JPH0742553B2 - Permanent magnet material and manufacturing method thereof - Google Patents

Permanent magnet material and manufacturing method thereof

Info

Publication number
JPH0742553B2
JPH0742553B2 JP61034830A JP3483086A JPH0742553B2 JP H0742553 B2 JPH0742553 B2 JP H0742553B2 JP 61034830 A JP61034830 A JP 61034830A JP 3483086 A JP3483086 A JP 3483086A JP H0742553 B2 JPH0742553 B2 JP H0742553B2
Authority
JP
Japan
Prior art keywords
atom
permanent magnet
layer
atomic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61034830A
Other languages
Japanese (ja)
Other versions
JPS62192566A (en
Inventor
哲 広沢
節夫 藤村
真人 佐川
日登志 山本
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61034830A priority Critical patent/JPH0742553B2/en
Publication of JPS62192566A publication Critical patent/JPS62192566A/en
Publication of JPH0742553B2 publication Critical patent/JPH0742553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture small articles of permanent magnet material excellent in magnetic properties, by allowing an alloy thin film layer consisting of Ti, etc., and rare earth elements to adhere to the surface to be ground of a sintered magnet body composed principally of rare earth elements, B, and Fe and then by applying heat treatment to the above. CONSTITUTION:The sintered magnet body which is composed mainly of, by atom, 12-20% R (R is one or more elements among Nd, Pr, Dy, Ho, and Tb or further one or more elements among La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, and Y), 4-20% B, and 65-81% Fe and whose main phase is composed of a tetragonal phase is subjected to grinding work to a thickness of <=about 1mm. Then, the alloy thin film layer consisting of 1.0-50.0% of one or more elements among Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, and Ag and the balance R' (R' is one or more elements among Ce, La, Nd, Pr, Dy, Ho, and Tb) is allowed to adhere to the surface to be ground which is subjected further to heat treatment in vacuum or in an inert atmosphere at 400-900 deg.C for 1min-3hr. In this way, a layer deteriorated by working of the worked surface of the surface to be ground is formed into a modified layer and further an oxidation inhibiting layer is formed on the above.

Description

【発明の詳細な説明】 利用産業分野 この発明は、焼結永久磁石表面の研削加工等に伴なう磁
気特性の劣化を防止し、かつ磁気特性の経年変化を防止
したFe−B−R系永久磁石に係り、特に、厚みが1.0mm
以下の高性能永久磁石材料及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to an Fe-BR system in which deterioration of magnetic properties due to grinding of a surface of a sintered permanent magnet or the like is prevented and deterioration of magnetic properties over time is prevented. Permanent magnet, especially 1.0mm thickness
The following relates to a high-performance permanent magnet material and a method for manufacturing the same.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求めら
れ、さらに資源的に豊富で、今後の安定供給が可能な組
成元素からなる永久磁石材料が切望されており、本出願
人は先に、高価なSmやCoを含有しない新しい高性能永久
磁石として、Fe−B−R系(RはYを含む希土類元素の
うち少なくとも1種)永久磁石を提案した(特開昭59−
46008号、特開昭59−64733号、特開昭59−89401号、特
開昭59−132104号)。この永久磁石は、RとしてNdやPr
を中心とする資源的に豊富な軽希土類を用い、R,B,Feを
主成分として20MGOe以上の極めて高いエネルギー積を示
す、すぐれた永久磁石である。
BACKGROUND ART At present, there is a demand for a permanent magnet material that has high magnetic properties and is inexpensive, and there is a strong demand for a permanent magnet material that is rich in resources and that can be stably supplied in the future with a composition element. Further, as a new high-performance permanent magnet containing no expensive Sm or Co, an Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) is proposed (Japanese Patent Laid-Open No. 59-
46008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104). This permanent magnet uses Nd or Pr as R.
It is an excellent permanent magnet that uses light rare earth, which is rich in resources such as, and has an extremely high energy product of 20 MGOe or more with R, B and Fe as the main components.

最近、磁気回路の高性能化,小形化に伴ない、Fe−B−
R系永久磁石材料が益々注目され、さらに、厚みが1.0m
m以下の小物あるいは薄物用Fe−B−R系永久磁石材料
が要望されてきた。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-based permanent magnet materials are attracting more and more attention, and the thickness is 1.0 m.
There has been a demand for Fe-BR type permanent magnet materials for small or thin objects having a size of m or less.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体を、その表面の凹凸
や歪みを除去するため、あるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を切削加工する必要がある。
In order to manufacture a permanent magnet material for such an application, a molded or sintered small or ultra-thin sintered magnet body is used to remove surface irregularities or distortion, or to remove a surface oxide layer, In order to be incorporated in a circuit, it is necessary to cut the entire surface or required surface of the magnet body.

しかしながら、かかるFe−B−R系永久磁石材料(15.5
Nd7.5B77Fe)を研削加工すると、例えば、厚み20mmより
1mm以下の製品厚みに加工すると、第1図〜第3図の曲
線bに示す如く、各磁気特性が劣化する問題があった。
However, such Fe-BR permanent magnet materials (15.5
When Nd7.5B77Fe) is ground, for example, from a thickness of 20 mm
When processed to a product thickness of 1 mm or less, there was a problem that each magnetic property was deteriorated as shown by the curve b in FIGS.

出願人は、先に、かかる加工に伴なう磁気特性の劣化を
防止するため、磁石体の被研削加工面に、R′薄膜層
(R′はNd,Pr,Dy,Ho,Tbのうち少なくとも1種)を蒸着
等にて形成後、熱処理して加工変質層による磁気特性の
劣化を改善する方法を提案(特願昭60−216047号)し
た。
In order to prevent the deterioration of the magnetic properties due to such processing, the applicant first applied the R'thin film layer (R 'is Nd, Pr, Dy, Ho, Tb on the surface to be ground of the magnet body to prevent deterioration. At least one kind) was formed by vapor deposition and then heat treated to improve the deterioration of the magnetic properties due to the work-affected layer (Japanese Patent Application No. 60-216047).

しかし、上記のR′薄膜層は、非常に酸化し易いため、
使用環境条件によっては、磁石表面のR′薄膜層が酸化
して磁気特性が再び劣化する恐れがあった。
However, since the above R'thin film layer is very easily oxidized,
Depending on the operating environment conditions, the R'thin film layer on the surface of the magnet may be oxidized and the magnetic characteristics may be deteriorated again.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結磁石体の切削加工に伴なう磁気特性の劣化を防止する
と共に、磁気特性の経年変化を改善した永久磁石材料及
びその製造方法を目的としている。
An object of the present invention is to prevent deterioration of magnetic properties associated with cutting of a sintered magnet body for a small or ultra-thin material, in a new permanent magnet material mainly containing rare earth, boron and iron, and The present invention is directed to a permanent magnet material having improved magnetic characteristics over time and a manufacturing method thereof.

発明の構成と効果 発明者らは、Fe−B−R系永久磁石材料の保磁力につい
て種々検討した結果、前記磁石体の保磁力の大小は、結
晶粒内よりも粒界構造の差異に基因しており、研摩され
た焼結磁石表面を、Kerr効果を用いた光学顕微鏡で、磁
区の反転機構を詳細に調べると、磁石体表面の磁化反転
が磁石体内部の保磁力の1/2以下の非常に低い磁界で起
り、焼結磁石体の加工された表面第1層の結晶群の保磁
力が低い理由は、結晶表面に高保磁力を出現するために
必要な最適の粒界構造(以下、粒界相という)が存在し
ないためであることを知見した。ここで粒界相とは、R
を主成分とする相が主相表面を覆い、原子尺度でみても
平坦な界面を有するものである。
As a result of various studies on the coercive force of the Fe-BR system permanent magnet material, the inventors found that the magnitude of the coercive force of the magnet body is due to the difference in the grain boundary structure rather than in the crystal grains. When the polished sintered magnet surface is examined in detail with an optical microscope using the Kerr effect for the reversal mechanism of the magnetic domain, the magnetization reversal of the magnet body surface is less than 1/2 of the coercive force inside the magnet body. The reason is that the coercive force of the crystal group of the processed surface first layer of the sintered magnet body is low because it occurs in a very low magnetic field of , The grain boundary phase) does not exist. Here, the grain boundary phase is R
The phase containing as a main component covers the main phase surface and has a flat interface on an atomic scale.

発明者が始めて発見した高保磁力を出現させる粒界相
を、加工された焼結磁石体表面の結晶群上に、最適の厚
みでかつ特殊な立方晶系の構造を有する粒界相として設
けることは、通常の方法では容易ではないが、Ti,W,Pt,
Au,Cr,Ni,Cu,Co,Al,Ta,Agのうち少なくとも1種とR′
(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少なくとも1種)
からなる合金薄膜層を形成し、その後真空あるいは不活
性雰囲気中で特定の熱処理を施すことにより、該焼結体
の被研削加工面の保磁力の低い結晶粒からなる変質層及
び格子欠陥を、前記薄膜層と変質層との拡散反応で改質
層となし、さらに、表面に酸化防止層が生成されること
により、Fe−B−R系永久磁石材料の保磁力並びに減磁
曲線の角型性を改善向上させ、かつ磁気特性の経年変化
を改善し得ることを知見し、この発明を完成したもので
ある。
Providing the grain boundary phase, which was first discovered by the inventor, for producing a high coercive force on the processed crystal group of the sintered magnet body as a grain boundary phase having an optimum thickness and a special cubic system structure. Is not easy by the usual method, but Ti, W, Pt,
At least one of Au, Cr, Ni, Cu, Co, Al, Ta, Ag and R ′
(R'is at least one of Ce, La, Nd, Pr, Dy, Ho, Tb)
By forming an alloy thin film layer made of, and then subjecting it to a specific heat treatment in a vacuum or an inert atmosphere, a deteriorated layer and lattice defects formed of crystal grains with low coercive force on the ground surface of the sintered body, By forming a modified layer by the diffusion reaction between the thin film layer and the altered layer, and further by forming an antioxidant layer on the surface, the coercive force of the Fe-BR permanent magnet material and the square shape of the demagnetization curve are formed. The inventors have completed the present invention by discovering that the magnetic properties can be improved and the secular change in magnetic characteristics can be improved.

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種あるいは
さらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくと
も1種からなる) 12%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体の被研削加工面に、Ti,W,Pt,Au,Cr,N
i,Cu,Co,Al,Ta,Agのうち少なくとも1種を1.0原子%〜5
0.0原子%含有し、 残部R′(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少なくと
も1種)からなる合金層が被着され、該被研削加工面上
に改質層と表面の酸化防止層を有することを特徴とする
永久磁石材料である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, and Tb or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, and Y). 12% to 20 atomic%, B4 atomic% to 20 atomic%, Fe65 atomic% to 81 atomic% as main components, and the main phase is a tetragonal phase on the surface to be ground of the sintered magnet body, Ti, W, Pt, Au, Cr, N
At least one of i, Cu, Co, Al, Ta, Ag is 1.0 atomic% to 5
An alloy layer containing 0.0 atomic% and the balance R '(R' is at least one of Ce, La, Nd, Pr, Dy, Ho, and Tb) is deposited and modified on the surface to be ground. A permanent magnet material having a layer and an antioxidant layer on the surface.

さらに、前記の主相が正方晶相からなる焼結磁石体の被
研削加工面に、Ti,W,Pt,Au,Cr,Ni,Cu,Co,Al,Ta,Agのう
ち少なくとも1種を1.0原子%〜50.0原子%含有し、 残部R′(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少なくと
も1種)からなる合金薄膜層が被着した後、 さらに、真空あるいは不活性雰囲気中で、400℃〜900
℃,1分〜3時間の熱処理を施して、該被研削加工面の加
工変質層を改質層となし、かつ改質層上に酸化防止層を
形成したことを特徴とする永久磁石材料の製造方法であ
る。
Further, at least one of Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta and Ag is applied to the surface to be ground of the sintered magnet body whose main phase is a tetragonal phase. After the deposition of an alloy thin film layer containing 1.0 atomic% to 50.0 atomic% and the balance R '(R' is at least one of Ce, La, Nd, Pr, Dy, Ho and Tb), further vacuum Or 400 ℃ to 900 ℃ in an inert atmosphere
A permanent magnet material, characterized in that the work-affected layer of the surface to be ground is made into a modified layer by heat treatment at 1 ° C. for 1 minute to 3 hours, and an antioxidant layer is formed on the modified layer. It is a manufacturing method.

また、この発明の永久磁石材料は、平均結晶粒径が1〜
80μmの範囲にある正方晶系の結晶構造を有する化合物
を主相とし、体積比で1%〜50%の非磁性相(酸化物相
を除く)を含むことを特徴とする。
The permanent magnet material of the present invention has an average crystal grain size of 1 to
A compound having a tetragonal crystal structure in the range of 80 μm as a main phase and a nonmagnetic phase (excluding an oxide phase) of 1% to 50% by volume is characterized.

したがって、この発明は、RとしてNdあるいはさらにPr
を中心とする資源的に豊富な軽希土類を主に用い、Fe,
B,R,を主成分とすることにより20MGOe以上の極めて高い
エネルギー積並びに、高残留磁束密度、高保磁力を有
し、かつ研削加工による磁気特性の劣化を防止したFe−
B−R系永久磁石材料を安価に得ることができる。
Therefore, the present invention uses Nd as R or further Pr.
Mainly using light rare earths, which are rich in resources, such as
Fe, which contains B, R, as the main components, has an extremely high energy product of 20 MGOe or more, high residual magnetic flux density, high coercive force, and prevents deterioration of magnetic characteristics due to grinding.
The BR permanent magnet material can be obtained at low cost.

すなわち、この発明により、Fe−B−R系永久磁石材料
(15.5Nd7.5B77Fe)の研削加工において、例えば、被研
削加工面に合金薄膜層を設けて加工変質層を改質層にす
ることにより、厚み20mmより1mm以下の製品厚みに加工
しても、第1図〜第3図の曲線aに示す如く、Nd薄膜層
を設けない比較例(曲線b)に対して、各磁気特性が改
善され、研削加工に伴なう磁気特性の劣化を防止する効
果がある。
That is, according to the present invention, when a Fe-BR permanent magnet material (15.5Nd7.5B77Fe) is ground, for example, by providing an alloy thin film layer on the surface to be ground and making the work-affected layer a modified layer. , Even when processed to a product thickness of 20 mm to 1 mm or less, as shown by the curve a in FIGS. 1 to 3, the magnetic properties are improved as compared to the comparative example (curve b) in which the Nd thin film layer is not provided. Therefore, there is an effect of preventing the deterioration of the magnetic characteristics due to the grinding process.

さらに、被研削表面上に被着した合金薄膜層は、Ti,W,P
t,Au,Cr,Ni,Cu,Co,Al,Ta,Agのうち少なくとも1種を含
むことにより、R′薄膜層のみに比べて耐食性が向上す
る。
Furthermore, the alloy thin film layer deposited on the surface to be ground is composed of Ti, W, P
By including at least one of t, Au, Cr, Ni, Cu, Co, Al, Ta and Ag, the corrosion resistance is improved as compared with the R'thin film layer alone.

この発明において、焼結磁石体の比研削加工表面に被着
する合金薄膜層組成を、Ti,W,Pt,Au,Cr,Ni,Cu,Co,Al,T
a,Agのうち少なくとも1種を1.0原子%〜50.0原子%含
有し、残部R′(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少
なくとも1種)としたのは、Ti,W,Pt,Au,Cr,Ni,Cu,Co,A
l,Ta,Agのうち少なくとも1種が、1.0原子%未満では、
合金薄膜層の酸化防止効果がなく、また、50.0原子%を
越えると、合金薄膜層内のR′量が少なく、加工変質層
を改質層となす効果がなくなり、さらに、薄膜層内の該
金属あるいは合金と基地の焼結磁石体が反応して磁気特
性に悪影響を及ぼす反応層が形成され好ましくないため
である。
In this invention, the composition of the alloy thin film layer adhered to the specific grinding surface of the sintered magnet body, Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, T
The content of at least one of a and Ag is 1.0 atom% to 50.0 atom% and the balance is R ′ (R ′ is at least one of Ce, La, Nd, Pr, Dy, Ho and Tb). Ti, W, Pt, Au, Cr, Ni, Cu, Co, A
If at least one of l, Ta and Ag is less than 1.0 atomic%,
If the alloy thin film layer does not have an antioxidant effect, and if it exceeds 50.0 atomic%, the amount of R'in the alloy thin film layer is small, and the effect of the work-affected layer as a modified layer is lost. This is because the metal or alloy reacts with the base sintered magnet body to form a reaction layer that adversely affects the magnetic properties, which is not preferable.

この発明において、焼結磁石体の被研削加工表面に、上
記組成の合金薄膜層を被着させるには、真空蒸着、イオ
ンスパッタリング、イオンプレーティング、イオン蒸着
薄膜形成法(IVD)、プラズマ蒸着薄膜形成法(EVD)等
の薄膜形成方法が適宜選定利用できる。
In this invention, vacuum deposition, ion sputtering, ion plating, ion deposition thin film forming method (IVD), plasma deposition thin film is used to deposit the alloy thin film layer having the above composition on the surface to be ground of the sintered magnet body. A thin film forming method such as a forming method (EVD) can be appropriately selected and used.

また、合金薄膜層の厚みは、0.1μm〜30μmが好まし
く、薄膜層厚みが0.1μm未満では、均一な被膜が形成
されず、また熱処理中に薄膜層の希土類金属が酸化消失
するため好ましくなく、また、厚みが30μmを越える
と、蒸着等に長時間を要してコスト高を招来し、かつ膜
厚の増大に伴なって磁気回路に不要のギャップを形成す
ることになって不利であり、表面層の改質効果も飽和す
るため好ましくない。
Further, the thickness of the alloy thin film layer is preferably 0.1 μm to 30 μm, and if the thin film layer thickness is less than 0.1 μm, a uniform coating film is not formed, and the rare earth metal of the thin film layer is oxidized and disappears during heat treatment, which is not preferable. On the other hand, if the thickness exceeds 30 μm, it takes a long time for vapor deposition and the like, resulting in high cost, and it is disadvantageous that an unnecessary gap is formed in the magnetic circuit as the film thickness increases. The modification effect of the surface layer is also saturated, which is not preferable.

また、この発明において、厚み0.1μm〜30μmのTi,W,
Pt,Au,Cr,Ni,Cu,Co,Al,Ta,Ag,Pbのうち少なくとも1種
を1.0原子%〜50.0原子%含有し、残部R′(R′はCe,
La,Nd,Pr,Dy,Ho,Tbのうち少なくとも1種)からなる合
金薄膜層を形成した後、真空あるいは不活性雰囲気中で
熱処理を施すが、熱処理条件は、真空あるいは不活性雰
囲気中,400℃〜900℃,1分〜3時間の熱処理を、少なく
とも1回施す必要があり、熱処理により前記薄膜層と変
質層との拡散反応で改質層となる。しかし、400℃未満
では、界面での拡散反応が不十分で、上記効果が得られ
ず、また、900℃を越えると通常の工業的方法で得られ
る真空度では薄膜層が酸化しやすく、磁気特性改善効果
がなくなるため好ましくなく、加熱時間も1分未満で
は、界面での拡散反応が不十分で、磁気特性の改善効果
が少なく、また、3時間を越えると、薄膜層の酸化によ
り磁気特性の改善効果が得られないため好ましくない。
In addition, in the present invention, Ti, W having a thickness of 0.1 μm to 30 μm,
At least one of Pt, Au, Cr, Ni, Cu, Co, Al, Ta, Ag, and Pb is contained in an amount of 1.0 atomic% to 50.0 atomic%, and the balance R ′ (R ′ is Ce,
After forming an alloy thin film layer consisting of at least one of La, Nd, Pr, Dy, Ho, and Tb), heat treatment is performed in a vacuum or an inert atmosphere. It is necessary to perform heat treatment at 400 ° C. to 900 ° C. for 1 minute to 3 hours at least once, and the heat treatment forms a modified layer by a diffusion reaction between the thin film layer and the altered layer. However, if the temperature is lower than 400 ° C, the above-mentioned effect cannot be obtained because the diffusion reaction at the interface is insufficient, and if the temperature exceeds 900 ° C, the thin film layer is easily oxidized by the vacuum degree obtained by an ordinary industrial method, and If the heating time is less than 1 minute, the diffusion reaction at the interface is insufficient to improve the magnetic properties, and the effect of improving the magnetic properties is small. It is not preferable because the improvement effect of 1 cannot be obtained.

また、前記熱処理は、少なくとも1回施すことにより、
所要の効果を得ることができるが、必要に応じて多段熱
処理してもよい。
In addition, by performing the heat treatment at least once,
Although the desired effect can be obtained, a multi-step heat treatment may be performed if necessary.

永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の12原子%〜20原子%を占めるが、Nd,Pr,Dy,Ho,Tbのう
ち少なくとも1種、あるいは、さらに、La,Ce,Sm,Gd,E
r,Eu,Tm,Yb,Lu,Yのうち少なくとも1種を含むものが好
ましい。
Reasons for Limiting Components of Permanent Magnet Material The rare earth element R used in the permanent magnet material of the present invention occupies 12 atom% to 20 atom% of the composition, but at least one of Nd, Pr, Dy, Ho and Tb, or Furthermore, La, Ce, Sm, Gd, E
Those containing at least one of r, Eu, Tm, Yb, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタル・ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, one type of R is usually sufficient, but it is practically 2
Mixtures of more than one species (Misch metal, didymium, etc.) can be used for reasons of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、12原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織が析出するため、高磁気特性、特に高保
磁力が得られず、20原子%を越えると、Rリッチな非磁
性相が多くなり、残留磁束密度(Br)が低下して、すぐ
れた特性の永久磁石が得られない。よって、希土類元素
は、12原子%〜20原子%の範囲とする。
R is an essential element in the novel permanent magnet material described above, and if it is less than 12 atomic%, a cubic crystal structure having the same crystal structure as α-iron precipitates, so that high magnetic properties, particularly high coercive force, can be obtained. If it exceeds 20 atom%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 12 atom% to 20 atom%.

Bは、この発明による永久磁石材料における、必須元素
であって、4原子%未満では、菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、20原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(B
r)が低下するため、すぐれた永久磁石が得られない。
よって、Bは、4原子%〜20原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention. If it is less than 4 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. The rich non-magnetic phase increases and the residual magnetic flux density (B
Since r) is lowered, excellent permanent magnets cannot be obtained.
Therefore, B is in the range of 4 atom% to 20 atom%.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度Brが低下し、81原子
%を越えると、高い保磁力が得られないので、Feは65原
子%〜81原子%の含有とする。
Fe is an essential element in the above new system permanent magnet. If the content is less than 65 atomic%, the residual magnetic flux density Br decreases, and if it exceeds 81 atomic%, a high coercive force cannot be obtained. The content is up to 81 atom%.

また、この発明による永久磁石材料において、Feの一部
をCoで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置換
基がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの原子比率がFeとCoの合計量の5
%〜15%の場合は、(Br)は置換しない場合に比較して
増加するため、高磁束密度を得るためには好ましい。
Further, in the permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 20%, on the contrary, the magnetic properties deteriorate, which is not preferable. The atomic ratio of Co is 5 of the total amount of Fe and Co.
% To 15%, (Br) increases as compared with the case where no substitution is carried out, which is preferable for obtaining a high magnetic flux density.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

この発明による永久磁石は、保磁力iHc≧4kOe、残留磁
束密度Br>4kG、を示し、最大エネルギー積(BH)max
は、好ましい組成範囲では、(BH)max≧20MGOeを示
し、最大値は25MGOe以上に達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 4 kOe and a residual magnetic flux density Br> 4 kG, and has a maximum energy product (BH) max.
Shows (BH) max ≧ 20 MGOe in the preferable composition range, and the maximum value reaches 25 MGOe or more.

また、この発明の永久磁石材料のRの主成分がその50%
以上をNd及びPrを主とする軽希土類金属が占める場合
で、R12原子%〜15原子%、B6原子%〜9原子%、Fe78
原子%〜80原子%、の組成範囲のとき、(BH)max35MGO
e以上のすぐれた磁気特性を示し、特に軽希土類金属がN
dの場合には、その最大値が42MGOe以上に達する。
Further, the main component of R in the permanent magnet material of the present invention is 50%
The above is the case where the light rare earth metal mainly composed of Nd and Pr occupies R12 atom% to 15 atom%, B6 atom% to 9 atom%, Fe78
(BH) max35MGO when the composition range is from atomic% to 80 atomic%.
It has excellent magnetic characteristics over e, and especially light rare earth metals are N
In the case of d, the maximum value reaches 42 MGOe or more.

実 施 例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNd,Dyを使用し、これらを配合後
に高周波溶解し、その後水冷銅鋳型に鋳造し、13.5Nd7B
1.5Dy78Feなる組成の鋳塊を得た。
Example 1 As a starting material, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd, Dy having a purity of 99.7% or more were used, and after mixing these, high-frequency melting was performed, and then cast in a water-cooled copper mold, and 13.5Nd7B
An ingot having a composition of 1.5Dy78Fe was obtained.

その後このインゴットを、H2ガス吸蔵により脆化させた
のち、スタンプミルにより粗粉砕し、次にボールミルに
より微粉砕し、平均粒度3.0μmの微粉末を得た。
Thereafter, this ingot was embrittled by occluding H 2 gas, coarsely pulverized by a stamp mill, and then finely pulverized by a ball mill to obtain fine powder having an average particle size of 3.0 μm.

この微粉末を金型に挿入し、20kOeの磁界中で配向し、
磁界に垂直方向に、1.5t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 20 kOe,
It was molded in a direction perpendicular to the magnetic field at a pressure of 1.5 t / cm 2 .

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条件
で焼結し、長さ20mm×幅10mm×厚み10mm寸法の焼結体を
得た。
The obtained molded body was sintered under the conditions of 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having a size of length 20 mm × width 10 mm × thickness 10 mm.

そして焼結体より、磁石の配向方向に垂直な方向を面内
に含むように、長さ3mm×幅4mm×厚み0.15mm寸法の試験
片に切出し、さらに同方向に研摩して、厚みを減少させ
て、鏡面を有する0.1mm厚みの薄板試験片を得た。
Then, from the sintered body, cut out into a test piece measuring 3 mm in length × 4 mm in width × 0.15 mm in thickness so that the direction perpendicular to the orientation direction of the magnet is included in the plane, and further polish in the same direction to reduce the thickness. Then, a 0.1 mm-thick thin plate test piece having a mirror surface was obtained.

次に、第1表に示す合金を陰極ターゲット材として、下
記条件のスパッタリングを施し、試験片両面に約3μm
厚みの合金薄膜層を被着させた。その後、3×10-6Torr
真空中で、630℃,1時間の熱処理を施した。
Next, using the alloy shown in Table 1 as a cathode target material, sputtering was performed under the following conditions, and about 3 μm was applied to both sides of the test piece.
A thick alloy thin film layer was deposited. Then 3 × 10 -6 Torr
Heat treatment was performed at 630 ° C. for 1 hour in vacuum.

また、上記の薄板試験片にNd薄膜層を設け、直ちに同条
件の熱処理を施した比較永久磁石(比較例6)を作製し
た。
Further, a comparative permanent magnet (Comparative Example 6) was prepared by providing a Nd thin film layer on the above thin plate test piece and immediately performing heat treatment under the same conditions.

得られた各永久磁石材料のBr,iHc,BHc及び(BH)max値
を、振動試料型磁力計(VSM)を用いて開回路で測定
し、さらに、室温,空気中で10000時間放置する不可逆
減磁率で評価する減磁率を測定した。これらの測定結果
を第1表に示す。
The Br, iHc, BHc and (BH) max values of each of the obtained permanent magnet materials were measured in an open circuit using a vibrating sample magnetometer (VSM), and then left at room temperature and in air for 10,000 hours. The demagnetization rate evaluated by the demagnetization rate was measured. The results of these measurements are shown in Table 1.

なお、第1表における比較例5は、研摩加工したままの
試験片の特性である。
In addition, Comparative Example 5 in Table 1 shows the characteristics of the test piece as it was subjected to the polishing process.

<スパッタ条件> 到達真空度;2×10-6Torr 高周波スパッタリング時のAr圧力;0.2×10-3Torr〜1×
10-3Torr 入力電圧;150W(初スパッタ時及び本スパッタ時) 70W(逆スパッタ時) スパッタ時間;初スパッタ 30分 逆スパッタ 30分 本スパッタ 3時間 実施例2 実施例1と同一条件で製造,加工した13.5Nd7B1.5Dy78F
eの組成を有する磁石焼結体試験片に、実施例1のスパ
ッタ条件で、第2表に示すNdを主成分とする合金薄膜層
を3μm厚みで被着した。
<Sputtering conditions> Ultimate vacuum; 2 × 10 -6 Torr Ar pressure during high frequency sputtering; 0.2 × 10 -3 Torr to 1 ×
10 -3 Torr Input voltage: 150W (during initial sputtering and main sputtering) 70W (during reverse sputtering) Sputtering time: initial sputtering 30 minutes reverse sputtering 30 minutes main sputtering 3 hours Example 2 Manufactured under the same conditions as Example 1, Processed 13.5Nd7B1.5Dy78F
An alloy thin film layer containing Nd as a main component shown in Table 2 was deposited to a thickness of 3 μm on a magnet sintered body test piece having a composition of e under the sputtering conditions of Example 1.

さらに、実施例1と同じ熱処理を施し、得られた各永久
磁石材料のBr,iHc,BHc,Hc及び(BH)max値を、振動試料
型磁力計(VSM)を用いて開回路で測定し、さらに、室
温,空気中で10000時間放置する不可逆減磁率で評価す
る減磁率を測定した。これらの測定結果を第2表に示
す。
Furthermore, the same heat treatment as in Example 1 was performed, and Br, iHc, BHc, Hc and (BH) max values of the obtained permanent magnet materials were measured in an open circuit using a vibrating sample magnetometer (VSM). Furthermore, the demagnetization rate evaluated by the irreversible demagnetization rate, which was left for 10,000 hours in air at room temperature, was measured. The results of these measurements are shown in Table 2.

なお、合金薄膜層形成のためのターゲット材は、Nd金属
に所要金属板を貼着した複合型であり、組成はその面積
比で表示してある。
The target material for forming the alloy thin film layer is a composite type in which the required metal plate is attached to Nd metal, and the composition is shown by the area ratio.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は永久磁石材料試験片厚みとBr,iHc及び
(BH)maxとの関係を示すグラフである。
1 to 3 are graphs showing the relationship between the thickness of a permanent magnet material test piece and Br, iHc and (BH) max.

フロントページの続き (72)発明者 山本 日登志 大阪府三島郡島本町江川2−15−17 住友 特殊金属株式会社山崎製作所内 (72)発明者 松浦 裕 大阪府三島郡島本町江川2−15−17 住友 特殊金属株式会社山崎製作所内 (56)参考文献 特開 昭62−188745(JP,A)Front page continuation (72) Inventor Hitoshi Yamamoto 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Hiroshi Matsuura 2-15 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture 17 Sumitomo Special Metals Co., Ltd. Yamazaki Manufacturing Co., Ltd. (56) Reference JP-A-62-188745 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yの
うち少なくとも1種からなる) 12%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体の被研削加工面に、Ti,W,Pt,Au,Cr,N
i,Cu,Co,Al,Ta,Agのうち少なくとも1種を1.0原子%〜5
0.0原子%含有し、 残部R′(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少なくと
も1種)からなる合金薄膜層が被着され、 該被研削加工面上に改質層と表面の酸化防止層を有する
ことを特徴とする永久磁石材料。
1. R (R is at least one of Nd, Pr, Dy, Ho, Tb or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y. 12% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase consists of a tetragonal phase. , W, Pt, Au, Cr, N
At least one of i, Cu, Co, Al, Ta, Ag is 1.0 atomic% to 5
An alloy thin film layer containing 0.0 atomic% and the balance R '(R' is at least one of Ce, La, Nd, Pr, Dy, Ho, and Tb) is deposited, and is modified on the surface to be ground. A permanent magnet material characterized by having a quality layer and an anti-oxidation layer on the surface.
【請求項2】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yの
うち少なくとも1種からなる) 12%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体を研削加工後、 該被研削加工面に、Ti,W,Pt,Au,Cr,Ni,Cu,Co,Al,Ta,Ag
のうち少なくとも1種を1.0原子%〜50.0原子%含有
し、 残部R′(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少なくと
も1種)からなる合金薄膜層を被着した後、 さらに、真空あるいは不活性雰囲気中で、400℃〜900
℃,1分〜3時間の熱処理を施して、該被研削加工面の加
工変質層を改質層となし、かつ改質層上に酸化防止層を
形成したことを特徴とする永久磁石材料の製造方法。
2. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y. 12% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase is a tetragonal phase. Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, Ag on the machined surface
An alloy thin film layer containing at least one of 1.0 to 50.0 at% and the balance R '(R' is at least one of Ce, La, Nd, Pr, Dy, Ho and Tb) Then, in a vacuum or an inert atmosphere, 400 ℃ ~ 900
A permanent magnet material, characterized in that a work-affected layer on the surface to be ground is formed into a modified layer by heat treatment at 1 ° C. for 1 minute to 3 hours, and an antioxidant layer is formed on the modified layer. Production method.
JP61034830A 1986-02-18 1986-02-18 Permanent magnet material and manufacturing method thereof Expired - Lifetime JPH0742553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034830A JPH0742553B2 (en) 1986-02-18 1986-02-18 Permanent magnet material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034830A JPH0742553B2 (en) 1986-02-18 1986-02-18 Permanent magnet material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62192566A JPS62192566A (en) 1987-08-24
JPH0742553B2 true JPH0742553B2 (en) 1995-05-10

Family

ID=12425114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034830A Expired - Lifetime JPH0742553B2 (en) 1986-02-18 1986-02-18 Permanent magnet material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0742553B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353238B1 (en) * 2006-04-14 2014-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for Preparing Rare Earth Permanent Magnet Material
KR101353131B1 (en) * 2006-04-14 2014-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for Preparing Permanent Magnet Material
KR101353186B1 (en) * 2006-04-14 2014-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for Preparing Rare Earth Permanent Magnet Material
KR101451430B1 (en) * 2007-03-16 2014-10-15 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth permanent magnet and its preparation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
US5876518A (en) 1995-02-23 1999-03-02 Hitachi Metals, Ltd. R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
KR100284465B1 (en) * 1998-01-31 2001-03-02 박호군 Sm-Based Giant Magnetostrictive Thin Films and Manufacturing Method Thereof
JP4577486B2 (en) * 2004-03-31 2010-11-10 Tdk株式会社 Rare earth magnet and method for producing rare earth magnet
JP4748163B2 (en) * 2005-04-15 2011-08-17 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4915349B2 (en) * 2005-12-28 2012-04-11 日立金属株式会社 Rare earth magnet and manufacturing method thereof
ES2547853T3 (en) * 2006-01-31 2015-10-09 Hitachi Metals, Limited R-Fe-B Rare Earth Sintered Magnet and procedure to produce the same
EP2899726B1 (en) 2006-03-03 2018-02-21 Hitachi Metals, Ltd. R-fe-b rare earth sintered magnet
JP4605396B2 (en) 2006-04-14 2011-01-05 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP4811143B2 (en) * 2006-06-08 2011-11-09 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
US8420160B2 (en) * 2006-09-15 2013-04-16 Intermetallics Co., Ltd. Method for producing sintered NdFeB magnet
JP5093485B2 (en) * 2007-03-16 2012-12-12 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
JP5328161B2 (en) 2008-01-11 2013-10-30 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
WO2011004894A1 (en) 2009-07-10 2011-01-13 インターメタリックス株式会社 Ndfeb sintered magnet, and process for production thereof
CN102473516B (en) 2009-07-10 2015-09-09 日立金属株式会社 The manufacture method of R-Fe-B rare-earth sintering magnet and vapour control parts
US10395822B2 (en) * 2010-03-23 2019-08-27 Tdk Corporation Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
JP5146552B2 (en) * 2011-01-20 2013-02-20 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
CN103456451B (en) * 2013-09-12 2016-09-21 南京理工大学 A kind of preparation method of the corrosion-resistant sintered NdFeB of room temperature high energy product
CN105845301B (en) 2015-08-13 2019-01-25 北京中科三环高技术股份有限公司 The preparation method of rare-earth permanent magnet and rare-earth permanent magnet
CN111063536B (en) * 2019-12-31 2022-03-22 浙江大学 Grain boundary diffusion method suitable for bulk rare earth permanent magnet material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353238B1 (en) * 2006-04-14 2014-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for Preparing Rare Earth Permanent Magnet Material
KR101353131B1 (en) * 2006-04-14 2014-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for Preparing Permanent Magnet Material
KR101353186B1 (en) * 2006-04-14 2014-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for Preparing Rare Earth Permanent Magnet Material
KR101451430B1 (en) * 2007-03-16 2014-10-15 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth permanent magnet and its preparation

Also Published As

Publication number Publication date
JPS62192566A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
JPH0663086B2 (en) Permanent magnet material and manufacturing method thereof
RU2367045C2 (en) Production of material of rare earth permanent magnet
JP4702549B2 (en) Rare earth permanent magnet
JP4702547B2 (en) Functionally graded rare earth permanent magnet
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
WO2005091315A1 (en) R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
EP0323125B1 (en) Rare earth permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH10125518A (en) Thin sheet magnet with fine crystal structure
JPH01219143A (en) Sintered permanent magnet material and its production
EP3633696B1 (en) Rare earth sintered magnet
JPS61159708A (en) Permanent magnet
EP4130301A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JPH0569282B2 (en)
JPH068488B2 (en) Permanent magnet alloy
JP3208057B2 (en) Corrosion resistant permanent magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JPS61264157A (en) Material for permanent magnet
JPS61281850A (en) Permanent magnet material
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPS6247455A (en) Permanent magnet material having high performance
EP4130300A1 (en) Anisotropic rare earth sintered magnet and method for producing same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term