JPH0821511B2 - Method of manufacturing permanent magnet with excellent corrosion resistance - Google Patents

Method of manufacturing permanent magnet with excellent corrosion resistance

Info

Publication number
JPH0821511B2
JPH0821511B2 JP6107538A JP10753894A JPH0821511B2 JP H0821511 B2 JPH0821511 B2 JP H0821511B2 JP 6107538 A JP6107538 A JP 6107538A JP 10753894 A JP10753894 A JP 10753894A JP H0821511 B2 JPH0821511 B2 JP H0821511B2
Authority
JP
Japan
Prior art keywords
permanent magnet
corrosion resistance
thin film
test piece
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6107538A
Other languages
Japanese (ja)
Other versions
JPH0774043A (en
Inventor
隆樹 浜田
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6107538A priority Critical patent/JPH0821511B2/en
Publication of JPH0774043A publication Critical patent/JPH0774043A/en
Publication of JPH0821511B2 publication Critical patent/JPH0821511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、R(RはYを含む希
土類元素のうち少なくとも1種)、B、Feを主成分と
する永久磁石の製造方法に係り、気相めっき処理により
永久磁石の耐食性を改善した希土類・ボロン・鉄系永久
磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet containing R (R is at least one of rare earth elements including Y), B and Fe as main components, and the permanent magnet is formed by vapor phase plating. The present invention relates to a method of manufacturing a rare earth / boron / iron-based permanent magnet having improved corrosion resistance.

【0002】[0002]

【従来の技術】現在の代表的な永久磁石材料は、アルニ
コ、ハードフェライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴ない、コ
バルトを20〜30wt%含むアルニコ磁石の需要は減
り、鉄の酸化物を主成分とする安価なハードフェライト
が磁石材料の主流を占めるようになった。
2. Description of the Related Art The typical current permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. With the destabilization of the situation of cobalt raw materials in recent years, the demand for alnico magnets containing 20 to 30 wt% of cobalt has decreased, and inexpensive hard ferrites containing iron oxide as the main component have become the mainstream of magnet materials. became.

【0003】一方、希土類コバルト磁石はコバルトを5
0〜60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、他の
磁石に比べて、磁気特性が格段に高いため、主として小
型で付加価値の高い磁気回路に多用されるようになっ
た。
On the other hand, rare earth cobalt magnets contain 5% cobalt.
It is very expensive because it contains 0 to 60 wt% and Sm, which is rarely contained in rare earth ores, but is extremely expensive compared to other magnets, so it is mainly small and has high added value. It has become widely used in magnetic circuits.

【0004】出願人は先に、高価なSmやCoを含有し
ない新しい高性能永久磁石としてFe−B−R系(Rは
Yを含む希土類元素のうち少なくとも1種)永久磁石を
提案した(特開昭59−46008号)。この永久磁石
は、RとしてNdやPrを中心とする資源的に豊富な軽
希土類を用い、Feを主成分として25MGOe以上の
極めて高いエネルギー積を示す、すぐれた永久磁石であ
る。
The applicant previously proposed a Fe—BR type permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet containing no expensive Sm or Co (special feature). (Kaisho 59-46008). This permanent magnet is an excellent permanent magnet that uses a resource-rich light rare earth centering on Nd and Pr as R and has an extremely high energy product of 25 MGOe or more with Fe as a main component.

【0005】しかしながら、上記のすぐれた磁気特性を
有するFe−B−R系永久磁石は主成分として、空気中
で酸化し易い希土類元素及び鉄を含有するため、磁気回
路に組込んだ場合に、磁石表面に生成する酸化物によ
り、磁気回路の出力低下及び磁気回路間のばらつきを惹
起し、また、表面酸化物の脱落による周辺機器への汚染
の問題があった。
However, since the Fe-BR type permanent magnet having the above-mentioned excellent magnetic characteristics contains iron and a rare earth element which are easily oxidized in the air as main components, when incorporated in a magnetic circuit, The oxide generated on the surface of the magnet causes a decrease in the output of the magnetic circuit and a variation between the magnetic circuits, and there is a problem that the peripheral oxide is contaminated due to the dropping of the surface oxide.

【0006】[0006]

【発明が解決しようとする課題】そこで、出願人は先
に、上記のFe−B−R系永久磁石の耐食性の改善のた
め、磁石体表面に無電解めっき法あるいは電解めっき法
により耐食性金属めっき層を被覆した永久磁石(特願昭
58−162350号(特開昭60−54406
号))、及び磁石体表面にスプレー法あるいは浸漬法に
よって、耐食性樹脂層を被覆した永久磁石を提案(特願
昭58−171907号(特開昭60−63901
号))した。
Therefore, in order to improve the corrosion resistance of the above Fe-BR type permanent magnet, the applicant first applied the corrosion-resistant metal plating to the surface of the magnet body by electroless plating or electrolytic plating. Layer-coated permanent magnet (Japanese Patent Application No. 58-162350)
No.)), and a permanent magnet whose surface is coated with a corrosion resistant resin layer by a spray method or a dipping method (Japanese Patent Application No. 58-171907 (Japanese Patent Application Laid-Open No. 60-63901).
No.))

【0007】しかし、前者のめっき法では、永久磁石体
が焼結体の場合、該焼結体は特に有孔性のため、この孔
内にめっき前処理での酸性溶液またはアルカリ溶液が残
留し、経年変化とともに腐食する恐れがあり、また磁石
体の耐薬品性が劣るため、めっき時に磁石表面が腐食さ
れて密着性・防蝕性が劣る問題があった。
However, in the former plating method, when the permanent magnet body is a sintered body, since the sintered body is particularly porous, an acidic solution or an alkaline solution in the plating pretreatment remains in these holes. However, there is a problem that it may corrode with age, and the chemical resistance of the magnet body is poor, so that the surface of the magnet is corroded during plating, resulting in poor adhesion and corrosion resistance.

【0008】また、後者のスプレー法による樹脂の塗装
には方向性があるため、被処理物表面全体に均一な樹脂
被膜を施すのに多大の工程、手間を要し、特に形状が複
雑な異形磁石体に均一厚みの被膜を施すことは困難であ
り、また、浸漬法では樹脂被膜厚みが不均一になり、製
品寸法精度が悪い問題があった。
Further, since the resin coating by the latter spray method has directionality, it takes a lot of steps and labor to form a uniform resin film on the entire surface of the object to be treated, and the shape is particularly complicated. It is difficult to apply a coating having a uniform thickness to the magnet body, and the resin coating thickness becomes non-uniform in the dipping method, resulting in a problem of poor product dimensional accuracy.

【0009】この発明は、希土類・ボロン・鉄を主成分
とし主相が正方晶相からなる新規な永久磁石材料の耐食
性を改善したFe−B−R系永久磁石の製造方法を目的
とし、また、腐蝕性薬品等を使用、残留させる湿式めっ
き処理に代えて、密着性、防蝕性にすぐれた耐食性薄膜
を、磁石材料表面に均一厚みで設けることが可能なFe
−B−R系永久磁石の製造方法の提供を目的としてい
る。
An object of the present invention is to provide a method for producing a Fe-BR permanent magnet having improved corrosion resistance of a new permanent magnet material containing a rare earth / boron / iron as a main component and a tetragonal main phase. It is possible to provide a corrosion-resistant thin film having excellent adhesion and corrosion resistance with a uniform thickness on the surface of the magnet material instead of the wet plating treatment in which a corrosive chemical or the like is used and left.
-The purpose of the present invention is to provide a method for manufacturing a BR permanent magnet.

【0010】[0010]

【課題を解決するための手段】この発明は、R(但しR
はYを含む希土類元素のうち少なくとも1種)8原子%
〜30原子%、B 2原子%〜28原子%、Fe 42
原子%〜90原子%を主成分とし主相が正方晶相からな
る永久磁石体表面に、真空蒸着法、イオンスパッタリン
グ法、イオンプレーティング法、イオン蒸着薄膜形成法
(IVD)、あるいはプラズマ蒸着薄膜形成法(CV
D)等の気相めっき処理にて、Al、Ni、Cr、C
u、Co、等の金属あるいはその合金、また、Si
2、Al23、Cr23、TiN、AlN、TiC等
の耐食性気相めっき層を被着したことを特徴とする耐食
性のすぐれた永久磁石の製造方法である。
The present invention is based on R (provided that R
Is at least one of rare earth elements including Y) 8 atomic%
-30 atom%, B 2 atom-28 atom%, Fe 42
Vacuum deposition method, ion sputtering method, ion plating method, ion vapor deposition thin film formation method (IVD), or plasma vapor deposition thin film on the surface of a permanent magnet whose main phase is a tetragonal phase with atomic% to 90 atomic% as a main component. Forming method (CV
Al, Ni, Cr, C by vapor phase plating treatment such as D)
Metals such as u, Co, or alloys thereof, or Si
A method for producing a permanent magnet having excellent corrosion resistance, characterized in that a corrosion-resistant vapor-phase plated layer of O 2 , Al 2 O 3 , Cr 2 O 3 , TiN, AlN, TiC or the like is applied.

【0011】この発明における耐食性気相めっき層を磁
石材料表面に形成する気相めっき処理方法は、真空蒸着
法、イオンスパッタリング法、イオンプレーティング
法、イオン蒸着薄膜形成法(IVD)、あるいはプラズ
マ蒸着薄膜形成法(CVD)等が採用できる。この発明
において、上述した各種の気相めっき層形成処理にて成
膜された、Fe−B−R系永久磁石表面の耐食性気相め
っき層の厚みは、磁気特性や耐食性などを考慮すると3
0μm以下の厚みが好ましい。
The vapor phase plating method for forming the corrosion resistant vapor phase plating layer on the surface of the magnet material in the present invention is a vacuum vapor deposition method, an ion sputtering method, an ion plating method, an ion vapor deposition thin film forming method (IVD), or plasma vapor deposition. A thin film forming method (CVD) or the like can be adopted. In the present invention, the thickness of the corrosion-resistant vapor phase plating layer on the surface of the Fe-BR permanent magnet formed by the various vapor phase plating layer forming treatments described above is 3 in consideration of magnetic characteristics and corrosion resistance.
A thickness of 0 μm or less is preferable.

【0012】真空蒸着法は、コーティング物質を真空中
で、抵抗加熱法、電子ビーム法、誘導加熱法などにより
加熱し、原子状、分子状あるいは微粒子とし、被コーテ
ィング材料である永久磁石体表面に前記した金属や合金
あるいは化合物からなる耐食性薄膜を形成する方法であ
る。
In the vacuum vapor deposition method, the coating substance is heated in a vacuum by a resistance heating method, an electron beam method, an induction heating method or the like to form an atomic, molecular or fine particle, which is applied to the surface of the permanent magnet body to be coated. It is a method of forming a corrosion resistant thin film made of the metal, alloy or compound described above.

【0013】イオンスパッタリング法は、真空容器内に
アルゴンガスを導入し、スパッタ電源により放電を起
し、イオン化されたアルゴンガスが電界により加速され
て、陰極のコーティング物質たるターゲット材に衝突
し、ターゲット材原子をたたき出し、陽極を構成してい
る被着側の永久磁石体表面に前記耐食性薄膜を形成する
方法である。
In the ion sputtering method, an argon gas is introduced into a vacuum container, a discharge is generated by a sputtering power source, and the ionized argon gas is accelerated by an electric field to collide with a target material that is a coating material of a cathode, thereby causing a target. It is a method of striking out material atoms and forming the corrosion-resistant thin film on the surface of the adhered permanent magnet that constitutes the anode.

【0014】イオンプレーティング法は、抵抗加熱法、
電子ビーム法、誘導加熱法などにより加熱し、原子状、
分子状あるいは微粒子とし、これに熱電子を衝突させて
イオン化させ、電界分布により走行するイオン化粒子が
他の蒸発粒子と衝突してさらにイオン化粒子を増加さ
せ、これらイオン化粒子が電界に引かれて陰極を構成す
る永久磁石体表面に付着し、前記耐食性薄膜を形成する
方法である。
The ion plating method is a resistance heating method,
Atomic state by heating by electron beam method, induction heating method, etc.
Molecular or fine particles are made to collide with thermal electrons to be ionized, and the traveling ionized particles collide with other vaporized particles due to the electric field distribution to further increase the number of ionized particles, and these ionized particles are attracted to the electric field to cause the cathode. Is a method of forming the corrosion-resistant thin film by adhering to the surface of the permanent magnet constituting the.

【0015】イオン蒸着薄膜形成法(IVD:Ion
Vapor Deposition)は、電子銃、アー
ク放電等によって蒸発させた蒸発物と、イオン源から引
出されたイオンを、高加速電圧で加速したものを同時
に、或る割合で付着及びイオン照射することにより、永
久磁石体表面に前記耐食性薄膜を形成する方法である。
Ion Deposition Thin Film Forming Method (IVD: Ion
Vapor Deposition) is a method in which an evaporated material evaporated by an electron gun, an arc discharge, etc. and ions extracted from an ion source are accelerated at a high accelerating voltage at the same time, and attached and irradiated at a certain ratio. It is a method of forming the corrosion resistant thin film on the surface of a permanent magnet body.

【0016】プラズマ蒸着薄膜形成法(CVD)は、真
空容器内に薄膜用原料ガスを導入し、真空ポンプを使用
して一定圧力に維持し、電極に高周波電力を印加して放
電させ、プラズマ化学反応により、永久磁石体表面に前
記耐食性薄膜を形成する方法である。
In the plasma deposition thin film forming method (CVD), a raw material gas for a thin film is introduced into a vacuum container, a constant pressure is maintained by using a vacuum pump, high frequency power is applied to an electrode to discharge, and plasma chemical It is a method of forming the corrosion resistant thin film on the surface of the permanent magnet body by a reaction.

【0017】永久磁石の限定理由 この発明の永久磁石に用いる希土類元素Rは、8原子%
〜30原子%のNd,Pr,Dy,Ho,Tbのうち少
なくとも1種、あるいはさらに、La,Sm,Ce,G
d,Er,Eu,Pm,Tm,Yb,Lu,Yのうち少
なくとも1種を含むものが好ましい。又、通例Rのうち
1種をもって足りるが、実用上は2種以上の混合物(ミ
ッシュメタル、ジジム等)を入手上の便宜等の理由によ
り用いることができる。なお、このRは純希土類元素で
なくてもよく、工業上入手可能な範囲で製造上不可避な
不純物を含有するものでも差支えない。
Reasons for limiting the permanent magnet The rare earth element R used in the permanent magnet of the present invention is 8 atom%
-30 atom% of at least one of Nd, Pr, Dy, Ho, Tb, or further La, Sm, Ce, G
Those containing at least one of d, Er, Eu, Pm, Tm, Yb, Lu and Y are preferable. Usually, only one of R is sufficient, but in practice, a mixture of two or more (Misch metal, didymium, etc.) can be used for reasons such as availability. It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

【0018】R(Yを含む希土類元素のうち少なくとも
1種)は、新規な上記系永久磁石における必須元素であ
って、8原子%未満では結晶構造がα−鉄と同一構造の
立方晶組織となるため、高磁気特性、特に高保磁力が得
られず、30原子%を越えるとRリッチな非磁性相が多
くなり、残留磁束密度(Br)が低下して、すぐれた特
性の永久磁石が得られない。よって、Rは8原子%〜3
0原子%の範囲とする。
R (at least one of rare earth elements including Y) is an essential element in the novel permanent magnet, and if it is less than 8 atomic%, it has a cubic crystal structure having the same crystal structure as α-iron. Therefore, high magnetic characteristics, especially high coercive force cannot be obtained. When it exceeds 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics is obtained. I can't. Therefore, R is 8 atom% to 3
The range is 0 atomic%.

【0019】Bは、新規な上記系永久磁石における必須
元素であって、2原子%未満では菱面体組織となり、高
い保磁力(iHc)は得られず、28原子%を越えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲とする。
B is an essential element in the novel permanent magnet, and if it is less than 2 atomic%, a rhombohedral structure is formed, and a high coercive force (iHc) cannot be obtained. Increased magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

【0020】Feは、新規な上記系永久磁石において必
須元素であり、42原子%未満では残留磁束密度(B
r)が低下し、90原子%を越えると高い保磁力が得ら
れない。よって、Feは42原子%〜90原子%の含有
とする。また、この発明による永久磁石用合金におい
て、Feの一部をCoで置換することは、得られる磁石
の磁気特性を損うことなく、温度特性を改善することが
できるが、Co置換量がFeの50%を越えると、逆に
磁気特性が劣化するため、好ましくない。
Fe is an essential element in the new permanent magnets of the above system, and if it is less than 42 atomic%, the residual magnetic flux density (B
r) decreases, and if it exceeds 90 atomic%, a high coercive force cannot be obtained. Therefore, Fe is contained at 42 at% to 90 at%. Further, in the permanent magnet alloy according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 50%, on the contrary, the magnetic characteristics are deteriorated, which is not preferable.

【0021】また、この発明による永久磁石は、R,
B,Feの他、工業的生産上不可避的不純物の存在を許
容できるが、Bの一部を4.0原子%以下のC、3.5
原子%以下のP、2.5原子%以下のS、3.5原子%
以下のCuのうち少なくとも1種、合計量で4.0原子
%以下で置換することにより、永久磁石の製造性改善、
低価格化が可能である。
The permanent magnet according to the present invention has R,
In addition to B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated, but a part of B is 4.0 atomic% or less of C and 3.5.
P of atomic% or less, S of 2.5 atomic% or less, 3.5 atomic%
Improving the manufacturability of the permanent magnet by substituting at least one of the following Cu with a total amount of 4.0 atomic% or less,
The price can be reduced.

【0022】また、下記添加元素のうち少なくとも1種
は、R−B−Fe系永久磁石に対してその保磁力等を改
善あるいは製造性の改善、低価格化に効果があるため添
加する。しかし、保磁力改善のための添加に伴ない残留
磁束密度(Br)の低下を招来するので、従来のハード
フェライト磁石の残留磁束密度と同等以上となる範囲で
の添加が望ましい。9.5原子%以下のAl、4.5原
子%以下のTi、9.5原子%以下のV、8.5原子%
以下のCr、8.0原子%以下のMn、5原子%以下の
Bi、12.5原子%以下のNb、10.5原子%以下
のTa、9.5原子%以下のMo、9.5原子%以下の
W、2.5原子%以下のSb、7原子%以下のGe、
3.5原子%以下のSn、5.5原子%以下のZr、
5.5原子%以下のHfのうち少なくとも1種を添加含
有、但し、2種以上含有する場合は、その最大含有量は
当該添加元素のうち最大値を有するものの原子%以下の
含有させる。
At least one of the following additive elements is added to the RB-Fe based permanent magnet because it is effective in improving the coercive force and the like, improving the manufacturability, and reducing the cost. However, since the residual magnetic flux density (Br) is lowered with the addition for improving the coercive force, it is preferable to add the residual magnetic flux density in the range equal to or more than the residual magnetic flux density of the conventional hard ferrite magnet. 9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic%
Cr below, Mn below 8.0 at%, Bi below 5 at%, Nb below 12.5 at%, Ta below 10.5 at%, Mo below 9.5 at%, 9.5 below. W of atomic% or less, Sb of 2.5 atomic% or less, Ge of 7 atomic% or less,
3.5 atomic% or less Sn, 5.5 atomic% or less Zr,
At least one of Hf of 5.5 atomic% or less is additionally contained. However, when two or more kinds of Hf are contained, the maximum content thereof is at most atomic% of the additive element having the maximum value.

【0023】この発明のFe−B−R系永久磁石は、主
相が正方晶であることが不可欠であり、体積比で1%〜
50%の非磁性相(酸化物相を除く)を含むことを特徴
とし、焼結磁石の場合には、結晶粒径が1〜100μm
の正方晶系の結晶構造を有する化合物を主相とし、微細
で均一な合金粉末によりすぐれた磁気特性を有する焼結
永久磁石が得られる。また、この発明の永久磁石は、磁
場中プレス成型することにより磁気的異方性磁石が得ら
れ、また、無磁界中でプレス成型することにより、磁気
的等方性磁石を得ることができる。したがって、この発
明のFe−B−R系永久磁石は、RとしてNdやPrを
中心とする資源的に豊富な軽希土類を主に用い、Fe,
B,Rを主成分とし主相が正方晶相からなることによ
り、25MGOe以上の極めて高いエネルギー積並び
に、高残留磁束密度、高保持力を有し、かつ高い耐食性
を有する、すぐれた永久磁石を安価に得ることができ
る。
In the Fe-BR type permanent magnet of the present invention, it is essential that the main phase is tetragonal, and the volume ratio is 1% to.
It is characterized by containing 50% of non-magnetic phase (excluding oxide phase), and in the case of a sintered magnet, the crystal grain size is 1 to 100 μm.
A sintered permanent magnet having excellent magnetic properties can be obtained by using a compound having a tetragonal crystal structure of as a main phase and fine and uniform alloy powder. Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field. Therefore, the Fe-B-R permanent magnet of the present invention mainly uses a light rare earth element rich in resources centering on Nd and Pr as R, Fe,
An excellent permanent magnet having an extremely high energy product of 25 MGOe or more, a high residual magnetic flux density, a high coercive force, and high corrosion resistance due to B and R as main components and a tetragonal phase as a main phase. It can be obtained at low cost.

【0024】この発明による永久磁石は、保磁力iHc
≧1kOe、残留磁束密度Br>4kG、を示し、最大
エネルギー積(BH)maxはハードフェライトと同等
以上となり、最も好ましい組成範囲では、(BH)ma
x≧10MGOeを示し、最大値は25MGOe以上に
達する。また、この発明の永久磁石のRの主成分がその
50%以上を軽希土類金属が占める場合で、R12原子
%〜20原子%、4原子%〜24原子%、Fe65原子
%〜82原子%、を主成分とするとき、磁気的異方性焼
結磁石の場合最もすぐれた磁気特性を示し、特に軽希土
類金属がNdの場合には、(BH)maxはその最大値
が35MGOe以上に達する。
The permanent magnet according to the present invention has a coercive force iHc.
≧ 1 kOe, residual magnetic flux density Br> 4 kG, and the maximum energy product (BH) max is equal to or higher than that of hard ferrite. In the most preferable composition range, (BH) ma
x ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more. Further, when the main component of R of the permanent magnet of the present invention occupies 50% or more of the light rare earth metal, R 12 atom% to 20 atom%, 4 atom% to 24 atom%, Fe 65 atom% to 82 atom%, When the main component is, the magnetically anisotropic sintered magnet exhibits the best magnetic characteristics, and particularly when the light rare earth metal is Nd, the maximum value of (BH) max reaches 35 MGOe or more.

【0025】[0025]

【作用】この発明は、主相が正方晶相からなるFe−B
−R系永久磁石材料表面に生成する酸化物を抑制するた
め、気相めっき処理にて該磁石材料表面に膜厚が均一で
強固かつ安定な耐食性気相めっき層を形成するものであ
り、この気相めっき層を施すことによって、磁石体表面
の酸化が抑制され、磁気特性が劣化することなく、ま
た、湿式めっき処理のごとく腐蝕性の薬品等を使用、残
留させることがないため、磁気特性が長期にわたって安
定する利点がある。
The present invention is based on Fe-B in which the main phase is a tetragonal phase.
In order to suppress oxides formed on the surface of the R-based permanent magnet material, a corrosion-resistant vapor-phase plated layer having a uniform thickness, strong and stable is formed on the surface of the magnet material by vapor-phase plating treatment. By applying the vapor phase plating layer, oxidation of the surface of the magnet body is suppressed, the magnetic properties do not deteriorate, and since corrosive chemicals such as wet plating are not used or left, the magnetic properties Has the advantage of being stable over the long term.

【0026】[0026]

【実施例】実施例1 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl、Si、C等の不純物か
らなるフェロボロン合金、純度99.7%以上のNdを
使用し、これらを高周波溶解し、その後水冷銅鋳型に鋳
造し、15Nd8B77Fe(原子%)なる組成の鋳塊
を得た。その後インゴットを、スタンプミルにより粗粉
砕し、次にボールミルにより粉砕し、粒度3μmの微粉
末を得た。この微粉末を金型に挿入し、12kOeの磁
界中で配向し、磁界と平行方向に1.5t/cm2の圧
力で成形した。得られた成形体を、1100℃、1時
間、Ar中の条件で焼結し、その後放冷し、さらにAr
中で600℃、2時間の時効処理を施して、永久磁石を
作製した。得られた永久磁石から外径20mm×内径1
0mm×厚み1.5mm寸法に試験片を切り出した。
Example 1 As a starting material, electrolytic iron having a purity of 99.9%, B19.4
%, And the balance is Fe and Al, Si, C and other ferroboron alloys, Nd with a purity of 99.7% or more is used, and these are high-frequency melted, and then cast in a water-cooled copper mold to obtain 15Nd8B77Fe (atoms). %) Was obtained. After that, the ingot was roughly crushed by a stamp mill and then crushed by a ball mill to obtain a fine powder having a particle size of 3 μm. The fine powder was inserted into a mold, oriented in a magnetic field of 12 kOe, and molded in a direction parallel to the magnetic field at a pressure of 1.5 t / cm 2 . The obtained molded body is sintered at 1100 ° C. for 1 hour in Ar, then allowed to cool, and further Ar
A permanent magnet was produced by aging treatment at 600 ° C. for 2 hours. 20 mm outer diameter x 1 inner diameter from the obtained permanent magnet
A test piece was cut into a size of 0 mm × thickness of 1.5 mm.

【0027】次に、真空度1×10-5Torrの真空容
器内に上記試験片を入れ、前処理として、350℃、3
0分間加熱し、300℃に降温したのち、コーティング
材料の10mmφ×10mm寸法の純度99.99%以
上のNi片に、0.6A、8kVの電子ビームを30分
間照射して加熱、蒸発させて試験片に、Ni薄膜を真空
蒸着した。試験片の永久磁石表面に形成されたNi薄膜
厚みは5μmであった。この試験片に耐食性試験と耐食
性試験後のNi薄膜の密着強度試験を行なった。また、
耐食性試験前後の磁気特性を測定した。試験結果及び測
定結果は表1に示す。
Next, the above-mentioned test piece was put in a vacuum container having a degree of vacuum of 1 × 10 -5 Torr, and pretreatment was carried out at 350 ° C. for 3 hours.
After heating for 0 minutes and lowering the temperature to 300 ° C., a Ni piece having a purity of 99.99% or more with a size of 10 mmφ × 10 mm of the coating material is irradiated with an electron beam of 0.6 A, 8 kV for 30 minutes to heat and evaporate. A Ni thin film was vacuum-deposited on the test piece. The thickness of the Ni thin film formed on the surface of the permanent magnet of the test piece was 5 μm. The test piece was subjected to a corrosion resistance test and a Ni thin film adhesion strength test after the corrosion resistance test. Also,
The magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

【0028】比較例1 また、比較のため、上記試験片にトリクレンにて3分間
溶剤脱脂し、5%NaOHにて60℃、3分間のアルカ
リ脱脂したのち、2%HClにて室温、10秒間の酸洗
し、ワット浴にて、電流密度4A/dm2、浴温度60
℃、20分間の条件にて、電気ニッケルめっきを行ない
表面に10μm厚みのニッケルめっき層を有する比較試
験片(比較例1)を得た。この比較試験片に上記の実施
例1と同一の試験及び測定を行ない、その結果を実施例
1と同様に表1に示す。
Comparative Example 1 For comparison, the test pieces were solvent degreased with trichlene for 3 minutes, alkali degreased with 5% NaOH at 60 ° C. for 3 minutes, and then with 2% HCl at room temperature for 10 seconds. Acid-washed with a Watt bath, current density 4 A / dm 2 , bath temperature 60
A comparative test piece (Comparative Example 1) having a nickel plating layer with a thickness of 10 μm on the surface was obtained by performing electric nickel plating under the conditions of ° C and 20 minutes. This comparative test piece was subjected to the same tests and measurements as in Example 1 above, and the results are shown in Table 1 as in Example 1.

【0029】耐食性試験は、上記試験片を60℃の温
度、90%の湿度の雰囲気に500時間放置した場合の
試験片の外観状況でもって評価した。また、密着強度試
験は、耐食性試験後の上記試験片を、粘着テープで1m
m間隔の枡目部分を引張り、薄膜層が剥離するか否か
(無剥離枡目数/全枡目数)で評価した。
The corrosion resistance test was evaluated based on the appearance of the test piece when the test piece was left in an atmosphere of a temperature of 60 ° C. and a humidity of 90% for 500 hours. For the adhesion strength test, the above-mentioned test piece after the corrosion resistance test is 1 m with an adhesive tape.
The mesh portion at intervals of m was pulled, and it was evaluated whether or not the thin film layer was peeled off (number of unpeeled cells / total number of cells).

【0030】実施例2 実施例1と同一の試験片を用い、真空度1×10-5To
rrの真空容器内に上記試験片を入れ、さらにArガス
を1.2×10-2Torrとなるまで導入し、つぎに1
50WでArガス中に放電を起させ、ターゲット材にC
o−18.5Cr合金片を使用して、5時間のスパッタ
リングを行ない、試験片表面にターゲット材と同組成の
薄膜を形成した。試験片表面に形成した薄膜厚みは5μ
mであった。この試験片に実施例1の同方法の耐食性試
験と耐食性試験後の気相薄膜の密着強度試験を行なっ
た。また、耐食性試験前後の磁気特性を測定した。試験
結果及び測定結果は表1に示す。
Example 2 Using the same test piece as in Example 1, the degree of vacuum was 1 × 10 −5 To.
The above test piece was placed in a vacuum chamber of rr, and Ar gas was further introduced until it reached 1.2 × 10 -2 Torr, and then 1
A discharge is generated in Ar gas at 50 W, and C is applied to the target material.
Using an o-18.5 Cr alloy piece, sputtering was performed for 5 hours to form a thin film having the same composition as the target material on the surface of the test piece. The thickness of the thin film formed on the surface of the test piece is 5μ
It was m. The test piece was subjected to the corrosion resistance test of the same method as in Example 1 and the adhesion strength test of the vapor phase thin film after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

【0031】実施例3 実施例1と同一の試験片を用い、真空度1×10-5To
rrの真空容器内に上記試験片を入れ、0.8Torr
のArガス中、400Vの電圧で1分間の逆スパッタを
行なった後、前処理として、350℃、30分間加熱
し、300℃に降温したのち、3〜5mmφ粒状の溶融
石英からなるターゲット材を加熱し、溶融石英が分子状
となり、これに熱電子を衝突させてイオン化させ、電界
分布により走行するSiO2イオン化粒子が他の蒸発粒
子と衝突してさらにSiO2イオン化粒子を増加させ、
これらイオン化粒子が電界に引かれて陰極を構成する前
記試験片に付着し、SiO2薄膜が該試験片表面に形成
された。この試験片表面に形成した薄膜厚みは5μmで
あった。上記イオンプレーティングの条件は、試験片を
電圧1kV、イオン化電圧100V、80〜90mA、
40分間処理する条件であった。この試験片に実施例1
の同方法の耐食性試験と耐食性試験後の気相薄膜の密着
強度試験を行なった。また、耐食性試験前後の磁気特性
を測定した。試験結果及び測定結果は表1に示す。
Example 3 Using the same test piece as in Example 1, the degree of vacuum was 1 × 10 −5 To.
Put the above test piece in a vacuum chamber of rr, and 0.8 Torr
After performing reverse sputtering in Ar gas at a voltage of 400 V for 1 minute, as pretreatment, heating is performed at 350 ° C. for 30 minutes and the temperature is lowered to 300 ° C., and then a target material made of 3-5 mmφ granular fused quartz is used. When heated, the fused quartz becomes molecular, and thermionic electrons collide with it to be ionized. Due to the electric field distribution, the SiO 2 ionized particles collide with other vaporized particles to further increase the SiO 2 ionized particles,
These ionized particles were attracted to the electric field and adhered to the test piece constituting the cathode, and a SiO 2 thin film was formed on the surface of the test piece. The thickness of the thin film formed on the surface of this test piece was 5 μm. The conditions of the above-mentioned ion plating are as follows: a test piece having a voltage of 1 kV, an ionization voltage of 100 V, 80 to 90 mA,
It was a condition of processing for 40 minutes. Example 1
The corrosion resistance test of the same method and the adhesion strength test of the vapor phase thin film after the corrosion resistance test were performed. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

【0032】実施例4 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl、Si、C等の不純物か
らなるフェロボロン合金、純度99.7%以上のNd及
びDy金属を使用し、これらを高周波溶解しその後水冷
銅鋳型に鋳造し、15Nd1.5Dy8B75.5Fe
(原子%)なる組成の鋳塊を得た。その後インゴット
を、スタンプミルにより粗粉砕し、次にボールミルによ
り粉砕し、粒度3μmの微粉末を得た。この微粉末を金
型に挿入し、12kOeの磁界中で配向し、磁界と直角
方向に、1.5t/cm2の圧力で成形した。得られた
成形体を、1100℃、1時間、Ar中の条件で焼結
し、その後放冷し、さらにAr中ので600℃、2時間
の時効処理を施して、永久磁石を作製した。得られた永
久磁石から外径20mm×内径10mm×厚み1.5m
m寸法に試験片を切り出した。
Example 4 As a starting material, electrolytic iron having a purity of 99.9%, B19.4
%, With the balance being Fe and Al, Si, C and other ferroboron alloys, and Nd and Dy metals with a purity of 99.7% or more are used, and these are high-frequency melted and then cast in a water-cooled copper mold to produce 15Nd1. .5Dy8B75.5Fe
An ingot having a composition of (atomic%) was obtained. After that, the ingot was roughly crushed by a stamp mill and then crushed by a ball mill to obtain a fine powder having a particle size of 3 μm. This fine powder was inserted into a mold, oriented in a magnetic field of 12 kOe, and molded in a direction perpendicular to the magnetic field at a pressure of 1.5 t / cm 2 . The obtained compact was sintered under the conditions of 1100 ° C. for 1 hour in Ar, then allowed to cool, and further subjected to an aging treatment in Ar at 600 ° C. for 2 hours to produce a permanent magnet. From the obtained permanent magnet, outer diameter 20 mm × inner diameter 10 mm × thickness 1.5 m
A test piece was cut into m size.

【0033】上記試験片を挿入した真空容器内の真空度
は1×10-2Torr以下で、コーティング材のTi薄
片をアーク放電により蒸発させると共に、N2ガスを引
出電圧40kV、イオン化電流100mA、ビームサイ
ズ4×10cm2で、N2ガスイオンとして加速し、Ti
蒸発とN2ガスイオン照射を3時間行なうイオン蒸着薄
膜形成法にて、試験片表面にTiN薄膜を形成した。こ
のとき試験片表面のTiN薄膜厚みは5μmであった。
この試験片に実施例1と同一の耐食性試験と耐食性試験
後の薄膜の密着強度試験を行なった。また、耐食性試験
前後の磁気特性を測定した。試験結果及び測定結果は表
1に示す。
The degree of vacuum in the vacuum vessel in which the above test piece was inserted was 1 × 10 -2 Torr or less, Ti thin pieces of the coating material were evaporated by arc discharge, and N 2 gas was drawn out at a voltage of 40 kV and an ionization current was 100 mA. With a beam size of 4 × 10 cm 2, it is accelerated as N 2 gas ions, and Ti
A TiN thin film was formed on the surface of the test piece by the ion vapor deposition thin film forming method in which evaporation and N 2 gas ion irradiation were performed for 3 hours. At this time, the thickness of the TiN thin film on the surface of the test piece was 5 μm.
The test piece was subjected to the same corrosion resistance test as in Example 1 and the adhesion strength test of the thin film after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

【0034】比較例2 また、比較例として、上記試験片をトリクレンにて3分
間溶剤脱脂し、5%NaOHにて60℃、3分間のアル
カリ脱脂したのち、2%HClにて室温、10秒間の酸
洗し、ワット浴にて、電流密度4A/dm2、浴温度6
0℃、20分間の条件にて、電気ニッケルめっきを行な
い表面に10μm厚みのニッケルめっき層を有する比較
試験片(比較例2)を得た。この比較試験片に実施例4
と同様に、実施例1と同一の試験及び測定を行ない、そ
の結果を同様に表1に示す。
Comparative Example 2 As a comparative example, the above test piece was solvent degreased with trichlene for 3 minutes, alkali degreased with 5% NaOH at 60 ° C. for 3 minutes, and then with 2% HCl at room temperature for 10 seconds. Acid-washed with a watt bath, current density 4 A / dm 2 , bath temperature 6
A comparative test piece (Comparative Example 2) having a nickel plating layer with a thickness of 10 μm on the surface was obtained by performing electric nickel plating under the conditions of 0 ° C. and 20 minutes. Example 4 was applied to this comparative test piece.
The same tests and measurements as in Example 1 were performed, and the results are also shown in Table 1.

【0035】実施例5 実施例4と同一の試験片を用い、該試験片を挿入した真
空容器内に、SiH4ガスとN2Oガスを同時に流量10
0ml/minで送給し、13.56MHzの高周波プ
ラズマにて200Wで放電を行ない、予め200℃に加
熱した試験片表面に、SiO2薄膜を被着させるプラズ
マ蒸着薄膜形成法を3時間施し、試験片表面に厚み5μ
mのSiO2薄膜を形成した。この試験片に実施例1と
同一の耐食性試験と耐食性試験後の薄膜の密着強度試験
を行なった。また、耐食性試験前後の磁気特性を測定し
た。試験結果及び測定結果は表1に示す。
Example 5 The same test piece as in Example 4 was used, and a flow rate of SiH 4 gas and N 2 O gas was 10 at the same time in a vacuum container in which the test piece was inserted.
The plasma vapor deposition thin film forming method of depositing a SiO 2 thin film on the surface of a test piece preheated to 200 ° C. was carried out for 3 hours by discharging at 200 W with high frequency plasma of 13.56 MHz and feeding at 0 ml / min. 5μ thickness on the surface of the test piece
m SiO 2 thin film was formed. The test piece was subjected to the same corrosion resistance test as in Example 1 and the adhesion strength test of the thin film after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】この発明は、所要組成のR、B、Feを
主成分とし主相が正方晶相からなる永久磁石体表面に、
真空蒸着法、イオンスパッタリング法、イオンプレーテ
ィング法などの気相めっき処理にて耐食性気相めっき層
を設けるもので、実施例の表1の試験及び測定結果に明
らかなように、この発明による耐食性気相めっき層は、
湿式めっき処理による各比較例に対して、膜厚が所要厚
みでかつ格段にすぐれた均一度が得られ、さらにすぐれ
た耐食性並びに高い被膜密着強度が得られているため、
永久磁石体の酸化が確実に防止されており、耐食性試験
後の磁気特性の劣化がなく、各比較例に対して磁気特性
の向上が著しいことが分る。
According to the present invention, the surface of a permanent magnet having a required composition of R, B, and Fe as main components and a main phase of a tetragonal phase,
The corrosion resistance vapor phase plating layer is provided by vapor phase plating treatment such as vacuum deposition method, ion sputtering method, ion plating method, etc. The vapor plating layer is
Compared with each comparative example by the wet plating treatment, the film thickness is the required thickness and the outstanding uniformity is obtained, and further excellent corrosion resistance and high coating adhesion strength are obtained.
It can be seen that the permanent magnet body is reliably prevented from being oxidized, the magnetic characteristics are not deteriorated after the corrosion resistance test, and the magnetic characteristics are remarkably improved as compared with each comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01F 1/08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち
少なくとも1種)8原子%〜30原子%、B 2原子%
〜28原子%、Fe 42原子%〜90原子%を主成分
とし主相が正方晶相からなる永久磁石体表面に、気相め
っき処理にて耐食性気相めっき層を被着したことを特徴
する耐食性のすぐれた永久磁石の製造方法。
1. R (where R is at least one of rare earth elements including Y) 8 atom% to 30 atom%, B 2 atom%
.About.28 at%, Fe 42 at.% To 90 at.% As a main component, and a main phase is a tetragonal phase. The surface of the permanent magnet is characterized in that a corrosion resistant vapor phase plating layer is deposited by vapor phase plating treatment. A method for manufacturing a permanent magnet having excellent corrosion resistance.
JP6107538A 1994-04-21 1994-04-21 Method of manufacturing permanent magnet with excellent corrosion resistance Expired - Lifetime JPH0821511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6107538A JPH0821511B2 (en) 1994-04-21 1994-04-21 Method of manufacturing permanent magnet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6107538A JPH0821511B2 (en) 1994-04-21 1994-04-21 Method of manufacturing permanent magnet with excellent corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59278489A Division JPS61150201A (en) 1984-12-24 1984-12-24 Permanent magnet with excellent anticorrosion property

Publications (2)

Publication Number Publication Date
JPH0774043A JPH0774043A (en) 1995-03-17
JPH0821511B2 true JPH0821511B2 (en) 1996-03-04

Family

ID=14461735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6107538A Expired - Lifetime JPH0821511B2 (en) 1994-04-21 1994-04-21 Method of manufacturing permanent magnet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0821511B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747462B2 (en) * 2001-08-10 2011-08-17 日立金属株式会社 Method for producing rare earth-based permanent magnet having deposited film on surface
JP2005285859A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721842B2 (en) * 1972-12-26 1982-05-10
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Also Published As

Publication number Publication date
JPH0774043A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US5089066A (en) Magnets having improved corrosion resistance
JPH11307328A (en) Corrosion resistant permanent magnet and its manufacture
JPH0515043B2 (en)
JPH0821511B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0569282B2 (en)
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0535216B2 (en)
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JPH0644525B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0554683B2 (en)
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH05205922A (en) Manufacture of permanent magnet having excellent corrosion resistant property
JPH0545045B2 (en)
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JPS61166117A (en) Manufacture of permanent magnet of excellent corrosion-resisting property
JP3595078B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPH09180921A (en) Permanent magnet for ultra high vacuum and manufacture thereof
JPH0569283B2 (en)
JPS63255376A (en) Production of corrosion resistant permanent magnet
JPH0576521B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term