JPH0682574B2 - Method of manufacturing permanent magnet with excellent corrosion resistance - Google Patents

Method of manufacturing permanent magnet with excellent corrosion resistance

Info

Publication number
JPH0682574B2
JPH0682574B2 JP60007950A JP795085A JPH0682574B2 JP H0682574 B2 JPH0682574 B2 JP H0682574B2 JP 60007950 A JP60007950 A JP 60007950A JP 795085 A JP795085 A JP 795085A JP H0682574 B2 JPH0682574 B2 JP H0682574B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atom
atomic
corrosion resistance
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60007950A
Other languages
Japanese (ja)
Other versions
JPS61166116A (en
Inventor
隆樹 浜田
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60007950A priority Critical patent/JPH0682574B2/en
Priority to CN85109695A priority patent/CN1007847B/en
Priority to EP85116598A priority patent/EP0190461B1/en
Priority to DE8585116598T priority patent/DE3584243D1/en
Priority to US06/818,238 priority patent/US4837114A/en
Publication of JPS61166116A publication Critical patent/JPS61166116A/en
Priority to US07/360,101 priority patent/US5089066A/en
Priority to US07/740,442 priority patent/US5316595A/en
Publication of JPH0682574B2 publication Critical patent/JPH0682574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種),B,Feを主成分とする永久磁石の耐食性を改
善した希土類・ボロン・鉄系永久磁石の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a rare earth / boron / iron alloy having improved corrosion resistance of a permanent magnet containing R (R is at least one of rare earth elements including Y), B and Fe as main components. The present invention relates to a method for manufacturing a permanent magnet.

背景技術 現在の代表的な永久磁石材料は、アルニコ,ハードフェ
ライトおよび希土類コバルト磁石である。近年のコバル
トの原料事情の不安定化に伴ない、コバルトを20〜30wt
%含むアルニコ磁石の需要は減り、鉄の酸化物を主成分
とする安価なハードフェライトが磁石材料の主流を占め
るようになった。一方、希土類コバルト磁石はコバルト
を50〜60wt%も含むうえ、希土類鉱石中にあまり含まれ
ていないSmを使用するため大変高価であるが、他の磁石
に比べて、磁気特性が格段に高いため、主として小型で
付加価値の高い磁気回路に多用されるようになった。
BACKGROUND ART Currently, typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. 20-30 wt% of cobalt due to the destabilization of the situation of cobalt raw material in recent years
%, The demand for Alnico magnets has decreased, and inexpensive hard ferrite, which is mainly composed of iron oxide, has become the mainstream of magnet materials. On the other hand, rare earth cobalt magnets are very expensive because they contain 50-60 wt% of cobalt and use Sm that is rarely contained in rare earth ores, but they have much higher magnetic properties than other magnets. , Mainly used for small size and high value added magnetic circuits.

本出願人は先に、高価なSmやCoを含有しない新しい高性
能永久磁石としてFe−B−R系(RはYを含む希土類元
素のうち少なくとも1種)永久磁石を提案した(特願昭
57-145072号(特開昭59-46008号))。この永久磁石
は、RとしてNdやPrを中心とする資源的に豊富な軽希土
類を用い、Feを主成分として25MGOe以上の極めて高いエ
ネルギー積を示すすぐれた永久磁石である。
The present applicant has previously proposed an Fe-BR system permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive Sm or Co (Japanese Patent Application No. Sho-200-200).
57-145072 (JP-A-59-46008). This permanent magnet is an excellent permanent magnet which uses Rd, which is a resource-rich light rare earth mainly as N, and which has Fe as a main component and has an extremely high energy product of 25 MGOe or more.

しかしながら、上記のすぐれた磁気特性を有するFe−B
−R系永久磁石は主成分として、空気中で酸化し易い希
土類元素及び鉄を含有するため、磁気回路に組込んだ場
合に、磁石表面に生成する酸化物により、磁気回路の出
力低下及び磁気回路間のばらつきを惹起し、また、表面
酸化物の脱落による周辺機器への汚染の問題があった。
However, Fe-B having the above-mentioned excellent magnetic properties
Since the R-type permanent magnet contains iron and a rare earth element that are easily oxidized in the air as main components, when it is incorporated in a magnetic circuit, the oxide generated on the surface of the magnet lowers the output of the magnetic circuit and reduces the magnetic force. There was a problem of causing variations between circuits and contamination of peripheral devices due to the dropping of surface oxide.

そこで、出願人は先に、上記のFe−B−R系永久磁石の
耐食性の改善のため、磁石体表面に無電解めっき法ある
いは電解めっき法により耐食性金属めっき層を被覆した
永久磁石(特願昭58-162350号(特開昭60-54406号))
及び磁石体表面にスプレー法あるいは浸漬法によって耐
食性樹脂層を被覆した永久磁石を提案した(特願昭58-1
71907号(特開昭60-63901号))した。
Therefore, in order to improve the corrosion resistance of the Fe-BR permanent magnet, the applicant has previously proposed a permanent magnet whose surface is coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating (Japanese Patent Application No. 58-162350 (Japanese Patent Laid-Open No. 60-54406)
And a permanent magnet whose surface is coated with a corrosion resistant resin layer by spraying or dipping (Japanese Patent Application No. 58-1).
No. 71907 (JP-A-60-63901).

しかし、前者のめっき法では永久磁石体が焼結体の場
合、該焼結体は有孔性であるため、この孔内にめっき前
処理で酸性溶液またはアルカリ性溶液が残留し、経年変
化とともに発錆する恐れがあり、また磁石体の耐薬品性
が劣るため、めっき時に磁石表面が腐食されて密着性・
防食性が劣る問題があった。
However, in the former plating method, when the permanent magnet body is a sintered body, since the sintered body is porous, the acidic solution or alkaline solution remains in this hole during the plating pretreatment, and it is generated over time. There is a risk of rusting, and because the magnet body has poor chemical resistance, the magnet surface is corroded during plating, resulting in poor adhesion.
There was a problem of poor anticorrosion properties.

また後者のスプレー法による樹脂の塗装には方向性があ
るため、被処理物表面全体に均一な樹脂被膜を施すのに
多大の工程,手間を要し、特に形状が複雑な異形磁石体
に均一厚みの被膜を施すことは困難であり、また浸漬法
では樹脂被膜厚みが不均一になり、製品寸法精度が悪い
問題があった。
In addition, since the latter method of resin coating has directionality, it takes a lot of steps and labor to form a uniform resin coating on the entire surface of the object to be treated, especially for irregularly shaped magnets with complicated shapes. It is difficult to apply a thick coating, and the dipping method causes the resin coating to have a non-uniform thickness, resulting in poor product dimensional accuracy.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石の耐食性の改善を目的とし、腐食性薬品等を使
用,残留させることなく、密着性,防食性にすぐれた耐
食性薄膜を磁石体表面に均一厚みで設けることができる
永久磁石の製造方法を目的としている。
The object of the present invention is to improve the corrosion resistance of a new permanent magnet mainly composed of rare earth, boron and iron. It does not use corrosive chemicals or the like and does not remain, and has excellent adhesion and corrosion resistance. It is an object of the present invention to provide a method for manufacturing a permanent magnet, in which a thin film can be provided on the surface of a magnet body with a uniform thickness.

発明の構成と効果 この発明は、陰極を構成するR(RはYを含む希土類元
素のうち少なくとも1種)8原子%〜30原子%、B2原子
%〜28原子%、Fe42原子%〜90原子%を主成分とし、主
相が正方晶相からなる永久磁石体と、陽極を構成するコ
ーティング材とを減圧容器内に収容し、反応性ガスの存
在下または不存在下において、逆スパッタを行なったの
ち、陽極を構成するコーティング材を加熱して原子状、
分子状あるいは微粒子状となし、これに熱電子を衝突さ
せてイオン化し、電界分布により走行するコーティング
材のイオン化粒子が他の蒸発粒子と衝突して増大した該
イオン化粒子を、陰極を構成する該永久磁石体表面に付
着させ、コーティング物質による耐食性薄膜を形成被覆
することを特徴とする耐食性のすぐれた永久磁石の製造
方法である。
Structure and effect of the present invention This invention, R (R is at least one of rare earth elements including Y) constituting the cathode 8 atomic% to 30 atomic%, B2 atomic% to 28 atomic%, Fe42 atomic% to 90 atomic %, The main phase is a tetragonal phase permanent magnet body, and the coating material that constitutes the anode is housed in a decompression container, and reverse sputtering is performed in the presence or absence of a reactive gas. After that, the coating material that constitutes the anode is heated to atomic form,
The ionized particles, which are in the form of molecules or fine particles, are ionized by colliding them with thermoelectrons and traveling due to the electric field distribution, and increased by colliding with other vaporized particles, which constitute the cathode, A method for producing a permanent magnet having excellent corrosion resistance, which comprises depositing a corrosion-resistant thin film of a coating substance on the surface of the permanent magnet to form a coating.

すなわち、この発明は、R(RはYを含む希土類元素の
うち少なくとも1種)8原子%〜30原子%、B2原子%〜
28原子%、Fe42原子%〜90原子%を主成分とし主相が正
方晶相からなる永久磁石体表面に、イオン・プレーティ
ング法により、Al,Ni,Cr,Cu,Co等の金属またはその合金
あるいはSiO2,Al2O3,Cr2O3,TiN,AlN,TiC等の耐食性薄
膜層を延設被覆してなることを特徴とする耐食性のすぐ
れた永久磁石の製造方法である。
That is, the present invention provides R (R is at least one of rare earth elements including Y) 8 atom% to 30 atom% and B2 atom% to
A metal such as Al, Ni, Cr, Cu, Co or the like was formed by ion plating on the surface of a permanent magnet body containing 28 atomic% and 42 atomic% to 90 atomic% Fe as the main components and the main phase being a tetragonal phase. This is a method for producing a permanent magnet having excellent corrosion resistance, which is characterized in that an alloy or a corrosion-resistant thin film layer of SiO 2 , Al 2 O 3 , Cr 2 O 3 , TiN, AlN, TiC, etc. is extendedly coated.

この発明は、本系永久磁石表面に生成する酸化物を抑制
するため、該表面に均一で、強固かつ安定な耐食性薄膜
層を形成する製造方法であり、本発明により形成された
耐食性薄膜により、磁石体表面の酸化が抑制され、又、
腐食性の薬品等を使用,残留させることがないため、磁
気特性が劣化することなく、かつ長期にわたって安定す
る利点がある。
This invention is a manufacturing method for forming a uniform, strong and stable corrosion-resistant thin film layer on the surface of the present permanent magnet in order to suppress oxides generated on the surface, and by the corrosion-resistant thin film formed by the present invention, Oxidation of the magnet surface is suppressed, and
Since corrosive chemicals, etc. are not used or left, there is an advantage that the magnetic characteristics are not deteriorated and stable for a long period of time.

この発明におけるイオン・プレーティング法は、例えば
真空度10-4〜10-7Torr程度の減圧容器内に、陰極を構成
する永久磁石体と共に薄膜を形成すべく所要コーティン
グ物質を収容し、逆スパッタを行なったのち、加熱して
該物質を原子状,分子状,微粒子状となし、これに、熱
電子を衝突させてイオン化し、電界分布により走行する
コーティング材のイオン化粒子が他蒸発粒子と衝突して
増大した該イオン化粒子を、陰極を構成する磁石体表面
に凝縮して薄膜を形成被覆させるものである。
The ion plating method according to the present invention is, for example, a vacuum chamber having a degree of vacuum of 10 −4 to 10 −7 Torr, containing a coating material required for forming a thin film together with a permanent magnet body constituting a cathode, and performing reverse sputtering. After that, it is heated to make the substance into atomic, molecular, and fine particles, which are ionized by thermionic electrons colliding with them, and the ionized particles of the coating material traveling by the electric field distribution collide with other evaporated particles. The ionized particles thus increased are condensed on the surface of the magnet body constituting the cathode to form and coat a thin film.

イオン化する物質の加熱方法には、るつぼ方式や直接抵
抗加熱方式の抵抗加熱法、高周波誘導加熱法、電子線加
熱法などがあり、これらいずれの方法も形成被着するコ
ーティング物質の組成や厚み、被着側永久磁石体形状や
作業性などに応じて適宜選定適用することができる。
The heating method of the substance to be ionized includes a resistance heating method such as a crucible method and a direct resistance heating method, a high frequency induction heating method, an electron beam heating method, and the like, and the composition and thickness of the coating material to be formed and deposited in any of these methods, It can be appropriately selected and applied according to the shape of the adherend side permanent magnet body and workability.

被蒸発物質たるコーティング物質は、Al,Ni,Cr,Cu、Co
等の金属またはその合金あるいはSiO2,Al2O3,Cr2O3,T
iN,AlN,TiC等、本系永久磁石の耐食性を向上させること
ができる金属や合金,セラミックス,金属等の窒化物,
酸化物,あるいは炭化物の化合物が好ましい。
The coating substance that is the substance to be evaporated is Al, Ni, Cr, Cu, Co.
Such as metal or its alloy or SiO 2 , Al 2 O 3 , Cr 2 O 3 , T
iN, AlN, TiC and other metals, alloys, ceramics, metal nitrides, etc. that can improve the corrosion resistance of this system permanent magnet,
Oxide or carbide compounds are preferred.

この発明において、永久磁石体表面に、窒化膜,酸化
膜,あるいは炭化膜を形成する場合には、真空容器内
に、O2,N2,CO2アセチレンなどの反応性ガスを導入す
ることが好ましく、また、合金被膜を形成する場合は、
各々の合金成分ごとに蒸発源を複数設け、蒸発時に一定
の比率をもたせることにより、一定の組成の合金被膜を
形成させることができる。
In the present invention, when a nitride film, an oxide film, or a carbonized film is formed on the surface of the permanent magnet body, it is possible to introduce a reactive gas such as O 2 , N 2 , CO 2 acetylene into the vacuum container. Preferably, and when forming an alloy coating,
By providing a plurality of evaporation sources for each alloy component and allowing a constant ratio during evaporation, it is possible to form an alloy film having a constant composition.

この発明において、上述したイオン・プレーティング手
段にて成膜されたFe−B−R系永久磁石表面の耐食性薄
膜の厚みは、磁気特性や耐食性等を考慮すると30μm以
下の厚みが好ましい。
In the present invention, the thickness of the corrosion-resistant thin film on the surface of the Fe-BR permanent magnet formed by the above-mentioned ion plating means is preferably 30 μm or less in consideration of magnetic characteristics and corrosion resistance.

永久磁石の限定理由 この発明の永久磁石に用いる希土類元素Rは、8原子%
〜30原子%のNd,Pr,Ho,Tbのうち少なくとも1種、ある
いはさらに、La,Sm,Ce,Er,Eu,Pm,Tm,Yb,Lu,Yのうち少な
くとも1種を含むものが好ましい。
Reason for limitation of permanent magnet The rare earth element R used in the permanent magnet of the present invention is 8 atom%
It is preferable to contain at least one of Nd, Pr, Ho and Tb of -30 atom% or at least one of La, Sm, Ce, Er, Eu, Pm, Tm, Yb, Lu and Y. .

又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミッシュメタル,ジジム等)を入手上の
便宜等の理由により用いることができ、Sm,Y,La,Ce,Ge
等は他のR、特にNd,Pr等との混合物として用いること
ができる。
Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for the reasons of availability, and Sm, Y, La, Ce, Ge
Etc. can be used as a mixture with other R, especially Nd, Pr, etc.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規な上記系永久磁石における、必須元素であって、8原
子%未満では、結晶構造がα−鉄と同一構造の立方晶組
織となるため、高磁気特性、特に高保磁力が得られず、
30原子%を越えると、Rリッチな非磁性相が多くなり、
残留磁束密度(Br)が低下して、すぐれた特性の永久磁
石が得られない。よって、希土類元素は、8原子%〜30
原子%の範囲とする。
R (at least one of rare earth elements including Y) is an essential element in the novel permanent magnet, and if it is less than 8 atom%, the crystal structure becomes a cubic crystal structure having the same structure as α-iron. Therefore, high magnetic characteristics, especially high coercive force cannot be obtained,
If it exceeds 30 atomic%, the R-rich non-magnetic phase increases,
The residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is 8 atom% to 30
The range is atomic%.

Bは、新規な上記系永久磁石における、必須元素であっ
て、2原子%未満では、菱面体組織となり、高い保磁力
(iHc)は得られず、28原子%を越えると、Bリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下するた
め、すぐれた永久磁石が得られない。よって、Bは、2
原子%〜28原子%の範囲とする。
B is an essential element in the novel permanent magnets, and if it is less than 2 atomic%, a rhombohedral structure is formed, and a high coercive force (iHc) cannot be obtained. An excellent permanent magnet cannot be obtained because the magnetic phase increases and the residual magnetic flux density (Br) decreases. Therefore, B is 2
The range is from atomic% to 28 atomic%.

Feは、新規な上記系永久磁石において、必須元素であ
り、42原子%未満では残留磁束密度(Br)が低下し、90
原子%を越えると、高い保磁力が得られないので、Feは
42原子%〜90原子%の含有とする。
Fe is an essential element in the above new permanent magnets, and if the content is less than 42 atomic%, the residual magnetic flux density (Br) decreases, and
If the atomic percentage is exceeded, high coercive force cannot be obtained, so Fe is
The content is 42 atom% to 90 atom%.

また、この発明のよる永久磁石用合金において、Feの一
部をCoで置換することは、得られる磁石の磁気特性を損
うことなく、温度特性を改善することができるが、Co置
換量がFeの50%を越えると、逆に磁気特性が劣化するた
め、好ましくない。
Further, in the permanent magnet alloy according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet, but the Co substitution amount is If it exceeds 50% of Fe, the magnetic properties are deteriorated, which is not preferable.

また、この発明による永久磁石は、R,B,Feの他、工業的
生産上不可避的不純物の存在を許容できるが、Bの一部
を4.0原子%以下のC、3.5原子%以下のP、2.5原子%
以下のS、3.5%以下のCuのうち少なくとも1種、合計
量で4.0原子%以下で置換することにより、永久磁石の
製造性改善、低価格化が可能である。
Further, the permanent magnet according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atom% or less of C, 3.5 atom% or less of P, 2.5 atom%
By substituting at least one of the following S and Cu of 3.5% or less with a total amount of 4.0 atom% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力等を改善あるいは製造
性の改善、低価格化に効果があるため添加する。しか
し、保磁力改善のための添加に伴ない残留磁束密度(B
r)の低下を招来するので、従来のハードフェライト磁
石の残留磁束密度と同等以上となる範囲での添加が望ま
しい。
Further, at least one of the following additional elements is RB-
It is added to Fe-based permanent magnets because it is effective in improving the coercive force, etc., improving the manufacturability, and lowering the price. However, the residual magnetic flux density (B
Since it causes a decrease in r), it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of the conventional hard ferrite magnet.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5原子%以下のBi、 12.5原子%以下のNb、10.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 6.0原子%以下のNi、5.0原子%以下のSi、 5.5原子%以下のHfのうち少なくとも1種を添加含有
し、但し、2種以上含有する場合は、その最大含有量は
当該添加元素のうち最大値を有するものの原子%以下の
含有させることにより、永久磁石の高保磁力化が可能に
なる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5 atomic% or less Bi, 12.5 atomic% or less Nb, 10.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 6.0 atomic % Or less of Ni, 5.0 at% or less of Si, and 5.5 at% or less of Hf at least one kind is added and contained. However, when two or more kinds are contained, the maximum content is the maximum value of the added elements. However, if the content of the permanent magnet is not more than atomic%, the coercive force of the permanent magnet can be increased.

このFe−B−R系永久磁石の結晶相は、主相が正方晶で
あることが不可欠であり、また微細で均一な合金粉末よ
りすぐれた磁気特性を有する焼結永久磁石が得られる。
In the crystal phase of this Fe-BR permanent magnet, it is essential that the main phase is tetragonal, and a sintered permanent magnet having magnetic characteristics superior to those of fine and uniform alloy powder can be obtained.

したがって、この発明の永久磁石は、RとしてNdやPrを
中心とする資源的に豊富な軽希土類を主に用い、Fe,B,
R,を主成分とすることにより、25MGOe以上の極めて高い
エネルギー積並びに、高残留磁束密度、高保磁力を有
し、かつ高い耐食性を有する、すぐれた永久磁石を安価
に得ることができる。
Therefore, the permanent magnet of the present invention mainly uses resource-rich light rare earths such as Nd and Pr as R, Fe, B,
By using R, as a main component, an excellent permanent magnet having an extremely high energy product of 25 MGOe or more, a high residual magnetic flux density, a high coercive force, and high corrosion resistance can be obtained at low cost.

また、この発明の永久磁石は、体積比で1%〜50%の非
磁性相(酸化物相を除く)を含むことを特徴とし、焼結
磁石の場合には結晶粒径が1〜100μmの範囲にある正
方晶系の結晶構造を有する化合物を主相とする。
Further, the permanent magnet of the present invention is characterized by containing a nonmagnetic phase (excluding oxide phase) of 1% to 50% by volume, and in the case of a sintered magnet, the crystal grain size is 1 to 100 μm. A compound having a tetragonal crystal structure in the range is the main phase.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

この発明による永久磁石は、保磁力iHc≧1kOe、残留磁
束密度Br>4kG、を示し、最大エネルギー積(BH)maxは
ハードフェライトと同等以上となり、最も好ましい組成
範囲では、(BH)max≧10MGOeを示し、最大値は25MGOe
以上に達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe and a residual magnetic flux density Br> 4 kG, and the maximum energy product (BH) max is equal to or higher than that of hard ferrite. In the most preferable composition range, (BH) max ≧ 10MGOe , The maximum value is 25MGOe
Reach above

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上を軽希土類金属が占める場合で、R12原子%〜2
0原子%、B4原子%〜24原子%、Fe65原子%〜82原子
%、を主成分とするとき、磁気的異方性焼結磁石の場合
最もすぐれた磁気特性を示し、特に軽希土類金属がNdの
場合には、(BH)maxはその最大値が35MGOe以上に達す
る。
Further, the main component of R of the alloy powder for permanent magnets of the present invention is
R12 atom% ~ 2 when light rare earth metal occupies 50% or more
When 0 atomic%, B4 atomic% to 24 atomic% and Fe65 atomic% to 82 atomic% are the main components, magnetically anisotropic sintered magnets show the best magnetic characteristics, especially light rare earth metals In the case of Nd, the maximum value of (BH) max reaches 35MGOe or more.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、B19.4%を含有
し残部はFe及びAl,Si,C等の不純物からなるフェロボロ
ン合金、純度99.7%以上のNdを使用し、これらを高周波
溶解し、その後水冷銅鋳型に鋳造し、15Nd−8B−77Feな
る組成の鋳塊を得た。
Examples Example 1 As a starting material, electrolytic iron having a purity of 99.9%, ferroboron alloy containing B19.4% with the balance being Fe and Al, Si, C and other impurities, and Nd having a purity of 99.7% or more are used. These were melted by high frequency and then cast in a water-cooled copper mold to obtain an ingot having a composition of 15Nd-8B-77Fe.

その後インゴットを、スタンプミルにより粗粉砕し、次
にボールミルにより微粉砕し、粒度3μmの微粉末を得
た。
After that, the ingot was roughly pulverized by a stamp mill and then finely pulverized by a ball mill to obtain a fine powder having a particle size of 3 μm.

この微粉末を金型に挿入し、12kOeの磁界中で配向し、
磁界と平行方向に、1.5t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 12 kOe,
It was molded in a direction parallel to the magnetic field with a pressure of 1.5 t / cm 2 .

得られた成形体を、1100℃、1時間,Ar中、の条件で焼
結し、その後放冷し、さらにAr中ので600℃,2時間の時
効処理を施して、永久磁石を作製した。
The obtained molded body was sintered under the conditions of 1100 ° C. for 1 hour in Ar, then allowed to cool, and further subjected to an aging treatment in Ar at 600 ° C. for 2 hours to produce a permanent magnet.

得られた永久磁石から外径20mm×内径10mm×厚み1.5mm
寸法に試験片を切り出した。
From the obtained permanent magnet, outer diameter 20 mm × inner diameter 10 mm × thickness 1.5 mm
A test piece was cut into a size.

次に、真空度5×10-5Torrの真空容器内に、上記試験片
を入れ、0.8TorrのArガス中,400Vの電圧で1分間の逆ス
パッタを行なった後、前処理として、350℃に30分間加
熱後、300℃に降温し、コーティング材料として、3〜5
mmφ粒状の溶融石英を用い、これを加熱し、分子状とな
った溶融石英に熱電子を衝突させてイオン化し、電界分
布により走行するSiO2イオン化粒子が他の蒸発粒子と衝
突して、さらにSiO2イオン化粒子を増加させ、これらイ
オン化粒子が電界に引かれて、陰極を構成する前記試験
片を付着し、SiO2薄膜を形成した。試験片表面に形成し
た薄膜厚みは5μmであった。
Next, the above test piece was placed in a vacuum container having a vacuum degree of 5 × 10 -5 Torr, and reverse sputtering was performed at a voltage of 400 V for 1 minute in 0.8 Torr Ar gas. After heating for 30 minutes, the temperature is lowered to 300 ℃ and the coating material is 3-5
mmφ granular fused silica is used, and this is heated, and thermoelectrons are collided with the molten fused silica that has become a molecular state to be ionized, and SiO 2 ionized particles traveling due to the electric field distribution collide with other evaporated particles, and further SiO 2 ionized particles were increased, and these ionized particles were attracted to an electric field to attach the test piece constituting the cathode to form a SiO 2 thin film. The thickness of the thin film formed on the surface of the test piece was 5 μm.

上記イオン・プレーティング条件は、試験片を電圧1kV,
イオン化電圧100V,80〜90mA,40分間処理であった。
The above ion plating conditions are as follows:
The ionization voltage was 100 V, 80 to 90 mA, and the treatment was for 40 minutes.

この試験片に耐食性試験と耐食性試験後の薄膜の密度強
度試験を行なった。また、耐食性試験前後の磁気特性を
測定した。試験結果及び測定結果は第1表に示す。
The test piece was subjected to a corrosion resistance test and a density strength test of the thin film after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

また、比較のため、上記試験片に、トリクレンにて3分
間溶剤脱脂し、5%NaOHにて60℃,3分間のアルカリ脱脂
した後、2%HClにて室温、10秒間の酸洗しワット浴に
て、電流密度4A/dm2,浴温度60℃,20分間の条件にて、
電気ニッケルめっきを行ない表面に10μm厚みのニッケ
ルめっき層を有する比較試験片(比較例)を得た。この
試験片に上記の実施例1と同一の試験及び測定を行な
い、その結果を同様に第1表に示す。
For comparison, the test pieces were solvent degreased with trichlene for 3 minutes, alkali degreased with 5% NaOH at 60 ° C for 3 minutes, and then pickled with 2% HCl at room temperature for 10 seconds. In the bath, under the condition of current density 4A / dm 2 , bath temperature 60 ℃, 20 minutes,
Electroless nickel plating was performed to obtain a comparative test piece (comparative example) having a nickel plating layer with a thickness of 10 μm on the surface. This test piece was subjected to the same tests and measurements as in Example 1 above, and the results are also shown in Table 1.

耐食性試験は、上記試験片を60℃の温度90%の湿度の雰
囲気に、500時間放置した場合の試験片外観状況でもっ
て評価した。
The corrosion resistance test was evaluated by the appearance of the test piece when the test piece was left in an atmosphere of 60 ° C. and a humidity of 90% for 500 hours.

また、密着強度試験は、耐食性試験後の上記試験片を、
粘着テープで1mm間隔の枡目部分を引張り、薄膜層が剥
離するか否か(無剥離枡目数/前枡目数)で評価した。
In addition, the adhesion strength test, the test piece after the corrosion resistance test,
The adhesive tape was used to pull the grid portion at 1 mm intervals, and it was evaluated whether the thin film layer was peeled off (No peeled grid / number of front grid).

実施例2 真空度1×10-5Torrの真空容器内に、上記試験片を入
れ、10-2TorrのN2ガス中,400Vの電圧で1分間の逆スパ
ッタを行なった後、前処理として、350℃に30分間加熱
後、300℃に降温し、コーティング材料として、5mmφ×
3mmの純度99.99%のTi片を用い、これを加熱し、原子状
となったTiに熱電子を衝突させてイオン化し、電界分布
により走行するTiNイオン化粒子が他の蒸発粒子と衝突
して、さらにTiNイオン化粒子を増加させ、これらイオ
ン化粒子が電界に引かれて、陰極を構成する前記試験片
に付着し、TiN薄膜を形成した。試験片表面に形成した
薄膜厚みは5μmであった。
Example 2 The above test piece was placed in a vacuum vessel having a degree of vacuum of 1 × 10 −5 Torr and reverse sputtered in N 2 gas of 10 −2 Torr at a voltage of 400 V for 1 minute, and then as a pretreatment. After heating to 350 ℃ for 30 minutes, cool it down to 300 ℃ and use 5mmφ ×
Using a 3 mm Ti piece with a purity of 99.99%, this is heated, the thermoelectrons are collided with the atomized Ti to ionize, and the TiN ionized particles traveling due to the electric field distribution collide with other evaporated particles, Further, the TiN ionized particles were increased, and these ionized particles were attracted to an electric field and adhered to the test piece constituting the cathode to form a TiN thin film. The thickness of the thin film formed on the surface of the test piece was 5 μm.

上記イオン・プレーティング条件は、試験片を電圧1kV,
イオン化電圧100V,40〜60mA,20分間処理であった。
The above ion plating conditions are as follows:
The ionization voltage was 100 V, 40-60 mA, and the treatment was for 20 minutes.

この試験片に実施例1と同様の耐食性試験と耐食性試験
後の薄膜の密着強度試験を行ない、また、耐食性試験前
後の磁気特性を測定した。試験結果及び測定結果は第1
表に示す。
The test piece was subjected to the same corrosion resistance test as in Example 1 and the adhesion strength test of the thin film after the corrosion resistance test, and the magnetic properties before and after the corrosion resistance test were measured. The test and measurement results are the first
Shown in the table.

実施例3 真空度1×10-5Torrの真空容器内に、上記試験片を入
れ、10-2TorrのCO2ガス中,400Vの電圧で1分間の逆スパ
ッタを行なった後、前処理として、350℃に30分間加熱
後、300℃に降温し、コーティング材料として、5mmφ×
3mmの純度99.99%のTi片を用い、これを加熱し、原子状
となったTiに熱電子を衝突させてイオン化し、電界分布
により走行するTiCイオン化粒子が他の蒸発粒子と衝突
して、さらにTiCイオン化粒子を増加させ、これらイオ
ン化粒子が電界に引かれて、陰極を構成する前記試験片
に付着し、TiC薄膜を形成した。試験片表面に形成した
薄膜厚みは5μmであった。
Example 3 The above test piece was put in a vacuum container having a degree of vacuum of 1 × 10 −5 Torr, and reverse sputtering was performed in a CO 2 gas of 10 −2 Torr at a voltage of 400 V for 1 minute, and then as a pretreatment. After heating to 350 ℃ for 30 minutes, cool it down to 300 ℃ and use 5mmφ ×
3mm purity Ti piece of 99.99% was used, this was heated, and thermal electrons were made to collide with atomic atomized Ti to be ionized, and TiC ionized particles traveling due to electric field distribution collided with other evaporated particles, Further, TiC ionized particles were increased, and these ionized particles were attracted to an electric field and adhered to the test piece constituting the cathode to form a TiC thin film. The thickness of the thin film formed on the surface of the test piece was 5 μm.

上記イオン・プレーティング条件は、試験片を電圧1kV,
イオン化電圧100V,40〜60mA,20分間処理であった。
The above ion plating conditions are as follows:
The ionization voltage was 100 V, 40-60 mA, and the treatment was for 20 minutes.

この試験片に実施例1と同様の耐食性試験と耐食性試験
後の薄膜の密度強度試験を行ない、また、耐食性試験前
後の磁気特性を測定した。試験結果及び測定結果は第1
表に示す。
The test piece was subjected to the same corrosion resistance test as in Example 1 and the density strength test of the thin film after the corrosion resistance test, and the magnetic characteristics before and after the corrosion resistance test were measured. The test and measurement results are the first
Shown in the table.

第1表の試験及び測定結果に明らかなように、この発明
による耐食性薄膜は、比較例に対して、膜厚が所要厚み
でかつ格段にすぐれた均一度が得られているため、永久
磁石体の酸化が確実に防止されており、磁気特性の劣化
がなく、比較例に対して磁気特性の向上が著しいことが
分る。
As is clear from the test and measurement results in Table 1, the corrosion-resistant thin film according to the present invention has a required film thickness and remarkably excellent uniformity as compared with the comparative example. It can be seen that the oxidization of No. 1 is reliably prevented, the magnetic characteristics are not deteriorated, and the magnetic characteristics are remarkably improved as compared with the comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/02 G 8019−5E (56)参考文献 特開 昭49−86896(JP,A) 特開 昭56−94705(JP,A) 特開 昭59−138311(JP,A) 特開 昭50−18364(JP,A) 特開 昭59−46008(JP,A) 特開 昭61−163266(JP,A) 特開 昭49−115368(JP,A) 「薄膜ハンドブック」昭和58年12月10 日、オーム社発行P.121─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number for FI Technical indication H01F 41/02 G 8019-5E (56) Reference JP-A-49-86896 (JP, A) Special features Kai 56-94705 (JP, A) JP 59-138311 (JP, A) JP 50-18364 (JP, A) JP 59-46008 (JP, A) JP 61-163266 ( JP, A) JP-A-49-115368 (JP, A) "Thin Film Handbook" December 10, 1983, published by Ohmsha, Inc. 121

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陰極を構成するR(RはYを含む希土類元
素のうち少なくとも1種)8原子%〜30原子%、B2原子
%〜28原子%、Fe42原子%〜90原子%を主成分とし、主
相が正方晶相からなる永久磁石体と、陽極を構成するコ
ーティング材とを減圧容器内に収容し、反応性ガスの存
在下または不存在下において、逆スパッタを行なったの
ち、陽極を構成するコーティング材を加熱して原子状、
分子状あるいは微粒子状となし、これに熱電子を衝突さ
せてイオン化し、電界分布により走行するコーティング
材のイオン化粒子が他の蒸発粒子と衝突して増大した該
イオン化粒子を、陰極を構成する該永久磁石体表面に付
着させ、コーティング物質による耐食性薄膜を形成被覆
することを特徴とする耐食性のすぐれた永久磁石の製造
方法。
1. A main component comprising 8% by atom to 30% by atom of R (R is at least one of rare earth elements including Y), B2% by atom to 28% by atom, and 42% by atom to 90% by atom of Fe constituting a cathode. The permanent magnet body having a tetragonal phase as the main phase and the coating material forming the anode are housed in a decompression container, and after reverse sputtering in the presence or absence of a reactive gas, the anode is used. Heating the coating material that constitutes
The ionized particles, which are in the form of molecules or fine particles, are ionized by colliding them with thermoelectrons and traveling due to the electric field distribution, and increased by colliding with other vaporized particles, which constitute the cathode, A method for producing a permanent magnet having excellent corrosion resistance, which comprises depositing a corrosion-resistant thin film of a coating substance on the surface of a permanent magnet to form a coating.
JP60007950A 1984-12-24 1985-01-18 Method of manufacturing permanent magnet with excellent corrosion resistance Expired - Lifetime JPH0682574B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60007950A JPH0682574B2 (en) 1985-01-18 1985-01-18 Method of manufacturing permanent magnet with excellent corrosion resistance
CN85109695A CN1007847B (en) 1984-12-24 1985-12-24 Process for producing magnets having improved corrosion resistance
EP85116598A EP0190461B1 (en) 1984-12-24 1985-12-27 Process for producing permanent magnets and permanent magnet
DE8585116598T DE3584243D1 (en) 1984-12-24 1985-12-27 METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET.
US06/818,238 US4837114A (en) 1984-12-24 1986-01-13 Process for producing magnets having improved corrosion resistance
US07/360,101 US5089066A (en) 1984-12-24 1989-06-01 Magnets having improved corrosion resistance
US07/740,442 US5316595A (en) 1984-12-24 1991-08-05 Process for producing magnets having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007950A JPH0682574B2 (en) 1985-01-18 1985-01-18 Method of manufacturing permanent magnet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61166116A JPS61166116A (en) 1986-07-26
JPH0682574B2 true JPH0682574B2 (en) 1994-10-19

Family

ID=11679770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007950A Expired - Lifetime JPH0682574B2 (en) 1984-12-24 1985-01-18 Method of manufacturing permanent magnet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0682574B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283905A (en) * 1988-09-20 1990-03-26 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet and manufacture thereof
JP3278647B2 (en) 1999-01-27 2002-04-30 住友特殊金属株式会社 Rare earth bonded magnet
WO2005093766A1 (en) 2004-03-26 2005-10-06 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721842B2 (en) * 1972-12-26 1982-05-10
JPS52107599A (en) * 1976-03-08 1977-09-09 Mitsubishi Electric Corp Installation device for ferrite magnet
JPS5482098U (en) * 1977-11-22 1979-06-11
JPS5694705A (en) * 1979-12-28 1981-07-31 Seiko Instr & Electronics Ltd Surface treatment method of rare earth cobalt magnet
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59138311A (en) * 1983-01-28 1984-08-08 Fujitsu Ltd Surface treatment of permanent magnet
JPS61163266A (en) * 1985-01-12 1986-07-23 Namiki Precision Jewel Co Ltd Method for preventing rusting of rare earth element-iron type permanent magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「薄膜ハンドブック」昭和58年12月10日、オーム社発行P.121

Also Published As

Publication number Publication date
JPS61166116A (en) 1986-07-26

Similar Documents

Publication Publication Date Title
US5316595A (en) Process for producing magnets having improved corrosion resistance
JPH0374012B2 (en)
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPH0515043B2 (en)
JPH053722B2 (en)
JPH0422007B2 (en)
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0569282B2 (en)
JPH0554683B2 (en)
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JPH0422008B2 (en)
JPH0535216B2 (en)
JPH0821511B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0644525B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0644524B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPS63255376A (en) Production of corrosion resistant permanent magnet
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH01149403A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPS61166117A (en) Manufacture of permanent magnet of excellent corrosion-resisting property

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term