JPH1074607A - Corrosion-resisting permanent magnet and its manufacture - Google Patents

Corrosion-resisting permanent magnet and its manufacture

Info

Publication number
JPH1074607A
JPH1074607A JP8249208A JP24920896A JPH1074607A JP H1074607 A JPH1074607 A JP H1074607A JP 8249208 A JP8249208 A JP 8249208A JP 24920896 A JP24920896 A JP 24920896A JP H1074607 A JPH1074607 A JP H1074607A
Authority
JP
Japan
Prior art keywords
film
permanent magnet
magnet
corrosion
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8249208A
Other languages
Japanese (ja)
Inventor
Fumiaki Kikui
文秋 菊井
Masako Suzuki
雅子 鈴木
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8249208A priority Critical patent/JPH1074607A/en
Publication of JPH1074607A publication Critical patent/JPH1074607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PROBLEM TO BE SOLVED: To enhance the wear resistance and corrosion resistance of a Fe-B-R permanent magnet body the major phase of which is tetragonal system, by forming an AlN film with a specified film thickness on the surface of the said permanent magnet body with an Al film with a specified film thickness in-between. SOLUTION: The corrosion-resisting permanent magnet is manufactured as follows, the surface of a Fe-B-R permanent magnet body the major phase of which is tetragonal system, is cleaned, and an Al film with a film thickness of 0.06-5.0μm is formed on the surface of the magnet body by a vapor growth film formation method. Thereafter, an AlN film with a film thickness of 0.5-10μm is formed in a N2 gas atmosphere by a vapor growth film formation method. This constitution improves the adhesion between the surface of the magnet body and the Al film. In addition the lamination of the AlN film on the Al film provides stable magnet characteristics due to the corrosion resistance and the wear resistance of the deposited corrosion-resisting metal film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高磁気特性を有
しかつ密着性がすぐれ、耐食性、耐酸、耐アルカリ性、
耐摩耗性にすぐれた耐食性被膜を設けたFe−B−R系
永久磁石に係り、Al被膜を介してAlN被膜層を特定
膜厚みで設けた耐食性、特に80℃、相対湿度90%の
雰囲気に長時間放置した場合の初期磁石特性からの劣化
が少なく、きわめて安定した磁石特性を有する耐食性永
久磁石及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has high magnetic properties and excellent adhesion, corrosion resistance, acid resistance, alkali resistance,
The present invention relates to a Fe-BR-based permanent magnet provided with a corrosion-resistant coating having excellent wear resistance, and in which an AlN coating layer is provided with a specific film thickness via an Al coating, particularly in an atmosphere at 80 ° C and a relative humidity of 90%. The present invention relates to a corrosion-resistant permanent magnet having little deterioration from initial magnet properties when left for a long time and having extremely stable magnet properties, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、F
e−B−R系永久磁石が提案されている(特開昭59−
46008号公報、特開昭59−89401号公報)。
2. Description of the Related Art First, using rare earths, which are abundant in resources, mainly Nd and Pr, B and Fe as main components, do not contain expensive Sm and Co, and are the highest among conventional rare earth cobalt magnets. As a new high-performance permanent magnet that greatly exceeds the characteristics,
e-B-R permanent magnets have been proposed (Japanese Patent Laid-Open No. 59-1984).
46008, JP-A-59-89401).

【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するFe−B−
R系永久磁石(特開昭59−64733号、特開昭59
−132104号)を得ており、さらに、前記Co含有
のFe−B−R系希土類永久磁石と同等以上のキュリー
点並びにより高い(BH)maxを有し、その温度特
性、特にiHcを向上させるため、希土類元素(R)と
してNdやPr等の軽希土類を中心としたCo含有のF
e−B−R系希土類永久磁石のRの一部にDy、Tb等
の重希土類のうち少なくとも1種を含有することによ
り、25MGOe以上の極めて高い(BH)maxを保
有したままで、iHcをさらに向上させたCo含有のF
e−B−R系希土類永久磁石が提案(特開昭60−34
005号公報)されている。
The Curie point of the above magnet alloy is generally 30
0 ° C. to 370 ° C., but having a higher Curie point by substituting a part of Fe with Co
R-based permanent magnets (JP-A-59-64733, JP-A-59-64733)
-132104), and has a Curie point equal to or higher than that of the Co-containing Fe-BR based rare earth permanent magnet and a higher (BH) max, and improves its temperature characteristics, particularly iHc. Therefore, as a rare earth element (R), Co-containing F mainly containing light rare earth elements such as Nd and Pr is used.
By containing at least one of heavy rare earths such as Dy and Tb in a part of R of the eBR type rare earth permanent magnet, iHc can be increased while retaining a very high (BH) max of 25 MGOe or more. Further improved Co-containing F
e-BR type rare earth permanent magnets have been proposed (JP-A-60-34).
005).

【0004】しかしながら、上記のすぐれた磁気特性を
有するFe−B−R系磁気異方性焼結体からなる永久磁
石は主成分として、空気中で酸化し易い希土類元素及び
鉄を含有するため、磁気回路に組込んだ場合に、磁石表
面に生成する酸化物により、磁気回路の出力低下及び磁
気回路間のばらつきを惹起し、また、表面酸化物の脱落
による周辺機器への汚染の問題があった。
[0004] However, since the permanent magnet made of the Fe-BR based magnetic anisotropic sintered body having the excellent magnetic properties described above contains a rare earth element and iron which are easily oxidized in air as main components, When incorporated in a magnetic circuit, the oxides generated on the magnet surface cause a reduction in the output of the magnetic circuit and variations between the magnetic circuits, and there is a problem of contamination of peripheral devices due to the loss of the surface oxide. Was.

【0005】[0005]

【発明が解決しようとする課題】そこで、上記のFe−
B−R系永久磁石の耐食性の改善のため、磁石体表面に
無電解めっき法あるいは電解めっき法により耐食性金属
めっき層を被覆した永久磁石(特公平3−74012号
公報)が提案されているが、このめっき法では永久磁石
体が焼結体で有孔性のため、この孔内にめっき前処理で
の酸性溶液またはアルカリ溶液が残留し、経年変化とと
もに腐食する恐れがあり、また磁石体の耐薬品性が劣る
ため、めっき時に磁石表面が腐食されて密着性、防蝕性
が劣る問題があった。また、耐食性めっきを設けても、
温度60℃、相対湿度90%の条件下の耐食性試験で1
00時間放置にて、磁石特性は初期磁石特性の10%以
上劣化し、非常に不安定であった。
Therefore, the above-mentioned Fe-
In order to improve the corrosion resistance of BR permanent magnets, there has been proposed a permanent magnet in which the surface of a magnet body is coated with a corrosion-resistant metal plating layer by an electroless plating method or an electrolytic plating method (Japanese Patent Publication No. 3-74012). However, in this plating method, since the permanent magnet body is a sintered body and is porous, an acidic solution or an alkaline solution in the plating pretreatment remains in the pores, and may corrode with aging. Since the chemical resistance is poor, there has been a problem that the magnet surface is corroded at the time of plating and the adhesion and corrosion resistance are poor. Also, even if corrosion resistant plating is provided,
1 in the corrosion resistance test under the condition of temperature 60 ° C and relative humidity 90%
After leaving for 00 hours, the magnet properties were degraded by 10% or more of the initial magnet properties and were very unstable.

【0006】そのため、Fe−B−R系永久磁石の耐食
性の改善向上のため、前記磁石表面にイオンプレーティ
ング法、イオンスパッタリング法等により、Al、Al
N被膜を被着して耐食性の改善向上することが提案(特
公平5−15043号公報)されている。しかし、Al
N被膜はFe−B−R系磁石体と結晶構造の他熱膨張係
数、延性等が相違するため密着性が悪く、またAl被膜
は密着性、耐食性は良好であるが、耐摩耗性が低い等の
問題があった。
[0006] Therefore, in order to improve the corrosion resistance of the Fe-BR based permanent magnet, Al, Al is formed on the surface of the magnet by ion plating, ion sputtering or the like.
It has been proposed to improve the corrosion resistance by applying an N film (Japanese Patent Publication No. 5-15043). However, Al
The N coating has poor adhesion due to differences in the thermal expansion coefficient, ductility, etc. in addition to the crystal structure of the Fe-BR-based magnet body, and the Al coating has good adhesion and corrosion resistance, but low abrasion resistance. And so on.

【0007】この発明は、Fe−B−R系永久磁石下地
との密着性にすぐれ、耐摩耗性、耐食性の改善向上を目
的に、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合の初期磁石特性からの劣化を極力
少なくし、安定した高磁石特性、耐摩耗性、耐食性を有
するFe−B−R系永久磁石を安価に提供することを目
的とする。
[0007] The present invention has excellent adhesion to an Fe-BR-based permanent magnet base, and is intended to improve wear resistance and corrosion resistance. An object of the present invention is to provide an inexpensive Fe-BR-based permanent magnet having stable high magnet properties, abrasion resistance and corrosion resistance while minimizing deterioration from initial magnet properties when left for a long time.

【0008】[0008]

【課題を解決するための手段】発明者らは、すぐれた耐
食性、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合においても、下地との密着性がす
ぐれ、被着した耐食性金属被膜の耐食性、耐摩耗性によ
り、その磁石特性の安定したFe−B−R系永久磁石を
目的に永久磁石体表面へのAlN被膜形成法について種
々検討した結果、磁石体表面をイオンスパッター法等に
より清浄化した後、前記磁石体表面にイオンプレーティ
ング法、イオンスパッタリング法等の気相成膜法により
特定膜厚のAl被膜を形成後、特定条件のN2ガスを導
入しながら、イオンプレーティング、イオンスパッタリ
ング法等の気相成膜法により、特定層厚のAlN被膜を
形成することにより、磁石表面に付着の酸化物はAl被
膜にて還元作用により、磁石表面の酸化物は一部もしく
は大部分が還元され、Al被膜上にAlN被膜を生成す
ることにより、AlとAlNの界面ではAlNxが生成
し、Al被膜とAlN被膜との密着性も著しく改善でき
ることを知見し、この発明を完成した。
Means for Solving the Problems The present inventors have found that excellent corrosion resistance, especially even when left for a long time under an atmosphere condition of a temperature of 80.degree. As a result of various investigations on the method of forming an AlN film on the surface of a permanent magnet body for the purpose of producing a Fe-BR-based permanent magnet having stable magnet properties due to the corrosion resistance and wear resistance of the corrosion-resistant metal film, the magnet body surface was ionized. After cleaning by a sputter method or the like, an Al film having a specific thickness is formed on the surface of the magnet body by a vapor deposition method such as an ion plating method or an ion sputtering method, and then N 2 gas under specific conditions is introduced. Oxide adhering to the magnet surface is reduced by the Al coating by forming an AlN coating with a specific layer thickness by vapor deposition such as ion plating and ion sputtering. Ri, oxides of the magnet surface part or majority is reduced by generating an AlN coating film on the Al coating film, AlN x is produced at the interface between Al and AlN, adhesion between the Al coating film and AlN coating film It has been found that the present invention can be significantly improved, and the present invention has been completed.

【0009】すなわち、この発明は主相が正方晶相から
なるFe−B−R系永久磁石体表面に、膜厚0.06μ
m〜5.0μmのAl被膜を介して膜厚0.5μm〜1
0μmのAlN被膜層を有することを特徴とする耐食性
永久磁石である。
That is, according to the present invention, the surface of the Fe-BR-based permanent magnet whose main phase is a tetragonal phase
0.5 μm to 1 μm through an Al coating of m to 5.0 μm
It is a corrosion-resistant permanent magnet having an AlN coating layer of 0 μm.

【0010】また、この発明は主相が正方晶相からなる
Fe−B−R系永久磁石体表面を清浄化した後、前記磁
石体面に膜厚0.06μm〜5.0μmのAl被膜を気
相成膜法により形成後、N2ガス雰囲気中で気相成膜法
により膜厚0.5μm〜10μmのAlN被膜層を形成
することを特徴とする耐食性永久磁石の製造方法であ
る。
Further, the present invention cleans the surface of an Fe-BR-based permanent magnet having a tetragonal phase as a main phase, and then applies an Al coating having a thickness of 0.06 to 5.0 μm on the surface of the magnet. A method for producing a corrosion-resistant permanent magnet, comprising forming an AlN coating layer having a thickness of 0.5 μm to 10 μm by a vapor phase film forming method in an N 2 gas atmosphere after forming by a phase film forming method.

【0011】[0011]

【発明の実施の形態】この発明において、Fe−B−R
系永久磁石体表面に被着するAl被膜、AlN被膜の形
成方法としてはイオンプレーティング法、イオンスパッ
タリング法、蒸着法等のいわゆる気相成膜法が適宜利用
できるのが、被膜緻密性、均一性、被膜形成速度などの
理由からイオンプレーティング、反応イオンプレーティ
ングが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, Fe-BR
As a method for forming the Al film and the AlN film to be adhered to the surface of the permanent magnet body, a so-called gas-phase film forming method such as an ion plating method, an ion sputtering method, and a vapor deposition method can be appropriately used. Ion plating and reactive ion plating are preferred from the viewpoints of properties, film formation speed, and the like.

【0012】また、反応被膜生成時の基板となる永久磁
石の温度は200℃〜500℃に設定するのが好まし
く、200℃未満では基板磁石との反応密着が十分でな
く、また500℃を超えると常温(25℃)との温度差
が大きくなり、処理後の冷却過程で被膜に亀裂が入り、
一部基板より剥離を発生するため、基板磁石の温度を2
00℃〜500℃に設定するとよい。
The temperature of the permanent magnet serving as the substrate when the reaction film is formed is preferably set at 200 ° C. to 500 ° C. If the temperature is lower than 200 ° C., the reaction adhesion with the substrate magnet is not sufficient, and the temperature exceeds 500 ° C. The temperature difference between the temperature and normal temperature (25 ° C) increases, and the coating cracks in the cooling process after the treatment,
The temperature of the substrate magnet is set to 2
It is good to set to 00 degreeC-500 degreeC.

【0013】Fe−B−R系永久磁石体表面にAl被膜
層を介してAlN被膜層を設けたことを特徴とするこの
発明の耐食性永久磁石の製造方法の一例を以下に詳述す
る。 1)アークイオンプレーティング装置を用いて、真空容
器を到達真空度が1×10-3pa以下まで真空排気した
後、Arガス圧10pa、−500VでArイオンによ
る表面スパッターにてFe−B−R系磁石体表面を清浄
化する。
An example of the method for producing a corrosion-resistant permanent magnet according to the present invention, characterized in that an AlN coating layer is provided on the surface of an Fe-BR-based permanent magnet body via an Al coating layer, will be described in detail below. 1) After evacuating the vacuum container to an ultimate degree of vacuum of 1 × 10 −3 pa or less using an arc ion plating apparatus, Fe—B— Clean the surface of the R-based magnet body.

【0014】2)次に、Arガス圧0.1pa、バイア
ス電圧−50Vにより、ターゲットのAlを蒸発させ
て、アークイオンプレーティング法にて、磁石体表面に
0.06μm〜5.0μm膜厚のAl被膜層を形成す
る。 3)続いて、基板の磁石温度を250℃に保持し、N2
ガス圧1pa、バイアス電圧−100Vの条件にて、A
l被膜層上に特定厚のAlN被膜層を形成する。
2) Next, the target Al is evaporated with an Ar gas pressure of 0.1 pa and a bias voltage of −50 V, and a 0.06 μm to 5.0 μm film thickness is formed on the surface of the magnet body by arc ion plating. Is formed. 3) Then, hold the magnet temperature of the substrate 250 ° C., N 2
Under the conditions of a gas pressure of 1 pa and a bias voltage of -100 V, A
(1) An AlN coating layer having a specific thickness is formed on the coating layer.

【0015】この発明において、Fe−B−R系永久磁
石体表面のAl被膜厚を0.06μm〜5.0μmに限
定した理由は、0.06μm未満では磁石体表面にAl
が均一に被着し難く、下地膜としての効果が十分でな
く、5.0μmを超えると効果的には問題ないが、下地
膜としてはコスト上昇を招来して、実用的でなく好まし
くないので、Al被膜厚は0.06μm〜5.0μmと
する。特に、Al被膜厚は磁石体の表面粗度によって選
定され、表面粗度が0.1μm以下の場合、Al被膜厚
は0.06μm〜5.0μmが好ましく、また表面粗度
が0.1μm〜1.2μmの場合、望ましい膜厚は0.
1μm〜5.0μmである。
In the present invention, the reason why the thickness of the Al coating on the surface of the Fe—BR type permanent magnet body is limited to 0.06 μm to 5.0 μm is that if the thickness is less than 0.06 μm, Al
Is difficult to apply uniformly, and the effect as a base film is not sufficient. When the thickness exceeds 5.0 μm, there is no problem. However, the cost of the base film is increased, which is not practical and not preferable. , Al coating thickness is set to 0.06 μm to 5.0 μm. In particular, the Al coating thickness is selected according to the surface roughness of the magnet body. When the surface roughness is 0.1 μm or less, the Al coating thickness is preferably 0.06 μm to 5.0 μm, and the surface roughness is 0.1 μm to In the case of 1.2 μm, the desired film thickness is 0.1 μm.
It is 1 μm to 5.0 μm.

【0016】また、AlN被膜厚を0.5μm〜10μ
mに限定した理由は、0.5μm未満ではAlNとして
の耐食性、耐摩耗性が十分でなく、10μmを超えると
効果的には問題ないが、製造コスト上昇を招来するので
好ましくない。
Further, the thickness of the AlN film is 0.5 μm to 10 μm.
The reason for limiting to m is that if it is less than 0.5 μm, the corrosion resistance and abrasion resistance as AlN are not sufficient, and if it exceeds 10 μm, there is no problem effectively, but it is not preferable because it increases the manufacturing cost.

【0017】この発明において、永久磁石に用いる希土
類元素Rは、組成の10原子%〜30原子%を占める
が、Nd、Pr、Dy、Ho、Tbのうち少なくとも1
種、あるいはさらに、La、Ce、Sm、Gd、Er、
Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含
むものが好ましい。また、通常Rのうち1種をもって足
りるが、実用上は2種以上の混合物(ミッシュメタル、
ジジム等)を入手上の便宜等の理由により用いることが
できる。なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を含有す
るものでも差支えない。
In the present invention, the rare earth element R used in the permanent magnet occupies 10 to 30 atomic% of the composition, but at least one of Nd, Pr, Dy, Ho, and Tb.
Species, or additionally, La, Ce, Sm, Gd, Er,
Those containing at least one of Eu, Tm, Yb, Lu, and Y are preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal,
Jijim etc.) can be used for reasons such as convenience in obtaining. Note that this R may not be a pure rare earth element,
It may be one containing impurities that are unavoidable in production as far as it is industrially available.

【0018】Rは、上記系永久磁石における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、R10原子%〜
30原子%の範囲が望ましい。
R is an essential element in the above-mentioned permanent magnets. If it is less than 10 atomic%, the crystal structure has the same cubic structure as α-iron, so that high magnetic properties, especially high coercive force cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R10 atomic% or more
A range of 30 atomic% is desirable.

【0019】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnet. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. Increase in non-magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0020】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、Brは置換しない場合に比較して増加するため、高
磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned permanent magnets. When the content is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and when it exceeds 80 atomic%, a high coercive force cannot be obtained. % To 80 atomic%.
Further, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, conversely, It is not preferable because the magnetic properties deteriorate. When the substitution amount of Co is 5 atomic% to 15 atomic% in the total amount of Fe and Co, Br is increased as compared with the case where no substitution is made, and thus it is preferable to obtain a high magnetic flux density.

【0021】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B, and Fe, it is possible to allow the presence of unavoidable impurities in industrial production. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0022】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、F
e−B−R系永久磁石材料に対してその保磁力、減磁曲
線の角型性を改善あるいは製造性の改善、低価格化に効
果があるため添加することができる。なお、添加量の上
限は、磁石材料の(BH)maxを20MGOe以上と
するには、Brが少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is F
It can be added to the e-B-R permanent magnet material because it has the effect of improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price. The upper limit of the addition amount is preferably in a range that satisfies the above condition, since Br needs to be at least 9 kG or more in order to make (BH) max of the magnet material 20 MGOe or more.

【0023】また、Fe−B−R系永久磁石は平均結晶
粒径が1〜80μmの範囲にある正方晶系の結晶構造を
有する化合物を主相とし、体積比で1%〜50%の非磁
性相(酸化物相を除く)を含むことを特徴とする。Fe
−B−R系永久磁石は、保磁力iHc≧1kOe、残留
磁束密度Br>4kG、を示し、最大エネルギー積(B
H)maxは、(BH)max≧10MGOeを示し、
最大値は25MGOe以上に達する。
The Fe-BR permanent magnet has a main phase of a compound having a tetragonal crystal structure having an average crystal grain size in a range of 1 to 80 μm, and a non-volume of 1% to 50% by volume. It is characterized by containing a magnetic phase (excluding an oxide phase). Fe
The -BR type permanent magnet has a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (B
H) max indicates (BH) max ≧ 10MGOe,
The maximum reaches 25 MGOe or more.

【0024】[0024]

【実施例】【Example】

実施例1 公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼
結、熱処理、表面加工後に、17Nd−1Pr−75F
e−7B組成の径12mm×厚み2mm寸法の磁石体試
験片を得た。得られた試験片の表面粗度を表2に、磁石
特性を表1に示す。真空容器内を1×10-3pa以下に
真空排気し、Arガス圧10pa、−500Vで20分
間、表面スパッターを行って、磁石体表面を清浄化した
後、表2に示すイオンプレーティング条件にて基板磁石
温度を250℃にして、ターゲットとして金属Alを用
いてアークイオンプレーティング法にて、磁石体表面に
0.1μm厚および1.8μm厚のAl被膜層を形成し
た。
Example 1 A known casting ingot was pulverized, finely pulverized, then molded, sintered, heat-treated, and surface-processed to obtain 17Nd-1Pr-75F.
A magnet test piece having a composition of e-7B and having a diameter of 12 mm and a thickness of 2 mm was obtained. Table 2 shows the surface roughness of the obtained test piece, and Table 1 shows the magnet characteristics. The inside of the vacuum vessel was evacuated to 1 × 10 −3 pa or less, the surface was sputtered at an Ar gas pressure of 10 pa and −500 V for 20 minutes to clean the surface of the magnet body, and then the ion plating conditions shown in Table 2 were obtained. The substrate magnet temperature was set to 250 ° C., and an Al coating layer having a thickness of 0.1 μm and a thickness of 1.8 μm was formed on the surface of the magnet body by arc ion plating using metal Al as a target.

【0025】次に、基板磁石温度350℃、バイアス電
圧−100V、アーク電流100Aで、N2ガス1pa
にて、アークイオンプレーティング法にて3時間でAl
被膜表面に膜厚3μmのAlN被膜層を形成した。その
後、放冷後、得られたAlN被膜を表面に有する永久磁
石を温度80℃、相対湿度90%の条件下で1000時
間放置した後の磁石特性及びその劣化状況を測定し、そ
の結果を表3に示す。
Next, at a substrate magnet temperature of 350 ° C., a bias voltage of −100 V, and an arc current of 100 A, 1 Pa of N 2 gas was used.
, In 3 hours by the arc ion plating method
An AlN coating layer having a thickness of 3 μm was formed on the coating surface. Then, after cooling, the permanent magnet having the obtained AlN coating on the surface was allowed to stand for 1000 hours at a temperature of 80 ° C. and a relative humidity of 90%, and the magnet characteristics and the deterioration thereof were measured. 3 is shown.

【0026】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にて表面清浄化した後、磁石体上に実施例1と同一条
件にてAlN被膜を3μm厚に形成した。その後、実施
例1と同一の温度80℃、相対湿度90%の条件下で1
000時間放置後の磁石特性及びその劣化状況を測定
し、その結果を表3に示す。
COMPARATIVE EXAMPLE 1 A magnet specimen having the same composition as in Example 1 was subjected to surface cleaning under the same conditions as in Example 1, and then an AlN coating was formed on the magnet body to a thickness of 3 μm under the same conditions as in Example 1. Formed. Thereafter, under the same conditions as in Example 1 at a temperature of 80 ° C. and a relative humidity of 90%, 1
The properties of the magnet and its deterioration after being left for 000 hours were measured, and the results are shown in Table 3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表3に示すように、同一磁石特性を有する
Fe−B−R系永久磁石体表面にAlN被膜層を設けた
比較例磁石は、温度80℃、相対湿度90%の条件下で
1000時間放置した耐食試験前後の磁石特性の劣化が
大きくかつ発錆しているのに対し、Al被膜層を介して
AlN被膜層を設けたこの発明のFe−B−R系永久磁
石は、錆は発生せず、磁石特性もほとんど変わらないこ
とが明らかである。
As shown in Table 3, the comparative magnet having the AlN coating layer provided on the surface of the Fe-BR-based permanent magnet body having the same magnet characteristics has a temperature of 80 ° C. and a relative humidity of 90%. While the magnet properties before and after the corrosion resistance test left for a long time greatly deteriorated and rusted, the Fe-BR-based permanent magnet of the present invention provided with the AlN coating layer via the Al coating layer showed that It is clear that no magnetism occurs and the magnet properties hardly change.

【0031】[0031]

【発明の効果】この発明による磁石表面にAl被膜を介
してAlN被膜層を設けたFe−B−R系永久磁石体
は、実施例の如く、苛酷な耐食試験条件、特に、温度8
0℃、相対湿度90%の条件下で、1000時間放置し
た後、その磁石特性の劣化はほとんどなく、現在、最も
要求されている高性能かつ安価な永久磁石として極めて
適している。
According to the present invention, the Fe-BR type permanent magnet body provided with the AlN coating layer on the magnet surface via the Al coating according to the present invention can be subjected to severe corrosion resistance test conditions, particularly at a temperature of 8
After leaving for 1000 hours under the conditions of 0 ° C. and 90% relative humidity, there is almost no deterioration of the magnet properties, and it is extremely suitable as a high performance and inexpensive permanent magnet which is most demanded at present.

【0032】すなわち、この発明は、Fe−B−R系永
久磁石体表面をイオンスパッター法等により清浄化した
後、前記磁石体表面にイオンプレーティング法等の気相
成膜法によりAl被膜を形成後、特定条件のN2ガスを
導入しながらイオンプレーティング等の気相成膜法によ
り、AlN被膜を形成したことを特徴とし、磁石体表面
にAl被膜を形成することにより磁石体表面の酸化物は
一部もしくは大部分が還元され、磁石体表面とAl被膜
との密着性は改善され、さらにAl被膜上にAlN被膜
を積層することにより、同被膜の密着性が著しく改善さ
れ、すぐれた耐食性、特に温度80℃、相対湿度90%
の雰囲気条件下で長時間放置した場合においても、下地
との密着性がすぐれ、被着した耐食性金属被膜の耐食
性、耐摩耗性により、その磁石特性の安定したFe−B
−R系永久磁石が得られる。
That is, according to the present invention, after the surface of an Fe-BR based permanent magnet is cleaned by an ion sputtering method or the like, an Al film is formed on the surface of the magnet by a vapor deposition method such as an ion plating method. After the formation, an AlN film is formed by a vapor phase film forming method such as ion plating while introducing N 2 gas under specific conditions, and the Al film is formed on the magnet body surface by forming an Al film on the magnet body surface. Oxide is partially or largely reduced, and the adhesion between the magnet body surface and the Al coating is improved. By laminating the AlN coating on the Al coating, the adhesion of the coating is remarkably improved. Corrosion resistance, especially temperature 80 ° C, relative humidity 90%
Even if left for a long time under the atmospheric conditions, the adhesion to the substrate is excellent, and the corrosion-resistant and abrasion resistance of the deposited corrosion-resistant metal film makes the magnetic properties of Fe-B stable.
An -R permanent magnet is obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶相からなるFe−B−R系
永久磁石体表面に、膜厚0.06μm〜5.0μmのA
l被膜を介して膜厚0.5μm〜10μmのAlN被膜
層を有することを特徴とする耐食性永久磁石。
1. A 0.06 μm-5.0 μm thick A—B—R based permanent magnet body having a tetragonal phase as a main phase.
(1) A corrosion-resistant permanent magnet having an AlN coating layer having a thickness of 0.5 μm to 10 μm via a coating.
【請求項2】 主相が正方晶相からなるFe−B−R系
永久磁石体表面を清浄化した後、前記磁石体面に膜厚
0.06μm〜5.0μmのAl被膜を気相成膜法によ
り形成後、N2ガス雰囲気中で気相成膜法により膜厚
0.5μm〜10μmのAlN被膜層を形成することを
特徴とする耐食性永久磁石の製造方法。
2. After cleaning the surface of an Fe-BR-based permanent magnet whose main phase is a tetragonal phase, an Al film having a thickness of 0.06 μm to 5.0 μm is formed on the surface of the magnet in a vapor phase. A method for producing a corrosion-resistant permanent magnet, comprising: forming an AlN coating layer having a thickness of 0.5 μm to 10 μm by a vapor phase film forming method in an N 2 gas atmosphere after forming by a method.
JP8249208A 1996-08-30 1996-08-30 Corrosion-resisting permanent magnet and its manufacture Pending JPH1074607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8249208A JPH1074607A (en) 1996-08-30 1996-08-30 Corrosion-resisting permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8249208A JPH1074607A (en) 1996-08-30 1996-08-30 Corrosion-resisting permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH1074607A true JPH1074607A (en) 1998-03-17

Family

ID=17189528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8249208A Pending JPH1074607A (en) 1996-08-30 1996-08-30 Corrosion-resisting permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH1074607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984460A2 (en) * 1998-08-31 2000-03-08 Sumitomo Special Metals Co., Ltd. Fe-B-R based permanent magnet having corrosion-resistant film, and process for producing the same
EP0991085A1 (en) * 1998-04-16 2000-04-05 Sumitomo Special Metals Company Limited Corrosion-resisting permanent magnet and method for producing the same
JP2005194595A (en) * 2004-01-08 2005-07-21 Niigata Tlo:Kk Method of producing structural coloring body utilizing surface ruggedness, and structural coloring body utilizing surface ruggedness
CN110335751A (en) * 2019-06-05 2019-10-15 宁波合力磁材技术有限公司 A kind of preparation method of neodymium iron boron magnetic body surface abrasion resistance erosion resistant coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0991085A1 (en) * 1998-04-16 2000-04-05 Sumitomo Special Metals Company Limited Corrosion-resisting permanent magnet and method for producing the same
EP0991085A4 (en) * 1998-04-16 2000-07-12 Sumitomo Spec Metals Corrosion-resisting permanent magnet and method for producing the same
EP0984460A2 (en) * 1998-08-31 2000-03-08 Sumitomo Special Metals Co., Ltd. Fe-B-R based permanent magnet having corrosion-resistant film, and process for producing the same
EP0984460A3 (en) * 1998-08-31 2000-07-12 Sumitomo Special Metals Co., Ltd. Fe-B-R based permanent magnet having corrosion-resistant film, and process for producing the same
US6444328B1 (en) * 1998-08-31 2002-09-03 Sumitomo Special Metals Co., Ltd. FE-B-R based permanent magnet having corrosion-resistant film, and process for producing the same
KR100607293B1 (en) * 1998-08-31 2006-07-28 가부시키가이샤 네오맥스 Fe-B-R BASED PERMANENT MAGNET HAVING CORROSION-RESISTANT FILM, AND PROCESS FOR PRODUCING THE SAME
KR100607297B1 (en) * 1998-08-31 2006-07-28 가부시키가이샤 네오맥스 PROCESS FOR PRODUCING Fe-B-R BASED PERMANENT MAGNET HAVING A CORROSION-RESISTANT FILM
JP2005194595A (en) * 2004-01-08 2005-07-21 Niigata Tlo:Kk Method of producing structural coloring body utilizing surface ruggedness, and structural coloring body utilizing surface ruggedness
CN110335751A (en) * 2019-06-05 2019-10-15 宁波合力磁材技术有限公司 A kind of preparation method of neodymium iron boron magnetic body surface abrasion resistance erosion resistant coating

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPS6274048A (en) Permanent magnet material and its production
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
WO1997023884A1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP4600332B2 (en) Magnet member and manufacturing method thereof
JPS61281850A (en) Permanent magnet material
JPH1083905A (en) Corrosion-resistant permanent magnet and its manufacture
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JP5036207B2 (en) Magnet member
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JP3595078B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPH10106818A (en) Permanent magnet for ultra high vacuum and method for manufacturing the same
JPH09180921A (en) Permanent magnet for ultra high vacuum and manufacture thereof
JPH10106819A (en) Permanent magnet for ultra high vacuum and method for manufacturing the same
JPH06140226A (en) Corrosion-resistant permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051007