JPH0663086B2 - Permanent magnet material and manufacturing method thereof - Google Patents

Permanent magnet material and manufacturing method thereof

Info

Publication number
JPH0663086B2
JPH0663086B2 JP60216047A JP21604785A JPH0663086B2 JP H0663086 B2 JPH0663086 B2 JP H0663086B2 JP 60216047 A JP60216047 A JP 60216047A JP 21604785 A JP21604785 A JP 21604785A JP H0663086 B2 JPH0663086 B2 JP H0663086B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atom
thin film
film layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60216047A
Other languages
Japanese (ja)
Other versions
JPS6274048A (en
Inventor
哲 広沢
節夫 藤村
真人 佐川
日登志 山本
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60216047A priority Critical patent/JPH0663086B2/en
Publication of JPS6274048A publication Critical patent/JPS6274048A/en
Publication of JPH0663086B2 publication Critical patent/JPH0663086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、焼結永久磁石表面の研削加工等に伴なう磁
石特性の劣化を防止したFe−B−R系永久磁石に係り、
特に、厚みが1.0mm以下の高性能永久磁石材料及びその
製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a Fe—B—R system permanent magnet that prevents deterioration of magnet characteristics due to grinding of the surface of a sintered permanent magnet, etc.
In particular, it relates to a high-performance permanent magnet material having a thickness of 1.0 mm or less and a method for manufacturing the same.

背景技術 現在の代表的な永久磁石材料は、アルニコ,ハードフェ
ライトおよび希土類コバルト磁石である。希土類コバル
ト磁石は、磁気特性が格段にすぐれているため、多種用
途に利用されているが、主成分のSm,Coは共に資源的に
不足し、かつ高価であり、今後長期間にわたって、安定
して多量に供給されることは困難である。
BACKGROUND ART Currently, typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. Rare earth cobalt magnets are used for various purposes because of their outstanding magnetic properties.However, Sm and Co, which are the main components, are both resource-deficient and expensive, and are stable over the long term. It is difficult to supply a large amount.

そのため、磁気特性がすぐれ、かつ安価で、さらに資源
的に豊富で、今後の安定供給が可能な組成元素からなる
永久磁石材料が切望されてきた。
Therefore, there has been a strong demand for a permanent magnet material that has excellent magnetic properties, is inexpensive, is abundant in resources, and can be stably supplied in the future, and is composed of a composition element.

本出願人は先に、高価なSmCoを含有しない新しい高性能
永久磁石としてFe−B−R系(RはYを含む希土類元素
のうち少なくとも1種)永久磁石を提案した(特開昭59
−46008号、特開昭59−64733号、特開昭59−89401号、
特開昭59−132104号)。この永久磁石は、RとしてNdや
Prを中心とする資源的に豊富な軽希土頼を用い、Fe主成
分として2MGOe以上の極めて高いエネルギー積を示す、
すぐれた永久磁石である。
The present applicant has previously proposed a Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive SmCo (Japanese Patent Laid-Open No. 59-59).
-46008, JP-A-59-64733, JP-A-59-89401,
JP-A-59-132104). This permanent magnet has Nd as R and
Using resource-rich light rare earth materials such as Pr, it shows an extremely high energy product of 2MGOe or more as the main component of Fe.
It is an excellent permanent magnet.

最近、磁気回路の高性能化,小形化に伴ない、Fe−B−
R系永久磁石材料が益々注目され、さらに、厚みが1.0m
m以下の小物あるいは薄物用Fe−B−R系永久磁石材料
が要望されてきた。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-based permanent magnet materials are attracting more and more attention, and the thickness is 1.0 m.
There has been a demand for Fe-BR type permanent magnet materials for small or thin objects having a size of m or less.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体を、その表面の凹凸
や歪みを除去するため、あるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を研削加工する必要があり、加工には
外周刃切断機,内周刃切断機,表面研削機,センタレス
グラインダー,ラッピングマシン等が使用される。
In order to manufacture a permanent magnet material for such an application, a molded or sintered small or ultra-thin sintered magnet body is used to remove surface irregularities or distortion, or to remove a surface oxide layer, In order to be incorporated in a circuit, it is necessary to grind the entire surface of the magnet body or a required surface, and an outer peripheral blade cutting machine, an inner peripheral blade cutting machine, a surface grinding machine, a centerless grinder, a lapping machine, etc. are used for the processing.

しかしながら、上記装置にてFe−B−R系永久磁石材料
(15.5Nd7.5B77Fe)を研削加工すると、例えば、厚み20
mmより1mm以下の製品厚みに加工すると、第1図の曲線
bに示す如く、各磁気特性が劣化する問題があった。
However, when the Fe-BR permanent magnet material (15.5Nd7.5B77Fe) is ground by the above apparatus, for example, the thickness of 20
When the product thickness is processed to be 1 mm or less than 1 mm, there is a problem that each magnetic characteristic is deteriorated as shown by the curve b in FIG.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結磁石体の研削加工に伴なう磁気特性の劣化を防止した
永久磁石材料及びその製造方法を目的としている。
An object of the present invention is to provide a new permanent magnet material mainly composed of rare earth, boron and iron, which can prevent permanent deterioration of magnetic properties due to grinding of a sintered magnet body especially for small or ultra-thin materials. The object is a magnet material and a manufacturing method thereof.

発明の構成と効果 発明者らは、Fe−B−R系永久磁石材料の保磁力につい
て種々検討した結果、前記磁石体の保磁力の大小は、結
晶粒内よりも粒界構造の差異に基因しており、研摩され
た焼結磁石表面を、Kerr効果を用いた光学顕微鏡で、磁
区の反転機構を詳細に調べると、磁石体表面の磁化反転
が磁石体内部の保磁力の1/2以下の非常に低い磁界で
起り、焼結磁石体の加工された表面第1層の結晶群の保
磁力が低い理由は、結晶表面に高保磁力を出現するため
に必要な最適の粒界構造(以下、粒界相という)が存在
しないためであることを知見した。ここでは粒界相と
は、Ndを主成分とする相が主相表面を覆い、原子尺度で
みても平坦な界面を有するものである。
As a result of various studies on the coercive force of the Fe-BR system permanent magnet material, the inventors found that the magnitude of the coercive force of the magnet body is due to the difference in the grain boundary structure rather than in the crystal grains. When the polished sintered magnet surface is examined in detail by a Kerr effect optical microscope using the Kerr effect, the reversal mechanism of the magnetic domain shows that the magnetization reversal on the surface of the magnet body is 1/2 or less of the coercive force inside the magnet body. The reason is that the coercive force of the crystal group of the processed surface first layer of the sintered magnet body is low because it occurs in a very low magnetic field of , The grain boundary phase) does not exist. Here, the grain boundary phase is one in which a phase containing Nd as a main component covers the surface of the main phase and has a flat interface on an atomic scale.

発明者が始めて発見した高保磁力を出現させる粒界相
を、加工された焼結磁石体表面の結晶群上に、最適の厚
みでかつ特殊な立方晶系の構造を有する粒界相として設
けることは、通常の方法では容易ではないが、加工され
た表面に厚み15μm以下のNd,Pr,Dy,Ho,Tbのうち少なく
とも1種を主成分とする薄膜層を形成し、その後真空あ
るいは不活性雰囲気中で特定の熱処理を施すことによ
り、該焼結体の被研削加工面の保磁力の低い結晶粒から
なる加工にて生成した表層の加工変質層及び格子欠陥
を、前記薄膜層と変質層との拡散反応で改質層となし、
Fe−B−R系永久磁石材料の保磁力並びに減磁曲線の角
型性を、改善向上させ得ることを知見し、この発明を完
成したものである。
Providing the grain boundary phase, which was first discovered by the inventor, for producing a high coercive force on the processed crystal group of the sintered magnet body as a grain boundary phase having an optimum thickness and a special cubic system structure. Is not easy by the usual method, but a thin film layer containing at least one of Nd, Pr, Dy, Ho, and Tb with a thickness of 15 μm or less is formed on the processed surface, and then vacuum or inert By subjecting the sintered body to a surface to be ground, which has been subjected to a specific heat treatment, in a specific heat treatment, the work-affected layer and lattice defects of the surface layer produced by the work made of crystal grains having a low coercive force, Formed as a modified layer by diffusion reaction with
The inventors have found that the coercive force and the squareness of the demagnetization curve of the Fe-BR permanent magnet material can be improved and improved, and the present invention has been completed.

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種あるいは
さらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくと
も1種からなる)12%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体の被研削加工面に、加工にて生成した
表層の加工変質層と該表層上に被着したR′薄膜層
(R′はNd,Pr,Dy,Ho,Tbのうち少なくとも1種)との拡
散反応にて形成された改質層を有することを特徴とする
永久磁石材料である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, and Tb or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, and Y). 12% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase is a tetragonal phase on the surface to be ground of the sintered magnet body, It was formed by the diffusion reaction between the surface-altered layer formed by processing and the R'thin film layer (R 'is at least one of Nd, Pr, Dy, Ho and Tb) deposited on the surface layer. A permanent magnet material having a modified layer.

さらに、前記の主相が正方晶相からなる焼結磁石体を研
削加工後、該被研削加工面に加工にて生成した表層の加
工変質層上に、R′薄膜層(R′はNd,Pr,Dy,Ho,Tbのう
ち少なくとも1種)を被着し、さらに真空あるいは不活
性雰囲気中で、400℃〜900℃、5分〜3時間の熱処理を
施して、該加工変質層とR′薄膜層との拡散反応にて表
層を改質層となしたことを特徴とする永久磁石材料の製
造方法である。
Furthermore, after grinding the sintered magnet body whose main phase is a tetragonal phase, R'thin film layer (R 'is Nd, At least one of Pr, Dy, Ho, and Tb) is deposited, and further heat-treated at 400 ° C. to 900 ° C. for 5 minutes to 3 hours in a vacuum or an inert atmosphere to form the work-affected layer and R ′ It is a method for producing a permanent magnet material, characterized in that the surface layer is formed into a modified layer by a diffusion reaction with a thin film layer.

また、この発明の永久磁石材料は、平均結晶粒径が1〜
80μmの範囲にある正方晶系の結晶構造を有する化合物
を主相とし、体積比で1%〜50%の非磁性相(酸化物相
を除く)を含むことを特徴とする。
The permanent magnet material of the present invention has an average crystal grain size of 1 to
A compound having a tetragonal crystal structure in the range of 80 μm as a main phase and a nonmagnetic phase (excluding an oxide phase) of 1% to 50% by volume is characterized.

したがって、この発明は、RとしてNdあるいはさらにPr
を中心とする資源的に豊富な軽希土類を主に用い、Fe,
B,R,を主成分とすることにより、2MGOe以下の極めて高
いエネルギー積並びに、高残留磁束密度、高保磁力を有
し、かつ研削加工による磁気特性の劣化を防止したFe−
B−R系永久磁石材料を安価に得ることができる。
Therefore, the present invention uses Nd as R or further Pr.
Mainly using light rare earths, which are rich in resources, such as
Fe, which has an extremely high energy product of 2MGOe or less, a high residual magnetic flux density, and a high coercive force, and prevents deterioration of magnetic properties due to grinding, by using B and R as the main components.
The BR permanent magnet material can be obtained at low cost.

すなわち、この発明により、Fe−B−R系永久磁石材料
(15.5Nd7.5B77Fe)の研削加工において、例えば、被研
削加工面にNd薄膜層を設けて変質層を改質層にすること
により、厚み20mmより1mm以上の製品厚みに加工して
も、第1図の曲線aに示す如く、Nd薄膜層を設けない比
較例(曲線b)に対して、各磁気特性が改善され、研削
加工に伴なう磁石特性の劣化を防止する効果がある。
That is, according to the present invention, in the grinding process of the Fe-BR system permanent magnet material (15.5Nd7.5B77Fe), for example, by providing the Nd thin film layer on the surface to be ground and making the altered layer a modified layer, Even if the product is machined to a thickness of 1 mm or more from 20 mm, as shown by the curve a in Fig. 1, the magnetic properties are improved and the grinding process is improved compared to the comparative example (curve b) without the Nd thin film layer. It has the effect of preventing the accompanying deterioration of the magnet characteristics.

この発明において、焼結磁石体の被研削加工表面に、
R′(R′はNd,Pr,Dy,Ho,Tbのうち少なくとも1種)を
主成分とする薄膜層を被着せるには、PVD(physical va
por deposition)として知られた真空蒸着、イオンプレ
ーティング、イオン蒸着薄膜形成法(IVD、イオン照射
又はイオン注入と真空蒸着を同時に行う方法)、スパッ
タリング等、さらにプラズマCVD(chemical vapordepos
ition)等のドライプレーティングによる薄膜形成方法
が適宜選定利用できる。また、薄膜層の厚みは、15μm
を越えると該薄膜層の剥離あるいは機械的強度の低下を
招来して好ましくなく、15μm以下の厚みとする。
In the present invention, the surface to be ground of the sintered magnet body,
To deposit a thin film layer containing R '(R' is at least one of Nd, Pr, Dy, Ho, and Tb) as a main component, PVD (physical va
known as por deposition), vacuum deposition, ion plating, ion deposition thin film forming method (IVD, ion irradiation or method of simultaneously performing ion implantation and vacuum deposition), sputtering, plasma CVD (chemical vapor deposition)
ition) and the like, a thin film forming method by dry plating can be appropriately selected and used. The thickness of the thin film layer is 15 μm
If it exceeds the range, peeling of the thin film layer or reduction in mechanical strength is not preferable, and the thickness is not more than 15 μm.

また、この発明において、厚み15μm以下のNd,Pr,Dy,H
o,Tbのうち少なくとも1種を主成分とする薄膜層を形成
し、その後真空あるいは不活性雰囲気中で熱処理を施す
が、熱処理条件は、真空あるいは不活性雰囲気中、400
℃〜900℃,5分〜3時間の熱処理を、少なくとも1回施
す必要があり、熱処理により前記薄膜層と変質層との拡
散反応で改質層となる。しかし、400℃未満では、界面
での拡散反応が不十分で、上記効果が得られず、また、
900℃を越えると通常の工業的方法で得られる真空度で
は薄膜層が酸化しやすく、磁石特性改善効果がなくなる
ため好ましくなく、加熱時間も5分未満では、界面での
拡散反応が不十分で、磁石特性の改善効果が少なく、ま
た、3時間を越えると、薄膜層の酸化により磁石特性の
改善効果が得られないため好ましくない。
Further, in the present invention, Nd, Pr, Dy, H having a thickness of 15 μm or less
A thin film layer containing at least one of o and Tb as a main component is formed, and then heat treatment is performed in a vacuum or an inert atmosphere.
It is necessary to perform the heat treatment at 5 ° C. to 900 ° C. for 5 minutes to 3 hours at least once, and the heat treatment forms a modified layer by the diffusion reaction between the thin film layer and the altered layer. However, if the temperature is lower than 400 ° C., the diffusion reaction at the interface is insufficient and the above effect cannot be obtained.
If the temperature exceeds 900 ° C, the thin film layer is easily oxidized under the vacuum degree obtained by an ordinary industrial method and the effect of improving the magnetic properties is lost, which is not preferable. If the heating time is less than 5 minutes, the diffusion reaction at the interface is insufficient. However, the effect of improving the magnetic properties is small, and if it exceeds 3 hours, the effect of improving the magnetic properties cannot be obtained due to the oxidation of the thin film layer, which is not preferable.

また、前記熱処理は、薄膜形成後に少なくとも1回施す
ことにより、所要の効果を得ることができるが、必要に
応じて多段熱処理とするのもよい。
Further, the heat treatment can obtain a desired effect by performing the heat treatment at least once after the thin film is formed, but it may be a multi-step heat treatment if necessary.

永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の12
原子%〜20原子%を占めるが、Nd,Pr,Dy,Ho,Tbのうち少
なくとも1種、あるいはさらにLa,Ce,Sm,Gd,Er,Eu,Tm,Y
b,Lu,Yのうち少なくとも1種を含むものが好ましい。
Reasons for Limiting Components of Permanent Magnet The rare earth element R used in the permanent magnet of the present invention has a composition of 12
It occupies 20% by atom to at least one of Nd, Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, Eu, Tm, Y.
Those containing at least one of b, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上2種
以上の混合物(ミッシユメタル,ジジム等)を入手上の
便宜等の理由により用いることができる。
Usually, one of R is sufficient, but a mixture of two or more kinds (Missille metal, didymium, etc.) can be practically used for the convenience of availability.

なお、このRは希土類元素でなくもよく、工業上入手可
能な範囲で製造上不可避な不純物を含有するものでも差
支えない。
It should be noted that this R does not have to be a rare earth element, and may contain impurities that are unavoidable in production within a range that is industrially available.

Rは、新規な上記永久磁石材料における、必須元素であ
って、12原子%未満では、結晶構造がα−鉄と同一構造
の立方晶組織が析出するため、高磁気特性、特に高保磁
力が得られず、20原子%を越えると、Rリッチな非磁性
相が多くなり、残留磁束密度(Br)が低下して、すぐれ
た特性の永久磁石が得られない。よって、希土類元素
は、12原子%〜20原子%の範囲とする。
R is an essential element in the novel permanent magnet material, and if it is less than 12 atomic%, a cubic crystal structure having the same crystal structure as α-iron precipitates, so that high magnetic properties, especially high coercive force can be obtained. If it exceeds 20 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 12 atom% to 20 atom%.

Bは、この発明による永久磁石材料における、必須元素
であって、4原子%未満では、菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、20原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(B
r)が低下するため、すぐれた永久磁石が得られない。
よって、Bは、4原子%〜20原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention. If it is less than 4 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. The rich non-magnetic phase increases and the residual magnetic flux density (B
Since r) is lowered, excellent permanent magnets cannot be obtained.
Therefore, B is in the range of 4 atom% to 20 atom%.

Feは、新規な上記永久磁石において、必須元素であり、
65原子%未満では、残留磁束密度(Br)が低下し、81原
子%を越えると、高い保磁力が得られないので、Feは65
原子%〜81原子%の含有とする。
Fe is an essential element in the new permanent magnet,
If it is less than 65 atom%, the residual magnetic flux density (Br) is reduced, and if it exceeds 81 atom%, a high coercive force cannot be obtained.
The content is from atomic% to 81 atomic%.

また、この発明による永久磁石材料において、Feの一部
をCoで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置換
量がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの原子比率がFeとCoの合計量で5
%〜15%の場合は、(Br)は置換しない場合に比較して
増加するため、高磁束密度を得るためには好ましい。
Further, in the permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 20%, on the contrary, the magnetic properties deteriorate, which is not preferable. The atomic ratio of Co is 5 in the total amount of Fe and Co.
% To 15%, (Br) increases as compared with the case where no substitution is carried out, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石は、R,B,Feの他、工業的
生産上不可避的不純物の存在を許容できるが、Bの一部
を4.0原子%以下のC、3.5原子%以下のP、2.5原子%
以下のS、3.5原子%以下のCuのうち少なくとも1種、
合計量で4.0原子%以下で置換することにより、永久磁
石の製造性改善、低価格化が可能である。
Further, the permanent magnet according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atom% or less of C, 3.5 atom% or less of P, 2.5 atom%
At least one of the following S and Cu of 3.5 atomic% or less,
By substituting the total amount by 4.0 atom% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.

また、下記記添加元素のうち少なくとも1種は、R−B
−Fe系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。
Further, at least one of the following additional elements is RB
It can be added to the Fe-based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7 原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は該添加元素のうち最大値
を有するものの原子%以下の含有させることにより、永
久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is When the content of the additive element having the maximum value is not more than atomic%, the coercive force of the permanent magnet can be increased.

結晶相は主相が正方晶であることが、微細で均一合金粉
末より、すぐれた磁気特性を有する焼結永久磁石を作製
するのに不可欠である。
The main phase of the crystal phase is tetragonal, which is indispensable for producing a sintered permanent magnet having excellent magnetic properties than fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

この発明による永久磁石は、 保磁力iHc≧1kOe、残留磁束密度Br>4kG、を示し、最大
エネルギー積(BH)maxは、好ましい組成範囲では、(B
H)max≧20MGOeを示し、最大値は25MGOe以上に達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe and a residual magnetic flux density Br> 4 kG, and the maximum energy product (BH) max is
H) max ≧ 20MGOe, the maximum value reaches 25MGOe or more.

また、この発明永久磁石用金粉末のRの主成分がその50
%以上をNd及びRrを主とする軽希土類金属が占める場合
で、R12原子%〜15原子%、B6原子%〜9原子%、Fe78
原子%〜80原子%、の組成範囲のとき、(BH)max35MGO
e以上のすぐれた磁気特性をし、特に軽希土類金属がNd
の場合には、その最大値が42MGOe以上に達する。
Further, the main component of R of the gold powder for permanent magnet of the present invention is 50
% Or more when the light rare earth metal mainly composed of Nd and Rr occupies, R12 atom% to 15 atom%, B6 atom% to 9 atom%, Fe78
(BH) max35MGO when the composition range is from atomic% to 80 atomic%.
It has excellent magnetic characteristics over e, and especially light rare earth metals are Nd
In the case of, the maximum value reaches 42 MGOe or more.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNdを使用し、これらを配合後高周
波溶解し、その後水冷銅鋳型に鋳造し、15Nd11B74Feな
る組成の鋳塊を得た。
Examples Example 1 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd having a purity of 99.7% or more were used, and after mixing these, high-frequency melting was performed and then cast in a water-cooled copper mold to cast a composition of 15Nd11B74Fe. Got a lump.

その後このインゴットを、スタンプミルにより粗粉砕
し、次にボールミルにより微粉砕し、平均粒度3.0μm
の微粉末を得た。
After that, this ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain an average particle size of 3.0 μm.
Of fine powder was obtained.

この微粉末を金型に挿入し、20kOeの磁界中で配向し、
磁界に平行方向に、1.5/cmの圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 20 kOe,
It was molded in a direction parallel to the magnetic field at a pressure of 1.5 / cm 2 .

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条件
で焼結し、長さ20mm×幅10mm×厚み10mm寸法の焼結体を
得た。
The obtained molded body was sintered under the conditions of 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of length 20 mm × width 10 mm × thickness 10 mm.

そして焼結体より、磁石の配向方向に垂直な方向を面内
に含むように、長さ20mm×幅5mm×厚み0.15mm寸法の試
験片に切出し、さらに同方向に研摩して、厚みを減少さ
せて、鏡面を有する100μmの厚みの薄板試験片を得
た。
Then, from the sintered body, cut out into a test piece of length 20 mm × width 5 mm × thickness 0.15 mm so that the direction perpendicular to the magnet orientation direction is included in the plane, and further polish in the same direction to reduce the thickness. Then, a thin plate test piece having a mirror surface and a thickness of 100 μm was obtained.

真空度5×10 Torrの真空容器に、まず、上記薄板試
験片を陰極、シャッタ板を陽極として、該試験片面をプ
レスパッタで清浄化したのち、該薄板試験片を陽極とし
て装入配置し、Tb金属を陰極ターゲット材として、3時
間のスパツタリングを施し、試験片両面に約3μm厚み
のTb薄膜層を被着させた。
Vacuum 5 × 10 - the vacuum vessel 6 Torr, first, the cathode of the thin plate specimen, the shutter plate as an anode, after cleaning the test single side presputtering, charging place the thin plate specimen as an anode Then, using Tb metal as a cathode target material, sputtering was performed for 3 hours to deposit a Tb thin film layer having a thickness of about 3 μm on both surfaces of the test piece.

さらに真空中で、630℃,1時間の熱処理を施して、被研
削加工面にTb薄膜層を形成したこの発明による永久磁石
(本発明1)を作製した。
Further, heat treatment was performed in vacuum at 630 ° C. for 1 hour to produce a permanent magnet (Invention 1) according to the present invention in which a Tb thin film layer was formed on the surface to be ground.

また、上記の薄板試験片にTb薄膜層を設けることなく直
ちに同条件の熱処理施した比較永久磁石(比較例2)を
作製した。
Further, a comparative permanent magnet (Comparative Example 2) was produced by subjecting the above thin plate test piece to heat treatment immediately under the same conditions without providing a Tb thin film layer.

さらに、上記の薄板試験片にTb薄膜層を設けたのち、熱
処理を施さない比較永久磁石(比較例3)を作製した。
Further, a comparative permanent magnet (Comparative Example 3) which was not subjected to heat treatment was prepared after the thin plate test piece was provided with a Tb thin film layer.

得られた永久磁石材料のBr,iHc及び(BH)max値を、振
動試料型磁力計(VSM)を用いて開回路で測定し、測定
結果を第1表に示し、また、測定したI−Hループを第
2図に示す。
The Br, iHc and (BH) max values of the obtained permanent magnet material were measured in an open circuit using a vibrating sample magnetometer (VSM). The measurement results are shown in Table 1 and the measured I- The H loop is shown in FIG.

実施例2 実施例1の焼結体より、磁石の配向方向を面内に含むよ
うに、長さ20mm×幅5mm×厚み0.15mm寸法の試験片に切
出し、さらに同方向に研摩して、厚みを減少させて、鏡
面を有する100μmの厚みの薄板試験片を得た。
Example 2 A test piece having a length of 20 mm, a width of 5 mm, and a thickness of 0.15 mm was cut out from the sintered body of Example 1 so that the magnet orientation direction was included in the surface, and further polished in the same direction to obtain a thickness. Was reduced to obtain a thin plate test piece having a mirror surface and a thickness of 100 μm.

真空度5×10 Torrの真空容器に、まず、上記薄板試
験片を陰極、シャッタ板を陽極として、該試験片面をプ
レスパッタで清浄化したのち、該薄板試験片を陽極とし
て装入配置し、Tb金属を陰極ターゲット材として、3時
間のスパツタリングを施し、試験片両面に約3μm厚み
のTb薄膜層を被着させた。
Vacuum 5 × 10 - the vacuum vessel 6 Torr, first, the cathode of the thin plate specimen, the shutter plate as an anode, after cleaning the test single side presputtering, charging place the thin plate specimen as an anode Then, using Tb metal as a cathode target material, sputtering was performed for 3 hours to deposit a Tb thin film layer having a thickness of about 3 μm on both surfaces of the test piece.

さらに真空中で、630℃,1時間の熱処理を施して、被研
削加工面にTb薄膜層を形成したこの発明による永久磁石
(本発明4)を作製した。
Further, heat treatment was carried out in vacuum at 630 ° C. for 1 hour to prepare a permanent magnet (Invention 4) according to the present invention in which a Tb thin film layer was formed on the surface to be ground.

また、上記の薄板試験片にTb薄膜層を設けることなく直
ちに同条件の熱処理施した比較永久磁石(比較例5)を
作製した。
Further, a comparative permanent magnet (Comparative Example 5) was produced by subjecting the above thin plate test piece to a heat treatment immediately under the same conditions without providing a Tb thin film layer.

さらに、上記の薄板試験片にTb薄膜層を設けたのち、熱
処理を施さない比較永久磁石(比較例6)を作製した。
Furthermore, after providing the thin plate test piece with a Tb thin film layer, a comparative permanent magnet (Comparative Example 6) not subjected to heat treatment was produced.

得られた永久磁石材料のBr,iHc及び(BH)max値を、振
動試料型磁力計(VSM)を用いて開回路で測定し、測定
結果を第2表に示し、また、測定したI−Hループを第
3図に示す。
The Br, iHc and (BH) max values of the obtained permanent magnet material were measured in an open circuit using a vibrating sample magnetometer (VSM). The measurement results are shown in Table 2 and the measured I- The H loop is shown in FIG.

実施例3 実施例1の焼結体より、磁石の配向方向が面と垂直にな
るように、長さ20mm×幅5mm×厚み0.15mm寸法の試験片
に切出し、さらに同方向に研摩して、厚みを減少させ
て、鏡面を有する100μmの厚みの薄板試験片を得た。
Example 3 A test piece having a length of 20 mm, a width of 5 mm and a thickness of 0.15 mm was cut out from the sintered body of Example 1 so that the orientation direction of the magnet was perpendicular to the plane, and further polished in the same direction. The thickness was reduced to obtain a thin plate test piece having a mirror surface and a thickness of 100 μm.

真空度5×10 Torrの真空容器に、まず、上記薄板試
験片を陰極、シャッタ板を陽極として、該試験片面をプ
レスパッタで清浄化したのち、該薄板試験片を陽極とし
て装入配置し、Dy金属を陰極ターゲット材として、3時
間のスパツタリングを施し、試験片両面に約3μm厚み
のDy薄膜層を被着させた。さらに真空中で、630℃,1時
間の熱処理を施して、被研削加工面にDy薄膜層を形成し
たこの発明による永久磁石を作製した(本発明7)。
Vacuum 5 × 10 - the vacuum vessel 6 Torr, first, the cathode of the thin plate specimen, the shutter plate as an anode, after cleaning the test single side presputtering, charging place the thin plate specimen as an anode Then, using Dy metal as a cathode target material, sputtering was performed for 3 hours to deposit a Dy thin film layer having a thickness of about 3 μm on both surfaces of the test piece. Further, heat treatment was carried out in vacuum at 630 ° C. for 1 hour to produce a permanent magnet according to the present invention in which a Dy thin film layer was formed on the surface to be ground (Invention 7).

また、同様にプレスパッタしたのち、真空度5×10
Torrの真空容器に、上記薄板試験片を陽極として装入配
置し、Ho金属を陰極ターゲット材として、3時間のスパ
ツタリングを施し、試験片両面に約3μm厚みのHo薄膜
層を被着させた。さらに真空中で、630℃,1時間の熱処
理を施して、被研削加工面にHo薄膜層を形成したこの発
明による永久磁石を作製した(本発明8)。
Similarly, after the pre-sputtering, vacuum 5 × 10 - 6
The thin plate test piece was placed as an anode in a Torr vacuum container, Ho metal was used as a cathode target material, and spattering was performed for 3 hours to deposit a Ho thin film layer having a thickness of about 3 μm on both surfaces of the test piece. Further, heat treatment was carried out in vacuum at 630 ° C. for 1 hour to prepare a permanent magnet according to the present invention in which a Ho thin film layer was formed on the surface to be ground (invention 8).

また、上記の薄板試験片に薄膜層を設けることなく直ち
に同条件の熱処理施した比較永久磁石(比較例9)を作
製した。
Further, a comparative permanent magnet (Comparative Example 9) was produced by subjecting the above thin plate test piece to a heat treatment immediately under the same conditions without providing a thin film layer.

得られた永久磁石材料のBr,iHc及び(BH)max値を、振
動試料型磁力計(VSM)を用いて開回路で測定し、測定
結果を第3表に示す。
The Br, iHc and (BH) max values of the obtained permanent magnet material were measured in an open circuit using a vibrating sample magnetometer (VSM), and the measurement results are shown in Table 3.

【図面の簡単な説明】[Brief description of drawings]

第1図は永久磁石材料試験片厚みとBr,iHc及び(BH)ma
xとの関係を示すグラフである。第2図と第3図は永久
磁石材料のI−Hループ図である。
Fig. 1 shows the thickness of permanent magnet material test pieces and Br, iHc and (BH) ma.
It is a graph which shows the relationship with x. 2 and 3 are I-H loop diagrams of the permanent magnet material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 日登志 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 (72)発明者 松浦 裕 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Yamamoto 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Pref. 2-15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、 La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくとも1種か
らなる)12%〜20原子%、B4原子%〜20原子%、Fe65原
子%〜81原子%を主成分とし、主相が正方晶相からなる
焼結磁石体の被研削加工面に、加工にて生成した表層の
加工変質層と該表層上に被着したR′薄膜層(R′はN
d,Pr,Dy,Ho,Tbのうち少なくとも1種)との拡散反応に
て形成された改質層を有することを特徴とする永久磁石
材料。
1. R (R is at least one of Nd, Pr, Dy, Ho, Tb or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y. 12% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase is a tetragonal phase. Surface-altered layer produced in step 1 and an R'thin film layer (R 'is N
A permanent magnet material having a modified layer formed by a diffusion reaction with at least one of d, Pr, Dy, Ho, and Tb).
【請求項2】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、 La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくとも1種か
らなる)12%〜20原子%、B4原子%〜20原子%、Fe65原
子%〜81原子%を主成分とし、主相が正方晶相からなる
焼結磁石体を研削加工後、該被研削加工面に加工にて生
成した表層の加工変質層上に、R′薄膜層(R′はNd,P
r,Dy,Ho,Tbのうち少なくとも1種)を被着し、さらに真
空あるいは不活性雰囲気中で、400℃〜900℃、5分〜3
時間の熱処理を施して、該加工変質層とR′薄膜層との
拡散反応にて表層を改質層となしたことを特徴とする永
久磁石材料の製造方法。
2. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y. 12% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase is a tetragonal phase. R ′ thin film layer (R ′ is Nd, P
At least one of r, Dy, Ho, Tb) is deposited, and further in a vacuum or an inert atmosphere, 400 ° C to 900 ° C, 5 minutes to 3
A method for producing a permanent magnet material, characterized in that a surface layer is formed as a modified layer by a diffusion reaction between the work-affected layer and the R'thin film layer after heat treatment for a time.
JP60216047A 1985-09-27 1985-09-27 Permanent magnet material and manufacturing method thereof Expired - Fee Related JPH0663086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216047A JPH0663086B2 (en) 1985-09-27 1985-09-27 Permanent magnet material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216047A JPH0663086B2 (en) 1985-09-27 1985-09-27 Permanent magnet material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6274048A JPS6274048A (en) 1987-04-04
JPH0663086B2 true JPH0663086B2 (en) 1994-08-17

Family

ID=16682443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216047A Expired - Fee Related JPH0663086B2 (en) 1985-09-27 1985-09-27 Permanent magnet material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0663086B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863809B1 (en) * 2004-12-16 2008-10-16 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
US8771422B2 (en) 2005-03-18 2014-07-08 Ulvac, Inc. Coating method and apparatus, a permanent magnet, and manufacturing method thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180189B1 (en) * 1984-10-31 1991-01-23 Sumitomo Pharmaceuticals Company, Limited Novel beta-lactams and their production
JPS63307214A (en) * 1987-06-05 1988-12-14 Tokin Corp Manufacture of oxidation-resistant permanent magnet
JPH01117303A (en) * 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd Permanent magnet
JP3897724B2 (en) 2003-03-31 2007-03-28 独立行政法人科学技術振興機構 Manufacturing method of micro, high performance sintered rare earth magnets for micro products
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method
JP4977307B2 (en) * 2004-01-26 2012-07-18 並木精密宝石株式会社 Small motor
JP4605437B2 (en) * 2004-03-26 2011-01-05 Tdk株式会社 Rare earth magnet manufacturing method
WO2006109615A1 (en) * 2005-04-05 2006-10-19 Namiki Seimitsu Houseki Kabushiki Kaisha Stacked permanent magnet
EP1879201B1 (en) * 2005-04-15 2016-11-30 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
EP1968080B1 (en) 2005-12-28 2015-02-11 Hitachi Metals, Ltd. Rare earth magnet and method for producing same
JP4605396B2 (en) * 2006-04-14 2011-01-05 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP2007305878A (en) * 2006-05-12 2007-11-22 Ulvac Japan Ltd Permanent magnet and manufacturing method therefor
JP2007329250A (en) * 2006-06-07 2007-12-20 Ulvac Japan Ltd Permanent magnet, and manufacturing method of permanent magnet
RU2449049C2 (en) 2006-09-11 2012-04-27 Улвак, Инк. Device for vacuum processing by vapor
JP4922704B2 (en) * 2006-09-13 2012-04-25 株式会社アルバック Permanent magnet and method for manufacturing permanent magnet
JP2009149916A (en) * 2006-09-14 2009-07-09 Ulvac Japan Ltd Vacuum vapor processing apparatus
EP2071597B1 (en) * 2006-09-15 2016-12-28 Intermetallics Co., Ltd. METHOD FOR PRODUCING SINTERED NdFeB MAGNET
CA2685790C (en) 2007-05-01 2015-12-08 Intermetallics Co., Ltd. Method for making ndfeb system sintered magnet
BRPI0813821B1 (en) 2007-07-02 2018-08-07 Hitachi Metals, Ltd. R-Fe-B Rare Earth Synchronized Magnet and Method for Its Production
CN101652820B (en) 2007-09-04 2012-06-27 日立金属株式会社 R-fe-b anisotropic sintered magnet
JP5328161B2 (en) 2008-01-11 2013-10-30 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
JP5057111B2 (en) 2009-07-01 2012-10-24 信越化学工業株式会社 Rare earth magnet manufacturing method
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
JP5146552B2 (en) * 2011-01-20 2013-02-20 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
JP5874951B2 (en) * 2011-05-02 2016-03-02 日立金属株式会社 Method for producing RTB-based sintered magnet
MY165562A (en) 2011-05-02 2018-04-05 Shinetsu Chemical Co Rare earth permanent magnets and their preparation
KR101732826B1 (en) * 2014-03-18 2017-05-04 미쓰비시덴키 가부시키가이샤 Mechanical device
CN104651783B (en) * 2015-02-12 2017-09-01 烟台首钢磁性材料股份有限公司 A kind of method that permanent magnet ndfeb magnet steel surface is aluminized
CN104674169A (en) * 2015-02-12 2015-06-03 烟台首钢磁性材料股份有限公司 Method for electroplating surface of permanent magnet neodymium iron boron magnetic steel with composite coating
KR102045399B1 (en) 2018-04-30 2019-11-15 성림첨단산업(주) Manufacturing method of rare earth sintered magnet
KR102045400B1 (en) 2018-04-30 2019-11-15 성림첨단산업(주) Manufacturing method of rare earth sintered magnet
KR102261143B1 (en) 2020-07-02 2021-06-07 성림첨단산업(주) Manufacturing method of rare earth sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863809B1 (en) * 2004-12-16 2008-10-16 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
US8771422B2 (en) 2005-03-18 2014-07-08 Ulvac, Inc. Coating method and apparatus, a permanent magnet, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6274048A (en) 1987-04-04

Similar Documents

Publication Publication Date Title
JPH0663086B2 (en) Permanent magnet material and manufacturing method thereof
JP5206834B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4702549B2 (en) Rare earth permanent magnet
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
EP1705669A2 (en) Rare earth permanent magnet
JP4702547B2 (en) Functionally graded rare earth permanent magnet
WO2006043348A1 (en) Method for producing rare earth permanent magnet material
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPWO2017164312A1 (en) Rare earth permanent magnet
JPH10125518A (en) Thin sheet magnet with fine crystal structure
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP5565497B1 (en) R-T-B permanent magnet
JPS6217149A (en) Manufacture of sintered permanent magnet material
EP1632299A1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH068488B2 (en) Permanent magnet alloy
JPH0560241B2 (en)
JP3860372B2 (en) Rare earth magnet manufacturing method
JPH0445573B2 (en)
JP3643214B2 (en) Method for producing laminated permanent magnet
JPS6247455A (en) Permanent magnet material having high performance
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH064882B2 (en) Permanent magnet material processing method
JP4547840B2 (en) Permanent magnet and method for manufacturing the same
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees