JPS61130453A - Permanent magnet material having superior corrosion resistance and its manufacture - Google Patents

Permanent magnet material having superior corrosion resistance and its manufacture

Info

Publication number
JPS61130453A
JPS61130453A JP59252678A JP25267884A JPS61130453A JP S61130453 A JPS61130453 A JP S61130453A JP 59252678 A JP59252678 A JP 59252678A JP 25267884 A JP25267884 A JP 25267884A JP S61130453 A JPS61130453 A JP S61130453A
Authority
JP
Japan
Prior art keywords
permanent magnet
resin layer
atomic
corrosion resistance
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59252678A
Other languages
Japanese (ja)
Other versions
JPH053722B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Tetsuharu Hayakawa
早川 徹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59252678A priority Critical patent/JPS61130453A/en
Publication of JPS61130453A publication Critical patent/JPS61130453A/en
Publication of JPH053722B2 publication Critical patent/JPH053722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To inhibit the surface oxidation of a permanent magnet body and to prevent deterioration in the magnetic characteristics by coating the surface of the magnet body contg. prescribed percentages of a rare earth element, B and Fe with paint by electrodeposition to form a corrosion resistant resin layer. CONSTITUTION:A permanent magnet body contg., by atom, 3-30% one or more kinds of rare earth elements including Y, 2-28% B and 42-90% Fe as the principal components and having a tetragonal phase as the principal phase is manufactured. The magnet body is immersed in water paint and coated by electrodeposition to form a corrosion resistant resin layer on the surface. By the resin layer, the surface oxidation of the magnet body is suppressed, and deterioration in the magnetic characteristics is prevented.

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種)、B、Feを主成分とする永久磁石材料に係
り、永久磁石材料の耐食性を改善した希土類・ボロン・
鉄系永久磁石材料及びその製造方法に関する。
Detailed Description of the Invention Field of Application This invention relates to a permanent magnet material whose main components are R (R is at least one rare earth element including Y), B, and Fe, and which improves the corrosion resistance of the permanent magnet material. Improved rare earths, boron,
This invention relates to iron-based permanent magnet materials and manufacturing methods thereof.

背景技術 現在の代表的な永久磁石材料は、アルニコ、八−ドフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND OF THE INVENTION Current typical permanent magnet materials are alnico, octoferrite, and rare earth cobalt magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜3owt%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。
As the raw material situation for cobalt has become unstable in recent years, demand for alnico magnets containing 20 to 3 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials.

一方、希土類コバルト磁石はコバルトを50〜60wt
%も含むうえ、希土類鉱石中にあまり含まれていない珈
を使用するため大変高価であるが、他の磁石に比べて、
磁気特性が格段に高いため、主として小型で付加価値の
高い磁気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets contain 50 to 60wt of cobalt.
%, and it is very expensive because it uses copper, which is not included in rare earth ores, but compared to other magnets,
Due to its extremely high magnetic properties, it has come to be used mainly in small, high-value-added magnetic circuits.

そこで、本発明者は先に、高価な)やGを含有しない新
しい高性能永久磁石としてFs−B−R系(RはYを含
む希土類元素のうち少なくとも1種)永久磁石を提案し
た(特願昭57−145072号)。この永久磁石は、
Rとして陶や円を中心とする資源的に豊富な軽希土類を
用い、F・を主成分として25MGO@以上の極めて高
いエネルギー積を示す、すぐれた永久磁石である。
Therefore, the present inventors have previously proposed an Fs-BR-based permanent magnet (where R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive) or G. (Gan Sho 57-145072). This permanent magnet is
It is an excellent permanent magnet that uses abundant light rare earth materials such as ceramics and circles as R, and shows an extremely high energy product of 25 MGO@ or more with F as its main component.

しかしながら、上記のすぐれた磁気特性を有するFs−
BR系磁気異方性焼結体からなる永久磁石は主成分とし
て、空気中で酸化し次第に安定な酸化物を生成し易い希
土類元素及び鉄を含有するため、磁気回路に組込んだ場
合に、磁石表面に生成する酸化物により、磁気回路の出
力低下及び磁気回路間のばらつきを惹起し、また、表面
酸化物の脱落による周辺機器への汚染の問題があった。
However, Fs-
Permanent magnets made of BR-based magnetically anisotropic sintered bodies contain rare earth elements and iron, which tend to oxidize in the air and gradually form stable oxides, so when incorporated into a magnetic circuit, The oxides generated on the magnet surface cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and there is also the problem of contamination of peripheral equipment due to the falling off of the surface oxide.

そこで、上記のF・−[3−R系永久磁石の耐食性の改
善のため、磁石体表面にスプレー法あるいは浸漬法によ
って、耐食性樹脂層を被覆した永久磁石を提案(特願昭
58−171907号)した。しかし、スプレー法によ
る樹脂の塗装には方向性があるため、被処理物表面全体
に均一な樹脂被膜を施すのに多大の工程1手間を要し、
特に形状が複雑な異形磁石体に均一厚みの被膜を施すこ
とは困難であり、また、浸漬法では樹脂被膜厚みが不均
一になり、製品寸法精度が悪い問題があった。
Therefore, in order to improve the corrosion resistance of the above-mentioned F/-[3-R permanent magnets, we proposed a permanent magnet whose surface was coated with a corrosion-resistant resin layer by spraying or dipping (Japanese Patent Application No. 171907/1983). )did. However, since resin coating using the spray method is directional, it takes a lot of time and effort to apply a uniform resin coating to the entire surface of the object being treated.
In particular, it is difficult to apply a coating of uniform thickness to irregularly shaped magnets with complex shapes, and the dipping method results in non-uniform resin coating thicknesses, resulting in poor product dimensional accuracy.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料の耐食性を改善した希土類・ボロン・鉄を
主成分とする永久磁石材料を目的とし、また、磁石材料
表面に均一厚みの耐食性樹脂層を設けることができる製
造方法を目的としている。
Purpose of the Invention The object of the present invention is to provide a permanent magnet material mainly composed of rare earths, boron, and iron, which has improved corrosion resistance. The purpose is to provide a manufacturing method that can provide a corrosion-resistant resin layer with a uniform thickness.

発明の構成と効果 この発明は、R(但しRはYを含む希土類元素のうち少
なくとも1種)8原子%〜30原子%、B 2原子%〜
28原子%、Fe42原子%〜90原子%を主成分とし
主相が正方晶相からなる永久磁石体表面に電着塗装によ
る耐食性樹脂層を有することを特徴する永久磁石材料で
あり、さらに、前記の主相が正方晶相からなる永久磁石
体を、水性塗料中に浸漬し、該永久磁石体を陽極あるい
は陰極とし、該永久磁石体と対極間に直流電流を給電し
、該永久磁石体全体に電気的に塗装を施し、表面に耐食
性樹脂層を形成することを特徴とする耐食性にすぐれた
永久磁石材料の製造方法である。
Structure and Effects of the Invention This invention provides R (wherein R is at least one kind of rare earth elements including Y) from 8 atomic % to 30 atomic %, and B from 2 atomic % to
A permanent magnet material characterized by having a corrosion-resistant resin layer by electrodeposition on the surface of a permanent magnet body whose main components are 28 atomic % and 42 atomic % to 90 atomic % Fe, and the main phase is a tetragonal phase. A permanent magnet body whose main phase is a tetragonal phase is immersed in a water-based paint, the permanent magnet body is used as an anode or a cathode, and a direct current is supplied between the permanent magnet body and the counter electrode, and the entire permanent magnet body is This is a method for producing a permanent magnet material with excellent corrosion resistance, which is characterized by electrically coating the material and forming a corrosion-resistant resin layer on the surface.

この発明は、水系永久磁石材料表面に生成する酸化物を
抑制するため、該表面に膜厚が均一で、強固かつ安定な
耐食性樹脂層を形成するものであり、この電着塗装によ
る耐食性樹脂層を施すことによって、磁石体表面の酸化
が抑制され、磁気特性が劣化することなくかつ長期にわ
たって安定する利点がある。
In order to suppress oxides generated on the surface of a water-based permanent magnet material, this invention forms a strong and stable corrosion-resistant resin layer with a uniform thickness on the surface, and this corrosion-resistant resin layer is formed by electrodeposition coating. By applying this, oxidation of the surface of the magnet body is suppressed, and the magnetic properties have the advantage of being stable over a long period of time without deterioration.

この発明における耐食性樹脂層を磁石材料表面に形成す
る方法は、永久磁石体を、水性塗料中に浸漬し、該永久
磁石体を陽極あるいは陰極とし、該永久磁石体と対極間
に直流電流を給電し、該永久磁石体全体に電気的に塗装
を施し、表面に耐食性樹脂層を形成する電着塗装法であ
り、被処理磁石体を陽極にしたアニオン電着塗装法ある
いは被処理磁石体を陰極にしたカチオン電着塗装法を採
用することができる。
The method of forming a corrosion-resistant resin layer on the surface of a magnet material in this invention involves immersing a permanent magnet in a water-based paint, using the permanent magnet as an anode or a cathode, and supplying direct current between the permanent magnet and a counter electrode. This is an electrodeposition coating method in which the entire permanent magnet is electrically coated to form a corrosion-resistant resin layer on the surface.An anion electrodeposition coating method uses the magnet to be treated as an anode, or an anion electrodeposition coating method uses the magnet to be treated as a cathode. A cationic electrodeposition coating method can be employed.

上記の7ニオン電着塗装に使用される樹脂は、乾性油、
ポリエステル、ポリブタジェン、エポキシエステル、ポ
リアクリル酸エステルなどを骨核としたポリカルボン酸
樹脂であり、通常、有機アミンあるいは苛性カリ等の塩
基で中和し、水溶液化あるいは水分散化されて負に荷電
する。
The resin used for the above 7-ion electrodeposition coating is drying oil,
It is a polycarboxylic acid resin whose core is polyester, polybutadiene, epoxy ester, polyacrylic acid ester, etc. It is usually neutralized with an organic amine or a base such as caustic potassium, and then turned into an aqueous solution or dispersed to become negatively charged. .

また、カチオン電着塗装に使用される樹脂は、主として
、エポキシ系樹脂、アクリル系樹脂などを骨核にしたポ
リアミノ樹脂で、通常、有機酸で中和し、水溶液化ある
いは水分散化されて正に荷電する この発明において、永久磁石材料表面N!I塗装によっ
て、耐食性樹脂層の厚みは、5項〜30屡の厚みが得ら
れる。
In addition, the resin used for cationic electrodeposition coating is mainly a polyamino resin whose core is epoxy resin, acrylic resin, etc., and is usually neutralized with an organic acid and made into an aqueous solution or water dispersion. In this invention, the permanent magnet material surface N! By applying I coating, the thickness of the corrosion-resistant resin layer can be 5 to 30 mm.

さらに、防錆、塗膜補強改善の目的で、上記の樹脂中に
、酸化亜鉛、クロム酸亜鉛、クロム酸ストロンチウム、
鉛丹などの防錆用顔料を含有していてもよく、あるいは
ベンゾトリアゾールを含有するものでもよい。
Furthermore, for the purpose of rust prevention and improving paint film reinforcement, zinc oxide, zinc chromate, strontium chromate, etc. are added to the above resin.
It may contain a rust preventive pigment such as red lead, or it may contain benzotriazole.

この発明において、樹脂中に含有される上記の顔料は、
樹脂量に対して、80%以下でよく、またベンゾトリア
ゾール量は樹脂量に対して、5%以下の含有でよい。
In this invention, the above pigment contained in the resin is
The amount of benzotriazole may be 80% or less based on the amount of resin, and the amount of benzotriazole may be 5% or less based on the amount of resin.

また、電着塗装法によって樹脂層を被着ツる前に、永久
磁石体の表面にF地処理を施すのもよく、下地処理膜に
は、燐酸亜鉛、燐酸マンガン、等の燐酸塩被膜、あるい
はクロム酸塩被膜が好ましく、下地処理の化成被膜厚み
は、燐酸塩被膜の場合は、耐食性及び強度、コスト面か
ら3虜〜10.is厚み、クロム酸塩の場合は5−以下
が好ましい。
In addition, before applying the resin layer by electrodeposition coating, it is also good to apply F-base treatment to the surface of the permanent magnet body, and the base treatment film may include a phosphate coating such as zinc phosphate, manganese phosphate, etc. Alternatively, a chromate coating is preferable, and in the case of a phosphate coating, the thickness of the chemical conversion coating for base treatment is 3 to 10 mm in terms of corrosion resistance, strength, and cost. The is thickness is preferably 5- or less in the case of chromate.

また、この発明の永久磁石用合金は、結晶粒径が1〜1
00.の範囲にある正方品系の結晶構造を有する化合物
を少なくとも50vo1%以上と、体積比で1%〜50
%の非磁性相(酸化物相を除く)を含むことを特徴とす
る。
Further, the alloy for permanent magnets of this invention has a crystal grain size of 1 to 1.
00. At least 50vol.1% or more of a compound having a tetragonal crystal structure in the range of 1% to 50vol.
% of non-magnetic phase (excluding oxide phase).

したがって、この発明の永久磁石は、kとして陶や円を
中心とする資源的に豊富な軽希土類を主に用い、Fe、
13.R,を主成分とすることにより、25MGOe以
上の極めて高いエネルギー積並びに、高残留磁束密度、
高保持力を有し、かつ高い耐食性を有する、すぐれた永
久磁石を安価に得ることができる。
Therefore, the permanent magnet of this invention mainly uses light rare earths, which are rich in resources, mainly ceramics and circles, as k, and Fe,
13. By using R as the main component, it has an extremely high energy product of 25 MGOe or more, a high residual magnetic flux density,
An excellent permanent magnet having high coercive force and high corrosion resistance can be obtained at low cost.

永久磁石材料の限定理由 この発明の永久磁石に用いる希土類元素Rは、8原子%
〜30原子%のNd 、 Pr 、 Dy 、 HO。
Reasons for limiting the permanent magnet material The rare earth element R used in the permanent magnet of this invention is 8 atomic %.
~30 atomic % Nd, Pr, Dy, HO.

Tbのうち少なくとも1種、あるいはさらに、la、C
e、Gd、Er、Eu、P3 Tm。
At least one of Tb, or in addition, la, C
e, Gd, Er, Eu, P3 Tm.

Yb、Yのうち少なくとも1種を含むものが好ましい。Those containing at least one of Yb and Y are preferred.

又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることができる。
Further, one type of R is usually sufficient, but in practice, a mixture of two or more types (Mitsuhmetal, dididium, etc.) can be used for reasons such as convenience of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規な上記系永久磁石における、必須元素であって、8原
子%未満では、結晶構造がα−鉄と同一構造の立方晶組
織となるため、高磁気特性、特に高保磁力が得られず、
30原子%を越えると、Rリッチな非磁性相が多くなり
、残留磁束密度(Sr )が低下して、ずぐれた特性の
永久磁石が17られない。よって、希土類元素は、8原
子%〜30原子%の範囲とする。
R (at least one rare earth element including Y) is an essential element in the above-mentioned novel permanent magnet, and when it is less than 8 at%, the crystal structure becomes a cubic structure that is the same as α-iron. Therefore, high magnetic properties, especially high coercive force, cannot be obtained.
If it exceeds 30 atomic %, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Sr) decreases, and a permanent magnet with poor characteristics cannot be produced. Therefore, the rare earth element is in the range of 8 atomic % to 30 atomic %.

Bは、新規な上記系永久磁石における、必須元素であっ
て、2原子%未満では、菱面体組織となり、高い保磁力
(1f−1c )は得られず、28原子%を越えると、
Bリッチな非磁性相が多くなり、残留磁束密度(Sr 
)が低下するため、すぐれた永久磁石が得られない。よ
って、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the new above-mentioned permanent magnet, and if it is less than 2 atom%, it will form a rhombohedral structure and a high coercive force (1f-1c) cannot be obtained, and if it exceeds 28 atom%,
The B-rich nonmagnetic phase increases, and the residual magnetic flux density (Sr
) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、新規な上記系永久磁石において、必須元素であ
り、42原子%未満では残留磁束密度(Br )が低下
し、90原子%を越えると、高い保磁力が得られないの
で、Feは42原子%〜90原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 42 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 90 at%, a high coercive force cannot be obtained. The content is from atomic % to 90 atomic %.

また、この発明による永久磁石用合金において、Feの
一部を6で置換することは、得られる磁石の磁気特性を
損うことなく、温度特性を改善することができるが、C
o置換量がFsの50%を越えると、逆に磁気特性が劣
化するため、好ましくない。
In addition, in the alloy for permanent magnets according to the present invention, replacing a part of Fe with 6 can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the amount of o substitution exceeds 50% of Fs, the magnetic properties will deteriorate, which is not preferable.

また、この発明による永久磁石は、R,B。Further, the permanent magnet according to the present invention has R and B magnets.

Feの他、工業的生産上不可避的不純物の存在を許容で
きるが、Bの 一部を4.0原子%以下のC13,5原
子%以下のP、2.5原子%以下のS、3.5原子%以
下のCuのうち少なくとも1種、合計量で4.0原子%
以下で置換することにより、永久磁石の製造性改善、低
価格化が可能である。
In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B may be 4.0 atomic % or less of C13, 5 atomic % or less of P, 2.5 atomic % or less of S, 3. At least one type of Cu of 5 at% or less, 4.0 at% in total amount
By substituting with the following, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力等を改善あるいは製
造性の改善、低価格化に効果があるため添加する。しか
し、保磁力改善のための添加に伴ない残留磁束密度(B
r )の低下を沼来するので、従来のハードフェライト
磁石の残留磁束密度と同等以上となる範囲での添加が望
ましい。
Furthermore, at least one of the following additional elements is R-B-
It is added to Fe-based permanent magnets because it is effective in improving coercive force, etc., improving manufacturability, and reducing costs. However, the residual magnetic flux density (B
r ), it is desirable to add it in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

9.5原子%以下のAt、4.5原子%以下のTi。9.5 atomic % or less of At, 4.5 atomic % or less of Ti.

9.5原子%以下のV、8.5原子%以下のCr。9.5 atomic % or less of V, 8.5 atomic % or less of Cr.

8.0原子%以下のMn、5原子%以下の81.12.
5原子%以下のNb 、 10.5原子%以下のTa。
8.0 atomic % or less of Mn, 5 atomic % or less of 81.12.
Nb of 5 atomic % or less, Ta of 10.5 atomic % or less.

9.5原子%以下のMo2S、5原子%以下のW、2.
5原子%以下のsb、7原子%以下のQe135原子%
以下の3n15.5原子%以Fのlr。
Mo2S of 9.5 atomic % or less, W of 5 atomic % or less, 2.
sb of 5 atom% or less, Qe135 atom% of 7 atom% or less
The following 3n15.5 atomic % or more of F lr.

5.5原子%以下のHfのうち少なくとも1種を添加含
有、但し、2種以上含有する場合は、その最大含有量は
当該添加元素のうち最大値を有するものの原子%以下の
含有させることにより、永久磁石の高保磁力化が可能に
なる。
Addition of at least one type of Hf of 5.5 atomic % or less; however, if two or more types are contained, the maximum content shall be atomic % or less of the one with the maximum value among the added elements. , it becomes possible to increase the coercive force of permanent magnets.

結晶相は主相が正方晶であることが、すぐれた磁気特性
を有する焼結永久磁石を作製するのに不可欠である。
It is essential for the main crystal phase to be tetragonal in order to produce a sintered permanent magnet with excellent magnetic properties.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久磁石は、保磁力1l−1c≧1KO
e、残留磁束密度Br > 4KG、を示し、最大エネ
ルギー積(B H) wraxはハードフェライトと同
等以上となり、最も好ましい組成範囲では、(BH)I
laX≧10MGOeを示し、最大値は25M GOe
以上に達する。
The permanent magnet according to the present invention has a coercive force of 1l-1c≧1KO
e, the residual magnetic flux density Br > 4KG, the maximum energy product (BH) wrax is equal to or higher than that of hard ferrite, and in the most preferable composition range, (BH)I
laX≧10MGOe, maximum value is 25MGOe
reach more than that.

また、この発明永久磁石用合金のRの主成分がその50
%以上を軽希土類金属が占める場合で、R12原子%〜
20原子%、B44原子〜24原子%、F・65原子%
〜82原子%、を主成分とするとき、焼結磁石の場合量
もすぐれた磁気特性を示し、特に軽希土類金属が陶の場
合には、(BH)IlaXはその最大値が35MGOe
以上に達する。
Further, the main component of R in the alloy for permanent magnets of this invention is 50
% or more is occupied by light rare earth metal, R12 atomic % ~
20 atom%, B44 atom to 24 atom%, F.65 atom%
~82 at% as the main component, the sintered magnet also exhibits excellent magnetic properties, and especially when the light rare earth metal is ceramic, (BH)IlaX has a maximum value of 35 MGOe.
reach more than that.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はF・及びM、S5C等の不純物からな
るフェロボロン合金、純度99.7%以上の陶を使用し
、これらを高周波溶解し、その後水冷銅鋳型に鋳造し、
15陶8877F・(原子%)なる組成の鋳塊を得た。
Examples Example 1 As a starting material, electrolytic iron with a purity of 99.9%, 819.4
A ferroboron alloy with a purity of 99.7% or more is used, and the rest is made of impurities such as F, M, and S5C, which are melted by high frequency, and then cast into a water-cooled copper mold.
An ingot with a composition of 15 porcelain 8877F (atomic %) was obtained.

その後インゴットを、スタンプミルにより粗粉砕し、次
にボールミルにより粉砕し、粒度3摩の微粉末を得た。
Thereafter, the ingot was coarsely ground using a stamp mill and then ground using a ball mill to obtain a fine powder with a particle size of 3 millimeters.

この微粉末を金型に挿入し、12KOsの磁界中で配向
し、1.5 t4の圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 12 KOs, and molded at a pressure of 1.5 t4.

得られた成形体を、1100℃、 1時間、Ar中、の
条件で焼結し、その後放冷し、さらにAr中ので600
℃、2時間の時効処理を施して、永久磁石を作製した。
The obtained compact was sintered at 1100°C for 1 hour in Ar, then allowed to cool, and further sintered at 600°C in Ar.
A permanent magnet was produced by subjecting it to aging treatment at ℃ for 2 hours.

得られた永久磁石から外径2(1mnX内径10鴫×厚
み1.5M寸法に試験片を切り出した。
A test piece was cut out from the obtained permanent magnet to have dimensions of outer diameter 2 (1 mm) x inner diameter 10 m x thickness 1.5 m.

カチオンTi着塗料として、エポキシ系のニスビアCE
D、5−20 (神東塗料株式会社製)を使用し、予め
トリクレンにて脱脂した上記試験片を陰極とし、5US
316材板を陽極とし、温度28℃。
Epoxy Nisbia CE is used as a cationic Ti coating.
D, 5-20 (manufactured by Shinto Paint Co., Ltd.), the above test piece previously degreased with trichlorene was used as a cathode, and 5US
A 316 wood plate was used as the anode, and the temperature was 28°C.

電圧150V、3分の条件で電着塗装を施した。Electrodeposition coating was performed at a voltage of 150 V for 3 minutes.

ついで、水洗し、風乾したのち、180℃で30分間保
持して、表面に樹脂層を被着したこの発明による永久磁
石体試料片を作製した。この試験片に耐食性試験と耐食
性試験後の樹脂層の密着強度試験を行なった。また、樹
脂層厚みと耐食性試験前後の磁気特性を測定した。試験
結果及び測定結果は第1表に示す。
Then, after washing with water and air drying, the sample was held at 180° C. for 30 minutes to produce a permanent magnet sample piece according to the present invention with a resin layer coated on the surface. This test piece was subjected to a corrosion resistance test and an adhesion strength test of the resin layer after the corrosion resistance test. In addition, the resin layer thickness and magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

また、比較のため、上記試験片に、エポキシ系塗料をス
プレー法にて、表裏面に2回に分けて塗装し、ざらに、
80℃、1時間の乾燥処理を行ない、表面にスプレー法
による塗膜を有する比較試験片を得た。この比較試験片
に上記の実施例1と同一の試験及び測定を行ない、その
結果を同様に第1表に示す。
For comparison, the above test piece was coated with epoxy paint twice on the front and back surfaces using a spray method.
A comparative test piece was obtained by drying at 80° C. for 1 hour and having a coating film formed by spraying on the surface. This comparative test piece was subjected to the same tests and measurements as in Example 1 above, and the results are also shown in Table 1.

耐食性試験は、上記試験片を60℃の温度、90%の湿
度の雰囲気に200時間放置した場合の試験片の外観状
況でもって評価した。
The corrosion resistance test was evaluated based on the appearance of the test piece when it was left in an atmosphere of 60° C. and 90% humidity for 200 hours.

また、密着強度試験は、耐食性試験後の上記試験片を、
粘着テープで1mm間隔の折目部分を引張り、樹脂層が
剥離するか否か(無剥離折目数/全枡目数)で評価した
In addition, in the adhesion strength test, the above test piece after the corrosion resistance test was
Folds spaced at 1 mm intervals were pulled with an adhesive tape, and evaluation was made based on whether or not the resin layer peeled (number of folds without peeling/number of total squares).

実施例2 出発原料として、純度99.9%の電解鉄、電解コバル
ト、819.4%を含有し残部はFe及び#、SL。
Example 2 Starting materials contained electrolytic iron and electrolytic cobalt with a purity of 99.9% and 819.4%, with the remainder being Fe, #, and SL.

C等の不純物からなるフェロボロン合金、純度99.1
%以上の陶を使用し、これらを高周波溶解し、その接水
冷鋼鋳型に鋳造し、16tJ 7E31QCO67F+
1(原子%)なる組成の鋳塊を得た。
Ferroboron alloy consisting of impurities such as C, purity 99.1
% or more, melted them using high frequency, and cast them in a water-cooled steel mold to produce 16tJ 7E31QCO67F+
An ingot with a composition of 1 (atomic %) was obtained.

その後インゴットを、スタンプミルにより粗粉砕し、次
にボールミルにより粉砕し、粒度3虐の微粉末を得た。
Thereafter, the ingot was coarsely ground using a stamp mill, and then ground using a ball mill to obtain a fine powder with a particle size of 3.

この微粉末を金型に挿入し、12KO@の磁界中で配向
し、1,5 t4の圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 12 KO@, and molded at a pressure of 1.5 t4.

得られた成形体を、1100℃、 1時間、 Ar中、
の条件で焼結し、その後放冷し、ざらにに中ので600
℃、2時間の時効処理を施して、永久磁石を作製した。
The obtained molded body was heated at 1100°C for 1 hour in Ar.
Sintered under the conditions of
A permanent magnet was produced by subjecting it to aging treatment at ℃ for 2 hours.

得られた永久磁石から外径20mmX内径10 mm 
X厚み1.5m寸法に試験片を切り出した。
The obtained permanent magnet has an outer diameter of 20 mm and an inner diameter of 10 mm.
A test piece was cut out to a size of 1.5 m in thickness.

7ニオンms塗料として、アクリル系のニスビアED、
108−U (神東塗料株式会社製)を使用し、予めト
リクレンにて脱脂した上記試験片を陽極とし、5tJS
316材板を陰極とし、温度28℃。
As a 7ion ms paint, acrylic Nisbia ED,
108-U (manufactured by Shinto Paint Co., Ltd.), the above test piece previously degreased with Trichlorene was used as an anode, and 5tJS was used.
A 316 material plate was used as the cathode, and the temperature was 28°C.

電圧230V、2分の条件で電着塗装を施した。Electrodeposition coating was performed at a voltage of 230 V for 2 minutes.

ついで、水洗し、風乾したのち、180℃で30分間保
持して、表面に樹脂層を被着したこの発明による永久磁
石体試料片を作製した。この試験片に実施例1の同方法
の耐食性試験と耐食性試験後の樹脂層の密着強度試験を
行なった。また、樹脂層厚みと耐食性試験前後の磁気特
性を測定した。試験結果及び測定結果は第1表に示す。
Then, after washing with water and air drying, the sample was held at 180° C. for 30 minutes to produce a permanent magnet sample piece according to the present invention with a resin layer coated on the surface. This test piece was subjected to a corrosion resistance test using the same method as in Example 1 and an adhesion strength test of the resin layer after the corrosion resistance test. In addition, the resin layer thickness and magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

実施例3 出RiF1.!:L、r、[99,9%(1)?IJ鉄
、819.4%を含有し残部はFs及びM、 SL、 
C等の不純物からなるフェロボロン合金、純度99.7
%以上の動及びき金属を使用し、これらを高周波溶解し
、その接水冷鋼鋳型に鋳造し、15陶1.5Dy BB
 75.5Fs(原子%)なる組成の鋳塊を得た。
Example 3 Ex-RiF1. ! :L, r, [99,9% (1)? IJ iron, containing 819.4%, the balance being Fs, M, SL,
Ferroboron alloy consisting of impurities such as C, purity 99.7
% or more of movable metals, these are high frequency melted and cast into a water-cooled steel mold to form a 1.5Dy BB
An ingot having a composition of 75.5Fs (atomic %) was obtained.

その後インゴットを、スタンプミルにより粗粉砕し、次
にボールミルにより粉砕し、粒度3A1111の微粉末
を得た。
Thereafter, the ingot was coarsely ground using a stamp mill, and then ground using a ball mill to obtain a fine powder with a particle size of 3A1111.

この微粉末を金型に挿入し、12KO@の磁界中で配向
し、1.5 t4の圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 12 KO@, and molded at a pressure of 1.5 t4.

得られた成形体を、1100℃、1時間、 Ar中、の
条件で焼結し、その後放冷し、さらにに中ので600℃
、2時間の時効処理を施して、永久磁石を作製した。
The obtained compact was sintered at 1100°C for 1 hour in Ar, then allowed to cool, and further heated at 600°C in an Ar atmosphere.
A permanent magnet was produced by subjecting it to aging treatment for 2 hours.

デられた永久磁石から外径20mmX内径10m+++
X厚み1,5nm+寸法に試験片を切り出した。
Outer diameter 20mm x inner diameter 10m +++
A test piece was cut out to a size of 1.5 nm + thickness.

次に試験片をトリクレンにて脱脂したのち、亜14.6
 Q/ t 、 燐1117.8 M i (1)18
m塩溶液にて、15℃、3分間の浸漬処理した。
Next, after degreasing the test piece with Triclean,
Q/t, phosphorus 1117.8 M i (1) 18
The sample was immersed in a salt solution at 15° C. for 3 minutes.

カチオン電着塗料として、エポキシ系のニスビアCED
、5−20 (神東塗料株式会社!!l)を使用し、上
記試験片を陰極とし、5LIS316材板を陽極とし、
温度28℃、電圧150V、3分の条件で電着塗装を施
した。
Epoxy Nisbia CED as a cationic electrodeposition paint
, 5-20 (Shinto Paint Co., Ltd.!!l), the above test piece was used as the cathode, the 5LIS316 material plate was used as the anode,
Electrodeposition coating was performed at a temperature of 28° C., a voltage of 150 V, and a duration of 3 minutes.

ついで、水洗し、風乾したのち、180℃で30分間保
持して、表面に樹脂層を被着したこの発明による永久磁
石体試料片を作製した。この試験片に耐食性試験と耐食
性試験後の樹脂層の密着強度試験を行なった。また、樹
脂層厚みと耐食性試験前後の磁気特性を測定した。試験
結果及び測定結果は第1表に示す。
Then, after washing with water and air drying, the sample was held at 180° C. for 30 minutes to produce a permanent magnet sample piece according to the present invention with a resin layer coated on the surface. This test piece was subjected to a corrosion resistance test and an adhesion strength test of the resin layer after the corrosion resistance test. In addition, the resin layer thickness and magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

以下余白 第1表の試験及び測定結果に明らかなように、この発明
による樹脂層は、比較例に対して、膜厚が所要厚みで、
かつ格段にすぐれた均一度が得られているため、永久磁
石体の酸化が確実に防止されており、磁気特性の劣化が
なく、比較例に対して磁気特性の向上が著しいことが分
る。
As is clear from the test and measurement results in Table 1 below, the resin layer according to the present invention has a film thickness of the required thickness compared to the comparative example.
In addition, it can be seen that since extremely excellent uniformity was obtained, oxidation of the permanent magnet body was reliably prevented, there was no deterioration of the magnetic properties, and the magnetic properties were significantly improved compared to the comparative example.

Claims (1)

【特許請求の範囲】 1 R(但しRはYを含む希土類元素のうち少なくとも
1種)8原子%〜30原子%、B 2原子%〜28原子
%、Fe 42原子%〜90原子%を主成分とし主相が
正方晶相からなる永久磁石体表面に電着塗装による耐食
性樹脂層を有することを特徴する耐食性のすぐれた永久
磁石材料。 2 R(但しRはYを含む希土類元素のうち少なくとも
1種)8原子%〜30原子%、B 2原子%〜28原子
%、Fe 42原子%〜90原子%を主成分とし主相が
正方晶相からなる永久磁石体を、水性塗料中に浸漬し、
該永久磁石体を陽極あるいは陰極とし、該永久磁石体と
対極間に直流電流を給電し、該永久磁石体全体に電気的
に塗装を施し、表面に耐食性樹脂層を形成することを特
徴とする耐食性にすぐれた永久磁石材料の製造方法。
[Claims] 1 R (wherein R is at least one rare earth element including Y) 8 at% to 30 at%, B 2 at% to 28 at%, Fe 42 at% to 90 at% A permanent magnet material with excellent corrosion resistance characterized by having a corrosion-resistant resin layer coated by electrodeposition on the surface of a permanent magnet whose main phase is a tetragonal phase. 2 R (where R is at least one rare earth element including Y) 8 at% to 30 at%, B 2 at% to 28 at%, Fe 42 at% to 90 at%, and the main phase is square A permanent magnet consisting of a crystalline phase is immersed in a water-based paint,
The permanent magnet is used as an anode or a cathode, a direct current is supplied between the permanent magnet and a counter electrode, the entire permanent magnet is electrically coated, and a corrosion-resistant resin layer is formed on the surface. A method of manufacturing a permanent magnet material with excellent corrosion resistance.
JP59252678A 1984-11-28 1984-11-28 Permanent magnet material having superior corrosion resistance and its manufacture Granted JPS61130453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252678A JPS61130453A (en) 1984-11-28 1984-11-28 Permanent magnet material having superior corrosion resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252678A JPS61130453A (en) 1984-11-28 1984-11-28 Permanent magnet material having superior corrosion resistance and its manufacture

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3340179A Division JPH0644523B2 (en) 1991-11-28 1991-11-28 Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JP10029244A Division JP3108400B2 (en) 1998-01-26 1998-01-26 Permanent magnet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61130453A true JPS61130453A (en) 1986-06-18
JPH053722B2 JPH053722B2 (en) 1993-01-18

Family

ID=17240713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252678A Granted JPS61130453A (en) 1984-11-28 1984-11-28 Permanent magnet material having superior corrosion resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPS61130453A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377102A (en) * 1986-09-19 1988-04-07 Sumitomo Special Metals Co Ltd Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JPS6377104A (en) * 1986-09-19 1988-04-07 Sumitomo Special Metals Co Ltd Rare-earth magnet excellent in corrosion resistance
JPS63195246A (en) * 1987-02-04 1988-08-12 クルーシブル マテリアルス コーポレイシヨン Permanent magnet alloy adaptable to high temperature
JPH01245880A (en) * 1988-03-29 1989-10-02 Daido Steel Co Ltd Method for coating rare-earth element magnet
US4888506A (en) * 1987-07-09 1989-12-19 Hitachi Metals, Ltd. Voice coil-type linear motor
JPH0311712A (en) * 1989-06-09 1991-01-21 Kanegafuchi Chem Ind Co Ltd Manufacture of plastic magnet
JPH0311704A (en) * 1989-06-09 1991-01-21 Kanegafuchi Chem Ind Co Ltd Bonded magnet and manufacture thereof
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
JP2006156787A (en) * 2004-11-30 2006-06-15 Tdk Corp Permanent magnet and its manufacturing method and bonding method
US9005780B2 (en) 2004-03-26 2015-04-14 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body
US9903009B2 (en) 2004-03-31 2018-02-27 Tdk Corporation Rare earth magnet and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012252670B2 (en) 2011-05-10 2015-05-21 Saint-Gobain Glass France Pane having an electrical connection element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52718A (en) * 1975-06-24 1977-01-06 Hitachi Metals Ltd Process for producing magnets containing rare earth elements
JPS5681908A (en) * 1980-10-14 1981-07-04 Seiko Epson Corp Rare earth metal intermetallic compound sintered magnet having covered surface
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JPH056322A (en) * 1991-05-20 1993-01-14 Fuji Xerox Co Ltd Information resource accessing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52718A (en) * 1975-06-24 1977-01-06 Hitachi Metals Ltd Process for producing magnets containing rare earth elements
JPS5681908A (en) * 1980-10-14 1981-07-04 Seiko Epson Corp Rare earth metal intermetallic compound sintered magnet having covered surface
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JPH056322A (en) * 1991-05-20 1993-01-14 Fuji Xerox Co Ltd Information resource accessing system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377102A (en) * 1986-09-19 1988-04-07 Sumitomo Special Metals Co Ltd Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JPS6377104A (en) * 1986-09-19 1988-04-07 Sumitomo Special Metals Co Ltd Rare-earth magnet excellent in corrosion resistance
JPS63195246A (en) * 1987-02-04 1988-08-12 クルーシブル マテリアルス コーポレイシヨン Permanent magnet alloy adaptable to high temperature
US4888506A (en) * 1987-07-09 1989-12-19 Hitachi Metals, Ltd. Voice coil-type linear motor
JPH01245880A (en) * 1988-03-29 1989-10-02 Daido Steel Co Ltd Method for coating rare-earth element magnet
JPH0311712A (en) * 1989-06-09 1991-01-21 Kanegafuchi Chem Ind Co Ltd Manufacture of plastic magnet
JPH0311704A (en) * 1989-06-09 1991-01-21 Kanegafuchi Chem Ind Co Ltd Bonded magnet and manufacture thereof
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles
US9005780B2 (en) 2004-03-26 2015-04-14 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body
US9903009B2 (en) 2004-03-31 2018-02-27 Tdk Corporation Rare earth magnet and method for manufacturing same
JP2006156787A (en) * 2004-11-30 2006-06-15 Tdk Corp Permanent magnet and its manufacturing method and bonding method

Also Published As

Publication number Publication date
JPH053722B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
KR100877875B1 (en) Corrosion Resistant Rare Earth Magnet and Its Preparation
JPS61130453A (en) Permanent magnet material having superior corrosion resistance and its manufacture
JPS6063901A (en) Permanent magnet superior in resistance to oxidation
JPH0422007B2 (en)
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPS60153109A (en) Permanent magnet
JPS61150201A (en) Permanent magnet with excellent anticorrosion property
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH0569282B2 (en)
JPH0422008B2 (en)
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPH10256012A (en) Permanent magnet with excellent corrosion resistance
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
JPH0554683B2 (en)
JP3208057B2 (en) Corrosion resistant permanent magnet
JPS62149108A (en) Manufacture of permanent magnet
JPH04288804A (en) Permanent magnet and manufacture thereof
JP2001295091A (en) Surface-treating method and method for manufacturing magnet
JPH0644523B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JP3234306B2 (en) Corrosion resistant permanent magnet
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPS6377102A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP3411605B2 (en) Corrosion resistant permanent magnet
JPH0545045B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term