永
久磁石体表面に生成する酸化物を抑制するため、電着塗
装による耐食性樹脂層を施すことによつて、該表面に膜
厚が均一で強固かつ安定な耐食性樹脂層を形成すること
ができ、本系磁石体表面の酸化が抑制され、磁気特性が
劣化することなくかつ長期にわたって安定する利点があ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet mainly composed of R (R is at least one of rare earth elements including Y), B, and Fe. The present invention relates to a rare earth / boron / iron-based permanent magnet having a surface provided with a corrosion-resistant resin layer by electrodeposition coating to improve the corrosion resistance of the permanent magnet. [0002] Present typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. With the recent instability of the raw material for cobalt, the demand for alnico magnets containing 20 to 30 wt% of cobalt has been reduced, and inexpensive hard ferrites containing iron oxide as a main component have become the mainstream of magnet materials. became. On the other hand, rare earth cobalt magnets contain
It is very expensive because it contains Sm in an amount of 0 to 60 wt% and uses Sm which is rarely contained in rare earth ores. However, since its magnetic properties are much higher than those of other magnets, it is mainly small and has high added value. It has come to be used frequently in circuits. Therefore, the inventor of the present invention first described that expensive Sm or C
Fe-B- as a new high-performance permanent magnet containing no o
R type (R is at least one of rare earth elements including Y)
A permanent magnet was proposed (Japanese Patent Application No. 57-145072). [0005] This permanent magnet is an excellent permanent magnet that uses light rare earth elements, mainly Nd and Pr, as R, which are resource-rich and contains Fe as a main component and exhibits an extremely high energy product of 25 MGOe or more. [0006] However, the Fe-BR based permanent magnet having the above excellent magnetic properties contains a rare earth element which is easily oxidized in air and iron as its main components. When the Fe-BR-based permanent magnet is incorporated in a magnetic circuit, oxides generated on the surface of the magnet cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and a drop in the surface oxide. There was a problem of contamination of peripheral equipment due to. Therefore, in order to improve the corrosion resistance of the above Fe-BR permanent magnet, a permanent magnet in which the surface of the magnet body is coated with a corrosion-resistant resin layer by a spraying method or a dipping method is proposed (Japanese Patent Application No. 58-171907). No.) However, since the coating of the resin by the spray method has directionality, a large number of steps and labor are required to apply a uniform resin film on the entire surface of the object to be processed, and the deformed magnet body having a complicated shape is particularly required. It is difficult to apply a film of uniform thickness to
In addition, in the immersion method, there is a problem that the thickness of the resin film becomes uneven and the dimensional accuracy of the product is poor. According to the present invention, a permanent magnet having a uniform thickness is provided on the surface of the magnet body of a novel permanent magnet mainly composed of rare earth, boron and iron to improve the corrosion resistance of the permanent magnet. It is intended to be provided. [0010] The present invention relates to a method for producing an R (where R
Is at least one of the rare earth elements containing Y) 8 atomic%
A main component is a corrosion-resistant resin layer formed by electrodeposition coating on the surface of a permanent magnet body whose main phase is a tetragonal phase and whose main component is 30 to 30 atomic%, B 2 to 28 atomic%, and Fe 42 to 90 atomic%. It is a permanent magnet. In the method of forming a corrosion-resistant resin layer on the surface of a magnet body according to the present invention, a permanent magnet body is immersed in an aqueous paint, the permanent magnet body is used as an anode or a cathode, and a direct current is applied between the permanent magnet body and a counter electrode. Is an electrodeposition coating method for electrically coating the entire permanent magnet body to form a corrosion-resistant resin layer on the surface, the anion electrodeposition coating method using the treated magnet body as an anode or the treated magnet body. Can be used as a cathode electrodeposition coating method. Further, the alloy for a permanent magnet according to the present invention is characterized in that it contains a non-magnetic phase (excluding an oxide phase) in a volume ratio of 1% to 50%. Is 1 to 1
The main phase is a compound having a tetragonal crystal structure in the range of 00 μm. Accordingly, the permanent magnet of the present invention mainly uses Nd and Pr as light R, which are abundant in resources, and mainly Fe, B and R as R.
An excellent permanent magnet having an extremely high energy product higher than MGOe, a high residual magnetic flux density, a high coercive force, and a high corrosion resistance can be obtained at low cost. DESCRIPTION OF THE PREFERRED EMBODIMENTS Reasons for Limiting Permanent Magnets The rare earth element R used in the permanent magnet of the present invention is 8 atomic%.
-30 at% of Nd, Pr, Dy, Ho, Tb, at least one of La, Ce, Gd, E
Those containing at least one of r, Eu, Pm, Tm, Sm, Lu, Yb, and Y are preferable. [0015] Usually, one kind of R is sufficient,
In practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range. R (at least one of the rare earth elements including Y) is an essential element in the novel permanent magnet, and if less than 8 atomic%, the crystal structure has a cubic structure having the same structure as α-Fe. Therefore, high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 30 atomic%, the number of R-rich non-magnetic phases increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent properties can be obtained. I can't. Therefore, R is 8 atomic% or more.
The range is 30 atomic%. B is an essential element in the above-mentioned permanent magnet, and if it is less than 2 atomic%, it has a rhombohedral structure, a high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic%, it is a B-rich non-magnetic material. Increase in magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 to 28 atomic%. Fe is an essential element in the above-mentioned new permanent magnet, and when it is less than 42 atomic%, the residual magnetic flux density (B
When r) is reduced and exceeds 90 atomic%, a high coercive force cannot be obtained, so Fe is contained in an amount of 42 to 90 atomic%. In the permanent magnet alloy according to the present invention, by substituting part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet. If the amount exceeds 50% of Fe, the magnetic properties are undesirably deteriorated. Further, the permanent magnet according to the present invention comprises Fe,
In addition to B and R, the presence of unavoidable impurities in industrial production can be tolerated. However, a part of B may be C of 4.0 atomic% or less, P of 3.5 atomic% or less, S, at least one of Cu of 3.5 atomic% or less, a total amount of 4.0 atomic%
By substituting the following, it is possible to improve the productivity of the permanent magnet and reduce the cost. At least one of the following additional elements is added to the Fe-BR-based permanent magnet because it is effective in improving the coercive force and the like, improving the productivity, and reducing the price. However, since the addition of the additive for improving the coercive force causes a decrease in the residual magnetic flux density (Br), it is desirable that the addition be made in a range that is equal to or more than the residual magnetic flux density of the conventional hard ferrite magnet. Al of 9.5 atomic% or less, Ti of 4.5 atomic% or less, V of 9.5 atomic% or less, Cr of 8.5 atomic% or less, Mn of 8.0 atomic% or less, 5 atoms % Or less of Bl,
Nb of 12.5 atomic% or less, T of 10.5 atomic% or less
a, 9.5 atomic% or less of Mo, 9.5 atomic% or less of W,
2.5 atomic% or less of Sb, 7 atomic% or less of Ge, 3.5
At least one of Sn at% or less, Zr at 5.5 atomic% or less, and Hf at 5.5 atomic% or less is added and contained. However, when two or more are contained, the maximum content of the additive element is By containing at most atomic% of those having the maximum value, it is possible to increase the coercive force of the permanent magnet. It is essential that the main phase of the crystal phase is tetragonal, which is effective for producing a sintered permanent magnet having excellent magnetic properties. Further, the permanent magnet of the present invention can be used to obtain a magnetically anisotropic magnet by press molding in a magnetic field, and to obtain a magnetically isotropic magnet by press molding in a non-magnetic field. Can be. The permanent magnet according to the present invention has a coercive force iHc
≧ 1 kOe and residual magnetic flux density Br> 4 kG, and the maximum energy product (BH) max is equal to or more than that of hard ferrite, and in the most preferable composition range, (BH) ma
x ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more. In the case where the main component of R of the alloy for a permanent magnet according to the present invention accounts for 50% or more of the light rare earth metal,
12 to 20 atomic%, B4 to 24 atomic%, F
When the main component is 65 atomic% to 82 atomic% of e, the sintered magnet exhibits the best magnetic properties. Particularly, when the light rare earth metal is Nd, the maximum value of (BH) max is 35 MGOe. Reach more. Production Method In the electrodeposition coating method of the present invention, the resin used for anion electrodeposition coating is a polycarboxylic acid resin having a bone nucleus of a drying oil, polyester, polybutadiene, epoxy ester, polyacrylic ester and the like. Yes, usually, it is neutralized with a base such as an organic amine or caustic potash, and is negatively charged after being made into an aqueous solution or dispersed in water. In the electrodeposition coating method of the present invention, the resin used for the cationic electrodeposition coating is mainly a polyamino resin having a bone nucleus of an epoxy resin, an acrylic resin or the like, and is usually neutralized with an organic acid. , And are positively charged when converted to an aqueous solution or dispersed in water. In the present invention, the thickness of the corrosion-resistant resin layer obtained by electrodeposition coating on the surface of the permanent magnet body is 5 μm.
A thickness of 3030 μm is preferred. Further, for the purpose of improving rust prevention and coating film reinforcement, the above-mentioned resin may contain a rust-preventive pigment such as zinc oxide, zinc chromate, strontium chromate, and lead tin, It may contain a triazole. In the present invention, the above pigment contained in the resin may be 80% or less based on the resin amount, and the benzotriazole amount may be 5% or less based on the resin amount. Example 1 Electrolytic iron having a purity of 99.9% as a starting material, B19.4
%, The balance being Fe and a ferroboron alloy containing impurities such as Al, Si and C, and Nd with a purity of 99.7% or more. These are melted at a high frequency and then cast into a water-cooled copper mold to obtain 15Nd8B77Fe (atomic %). Thereafter, the ingot was coarsely pulverized by a stamp mill and then pulverized by a ball mill to obtain a fine powder having a particle size of 3 μm. This fine powder is inserted into a mold and 12 kOe
And molded at a pressure of 1.5 t / cm 2 . The obtained molded body was heated at 1100 ° C. for 1 hour.
Sintering was performed in Ar, followed by cooling, followed by aging at 600 ° C. for 2 hours in Ar to produce a permanent magnet. 20 mm outer diameter x 10 m inner diameter from the obtained permanent magnet
A test piece was cut into a dimension of mx 1.5 mm in thickness. As a cationic electrodeposition paint, an epoxy-based Svia CED, S-20 (manufactured by Shinto Paint Co., Ltd.) was used. The test piece previously degreased with trichlorene was used as a cathode, and a SUS316 material plate was used as an anode. Temperature 28 ° C, voltage 1
Electrodeposition coating was performed under the conditions of 50 V and 3 minutes. Then, after being washed with water and air-dried, it was kept at 180 ° C. for 30 minutes to prepare a permanent magnet sample piece according to the present invention having a resin layer adhered to the surface. The test piece was subjected to a corrosion resistance test and an adhesion strength test of the resin layer after the corrosion resistance test. Further, the resin layer thickness and the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Tables 1 and 2. In the corrosion resistance test, the appearance of the test piece when the test piece was left in an atmosphere at a temperature of 60 ° C. and a humidity of 90% for 200 hours was evaluated. In the adhesion strength test, the test piece after the corrosion resistance test was 1 m with an adhesive tape.
The mesh portions at m intervals were pulled and evaluated whether or not the resin layer was peeled (the number of non-peeled squares / the total number of squares). COMPARATIVE EXAMPLE For comparison, the test piece of Example 1 was sprayed with an epoxy-based coating material on the front and back surfaces in two parts by spraying, and further dried at 80 ° C. for one hour. Was carried out to obtain a comparative test piece having a coating film on the surface by a spray method. The same test and measurement as in Example 1 were performed on this comparative test piece, and the results are similarly shown in Tables 1 and 2. Example 2 As starting materials, electrolytic iron of 99.9% purity, electrolytic cobalt, and 19.4% of B were contained, and the balance was Fe, Al, Si,
Ferroboron alloy consisting of impurities such as C, purity 99.7
% Of Nd, these are melted by high frequency, and then cast into a water-cooled steel mold to obtain 16Nd7B10Co67Fe.
(Atomic%). Thereafter, the ingot was roughly pulverized by a stamp mill and then pulverized by a ball mill to obtain a fine powder having a particle size of 3 μm. This fine powder is inserted into a mold and 12 kOe
And molded at a pressure of 1.5 t / cm 2 . The obtained molded article was heated at 1100 ° C. for 1 hour.
Sintering was performed in Ar, followed by cooling, followed by aging at 600 ° C. for 2 hours in Ar to produce a permanent magnet. 20 mm outer diameter x 10 m inner diameter from the obtained permanent magnet
A test piece was cut into a dimension of mx 1.5 mm in thickness. Acrylic Svia ED, 108-U (manufactured by Shinto Paint Co., Ltd.) was used as an anion electrodeposition paint. The test piece previously degreased with trichlene was used as an anode, and a SUS316 material plate was used as a cathode. Temperature 28 ° C, voltage 2
Electrodeposition coating was performed at 30 V for 2 minutes. Then, after washing with water and air-drying,
For 30 minutes to prepare a permanent magnet sample piece according to the present invention having a surface coated with a resin layer. The test piece was subjected to the same corrosion resistance test as in Example 1 and the adhesion strength test of the resin layer after the corrosion resistance test.
Further, the resin layer thickness and the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Tables 1 and 2. Example 3 As a starting material, 99.9% of pure iron electrolytic iron, B19.4
%, And the remainder is made of a ferroboron alloy composed of impurities such as Fe and Al, Si, and C, and Nd and Dy metals having a purity of 99.7% or more, which are subjected to high frequency melting and then cast into a water-cooled steel mold. 15Nd1.5Dy8B75.5F
An ingot having a composition of e (atomic%) was obtained. Thereafter, the ingot was roughly pulverized by a stamp mill and then pulverized by a ball mill to obtain a fine powder having a particle size of 3 μm. This fine powder is inserted into a mold and 12 kOe
And molded at a pressure of 1.5 t / cm 2 . The obtained molded body was heated at 1100 ° C. for 1 hour.
Sintering was performed in Ar, followed by cooling, followed by aging at 600 ° C. for 2 hours in Ar to produce a permanent magnet. 20 mm outer diameter x 10 m inner diameter from the obtained permanent magnet
A test piece was cut into a dimension of mx 1.5 mm in thickness. Epoxy Svia CED, S-20 (manufactured by Shinto Paint Co., Ltd.) was used as the cationic electrodeposition paint, the test piece was used as a cathode, the SUS316 material plate was used as an anode, the temperature was 28 ° C., and the voltage was 150 V. Electrodeposition was applied under the conditions of 3 minutes. Then, after washing with water and air-drying,
For 30 minutes to prepare a permanent magnet sample piece according to the present invention having a surface coated with a resin layer. The test piece was subjected to a corrosion resistance test and an adhesion strength test of the resin layer after the corrosion resistance test. In addition, the thickness of the coating layer and the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Tables 1 and 2. [Table 1] [Table 2] As is clear from the test and measurement results in Tables 1 and 2, the permanent magnet having the resin layer formed by electrodeposition coating according to the present invention has a required film thickness as compared with the comparative example. , And excellent uniformity are obtained, so that the oxidation of the surface of the permanent magnet is reliably prevented, and there is no deterioration in the magnetic properties.
The magnetic properties are significantly improved as compared with the comparative example. That is, according to the present invention, in order to suppress oxides generated on the surface of the Fe-BR-based permanent magnet, a corrosion-resistant resin layer formed by electrodeposition coating is applied, so that the surface has a uniform film thickness. Thus, a strong and stable corrosion-resistant resin layer can be formed, the oxidation of the surface of the present magnet body is suppressed, and there is an advantage that the magnetic properties are stable without deterioration for a long time.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/053 C22C 38/00 303 C25D 13/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/053 C22C 38/00 303 C25D 13/12

Claims (1)

(57)【特許請求の範囲】 1.R(但しRはYを含む希土類元素のうち少なくとも
1種)8原子%〜30原子%、B2原子%〜28原子
%、Fe42原子%〜90原子%を主成分とし、主相が
正方晶相からなる永久磁石体表面に均一厚みの電着塗装
膜からなる耐食性樹脂層を有することを特徴する耐食性
のすぐれた永久磁石。
(57) [Claims] R (where R is at least one of the rare earth elements including Y) 8 to 30 atom%, B 2 to 28 atom%, Fe 42 to 90 atom% as a main component, and the main phase is a tetragonal phase A permanent magnet having excellent corrosion resistance, characterized by having a corrosion-resistant resin layer composed of an electrodeposition coating film having a uniform thickness on the surface of a permanent magnet body composed of:
JP10029244A 1998-01-26 1998-01-26 Permanent magnet with excellent corrosion resistance Expired - Lifetime JP3108400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029244A JP3108400B2 (en) 1998-01-26 1998-01-26 Permanent magnet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029244A JP3108400B2 (en) 1998-01-26 1998-01-26 Permanent magnet with excellent corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59252678A Division JPS61130453A (en) 1984-11-28 1984-11-28 Permanent magnet material having superior corrosion resistance and its manufacture

Publications (2)

Publication Number Publication Date
JPH10256012A JPH10256012A (en) 1998-09-25
JP3108400B2 true JP3108400B2 (en) 2000-11-13

Family

ID=12270846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029244A Expired - Lifetime JP3108400B2 (en) 1998-01-26 1998-01-26 Permanent magnet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3108400B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371419B2 (en) 2008-04-22 2013-02-12 3M Innovative Properties Company Hybrid sound absorbing sheet
US8469145B2 (en) 2008-04-14 2013-06-25 3M Innovative Properties Company Multilayer sound absorbing sheet
US8573358B2 (en) 2008-05-22 2013-11-05 3M Innovative Properties Company Multilayer sound absorbing structure comprising mesh layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370559C (en) * 2003-11-17 2008-02-20 上海核工业第八研究所 Binding neodybium iron boron magnet surface cathode electrophoresis production technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469145B2 (en) 2008-04-14 2013-06-25 3M Innovative Properties Company Multilayer sound absorbing sheet
US8371419B2 (en) 2008-04-22 2013-02-12 3M Innovative Properties Company Hybrid sound absorbing sheet
US8573358B2 (en) 2008-05-22 2013-11-05 3M Innovative Properties Company Multilayer sound absorbing structure comprising mesh layer

Also Published As

Publication number Publication date
JPH10256012A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP6269279B2 (en) Permanent magnet and motor
JPH0374012B2 (en)
JP2008263208A (en) Corrosion-resistant rare earth magnet
JP2017076680A (en) R-t-b based sintered magnet, and motor
JPH053722B2 (en)
JPH056322B2 (en)
JPH0422007B2 (en)
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0422010B2 (en)
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JPH0422008B2 (en)
US9850559B2 (en) Permanent magnet and variable magnetic flux motor
JPH0569282B2 (en)
JP3208057B2 (en) Corrosion resistant permanent magnet
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
JPH0554683B2 (en)
JPH0535216B2 (en)
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0644523B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0752685B2 (en) Corrosion resistant permanent magnet
JP2922601B2 (en) Resin molded magnet
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0821511B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP3411605B2 (en) Corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term