JPH064882B2 - Permanent magnet material processing method - Google Patents

Permanent magnet material processing method

Info

Publication number
JPH064882B2
JPH064882B2 JP10667785A JP10667785A JPH064882B2 JP H064882 B2 JPH064882 B2 JP H064882B2 JP 10667785 A JP10667785 A JP 10667785A JP 10667785 A JP10667785 A JP 10667785A JP H064882 B2 JPH064882 B2 JP H064882B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
less
magnet material
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10667785A
Other languages
Japanese (ja)
Other versions
JPS61264106A (en
Inventor
日登志 山本
真人 佐川
節夫 藤村
裕 松浦
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP10667785A priority Critical patent/JPH064882B2/en
Publication of JPS61264106A publication Critical patent/JPS61264106A/en
Publication of JPH064882B2 publication Critical patent/JPH064882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−R系焼結永久磁石の研削加工等に
伴なう磁石特性の劣化を防止した永久磁石の加工方法に
係り、特に、体積が2.5cm3以下あるいは厚みが5.0mm以
下の小物あるいは薄物用永久磁石材料の加工方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a permanent magnet processing method that prevents deterioration of magnet characteristics associated with grinding of a Fe—B—R based sintered permanent magnet, etc. Relates to a method for processing a small or thin permanent magnet material having a thickness of 2.5 cm 3 or less or a thickness of 5.0 mm or less.

背景技術 現在の代表的な永久磁石材料は、アルニコ,ハードフェ
ライトおよび希土類コバルト磁石である。この希土類コ
バルト磁石は、磁気特性が格段にすぐれているため、多
種用途に利用されているが、主成分のSm,Coは共に資源
的に不足し、かつ高価であり、今後長期間にわたって、
安定して多量に供給されることは困難である。
BACKGROUND ART Currently, typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. Since this rare earth cobalt magnet has remarkably excellent magnetic characteristics, it is used for various purposes.However, Sm and Co as main components are both resource-deficient and expensive, and are expected to be long-term in the future.
It is difficult to stably supply a large amount.

そのため、磁気特性がすぐれ、かつ安価で、さらに資源
的に豊富で今後の安定供給が可能な組成元素からなる永
久磁石材料が切望されてきた。
Therefore, there has been a strong demand for a permanent magnet material which has excellent magnetic properties, is inexpensive, is abundant in resources, and can be stably supplied in the future from a composition element.

本出願人は先に、高価なSmやCoを含有しない新しい高性
能永久磁石としてFe−B−R系(RはYを含む希土類元
素のうち少なくとも1種)永久磁石を提案した(特開昭
59-46008号、特開昭59-64733号、特開昭59-89401号、特
開昭59-132104号)。この永久磁石は、RとしてNdやPr
を中心とする資源的に豊富な軽希土類を用い、Feを主成
分として25MGO以上の極めて高いエネルギー積を示
すすぐれた永久磁石である。
The present applicant has previously proposed a Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive Sm or Co (Japanese Patent Laid-Open No. 2006-242242).
59-46008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104). This permanent magnet uses Nd or Pr as R.
It is an excellent permanent magnet that uses abundant resource-rich light rare earths, mainly Fe, and has an extremely high energy product of 25 MGO e or more with Fe as the main component.

最近、磁気回路の高性能化,小形化に伴ない、Fe−B−
R系永久磁石材料が益々注目され、さらに、体積が2.5c
m3以下あるいは厚みが5.0mm以下の小物あるいは薄物用F
e−B−R系永久磁石材料が要望されてきた。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-based permanent magnet materials are receiving more and more attention, and the volume is 2.5c.
F for small or thin objects of m 3 or less or thickness of 5.0 mm or less
There has been a demand for e-B-R permanent magnet materials.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体は、その表面の凹凸
や歪みを除去するため、あるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を切削加工する必要があり、加工には
外周刃切断機,内周刃切断機,表面研削機,センタレス
グラインダー,ラッピングマシン等が使用される。
In order to manufacture a permanent magnet material for such an application, a molded or sintered small or ultra-thin sintered magnet body is used to remove surface irregularities or distortion, or to remove a surface oxide layer, In order to be incorporated into a circuit, it is necessary to cut the entire surface of the magnet body or a required surface, and an outer peripheral blade cutting machine, an inner peripheral blade cutting machine, a surface grinding machine, a centerless grinder, a lapping machine, etc. are used for the processing.

しかしながら、上記装置にてFe−B−R系永久磁石材料
を研削加工すると、磁気特性の劣化がみられ、特に、小
物あるいは薄物用Fe−B−R系永久磁石材料では、磁気
特性が甚だしく劣化する問題があった。
However, when the Fe-BR permanent magnet material is ground by the above-mentioned apparatus, the magnetic characteristics are deteriorated, and particularly in the Fe-BR permanent magnet material for small or thin objects, the magnetic characteristics are significantly deteriorated. There was a problem to do.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結磁石体の切削加工や研削加工に伴なう磁気特性の劣化
を防止した永久磁石材料の加工方法を目的としている。
OBJECT OF THE INVENTION The present invention is a novel permanent magnet material containing rare earths, boron and iron as main components, and in particular, the deterioration of magnetic properties due to cutting or grinding of a sintered magnet body for small or ultra-thin materials. The purpose is to prevent the permanent magnet material from being processed.

発明の構成と効果 Fe−B−R系永久磁石材料は、主成分として、空気中で
極めて酸化しやすく、直ちに安定な酸化物を生成する希
土類元素及び鉄を含有するため、発熱したり大気と加工
面との接触により酸化層が生成し、特に小物あるいは極
薄物の焼結磁石体では、この酸化層の影響が顕著であ
り、甚だしい磁気特性の劣化を招来していたのである。
そこで、非酸化性流体中で加工することにより、この酸
化層の生成を防止し、加工に伴なう磁気特性の劣化を防
止したのである。
Composition and Effects of the Invention The Fe-BR permanent magnet material contains as a main component a rare earth element and iron which are extremely easily oxidized in the air and immediately generate a stable oxide, so that they generate heat or are exposed to the atmosphere. An oxide layer is generated by contact with the processed surface, and particularly in a small or ultra-thin sintered magnet body, the influence of this oxide layer is remarkable, resulting in a serious deterioration of magnetic characteristics.
Therefore, by processing in a non-oxidizing fluid, the formation of this oxide layer was prevented, and the deterioration of the magnetic characteristics due to the processing was prevented.

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種あるいは
さらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なく
とも1種からなる)10原子%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体を非酸化性流体中にて切削あるいは研
削加工することを特徴とする永久磁石材料の加工方法で
ある。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y). (Comprising seeds) 10 atomic% to 30 atomic%, B2 atomic% to 28 atomic%, Fe65 atomic% to 80 atomic% as main components, and the main phase is a tetragonal sintered magnet body in a non-oxidizing fluid. Is a method of processing a permanent magnet material, which is characterized by cutting or grinding.

また、この発明の永久磁石材料は平均結晶粒径が1〜80
μmの範囲にある正方晶系の結晶構造を有する化合物を
主相とし、体積比で1%〜50%の非磁性相(酸化物相を
除く)を含むことを特徴とする。
The permanent magnet material of the present invention has an average crystal grain size of 1 to 80.
A compound having a tetragonal crystal structure in the range of μm is used as a main phase, and a volume ratio of 1% to 50% of a nonmagnetic phase (excluding an oxide phase) is included.

したがって、この発明の永久磁石材料は、RとしてNdあ
るいはさらにPrを中心とする資源的に豊富な軽希土類を
主に用い、Fe,B,R,を主成分とすることにより、25
MGOe以上の極めて高いエネルギー積並びに、高残留磁
束密度、高保磁力を有し、かつ研削加工による磁気特性
の劣化を防止したFe−B−R系永久磁石材料を安価に得
ることができる。
Therefore, the permanent magnet material of the present invention mainly uses light rare earths rich in resources centering on Nd or further Pr as R and has Fe, B and R as the main components.
An Fe-BR permanent magnet material having an extremely high energy product of MGOe or more, a high residual magnetic flux density and a high coercive force, and preventing deterioration of magnetic characteristics due to grinding can be obtained at low cost.

この発明において、非酸化性流体としては、水分をほと
んど含有しない非酸化性油であれば、植物性あるいは軽
油等の鉱物性のいずれの油でもよく、また、上記の混合
油でもよいが、酸化防止のため水分含有率は0.1wt%以
下が望ましい。
In the present invention, the non-oxidizing fluid may be any mineral oil such as vegetable oil or light oil, as long as it is a non-oxidizing oil containing almost no water, and the above mixed oil may be used. For prevention, the water content is preferably 0.1 wt% or less.

また、非酸化性ガスとしては、Arガス,Nガス等の不
活性ガスであればよいが、純度が99%以上であること
が、酸化防止のために望ましい。
The non-oxidizing gas may be an inert gas such as Ar gas or N 2 gas, but a purity of 99% or more is desirable for preventing oxidation.

この発明における加工方法としては、外周刃切断法、内
周刃切断法、ワイヤ切断法、平面研削法、両面研削法、
センタレスグラインダー法、及びラップ研摩法など、通
常の磁石加工方法がすべて適用できる。
As the processing method in the present invention, an outer peripheral blade cutting method, an inner peripheral blade cutting method, a wire cutting method, a surface grinding method, a double-sided grinding method,
All the usual magnet processing methods such as the centerless grinder method and the lapping method can be applied.

また、加工方法における磁石は、ダイヤモンド砥石,ポ
ラゾン砥石が磁気特性の劣化防止に有効であり、ラップ
回転速度は、磁石特性の向上並びに加工能率の点から、
900rpm〜3600rpmの範囲が望ましい。
Further, regarding the magnet in the processing method, the diamond grindstone and the porazon grindstone are effective in preventing deterioration of the magnetic characteristics, and the lap rotation speed is improved from the viewpoint of improvement of the magnet characteristics and processing efficiency.
A range of 900 rpm to 3600 rpm is desirable.

永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の10
原子%〜30原子%を占めるが、Nd,Pr,Dy,Ho,Tbのうち少
なくとも1種、あるいはさらに、La,Ce,Sm,Gd,Er,Eu,T
m,Yb,Lu,Yのうち少なくとも1種を含むものが好まし
い。
Reasons for Limiting Components of Permanent Magnet The rare earth element R used in the permanent magnet of the present invention has a composition of 10
Occupies at least 30 at%, but at least one of Nd, Pr, Dy, Ho, Tb, or even La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタル,ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, one type of R is usually sufficient, but it is practically 2
Mixtures of more than one species (Misch metal, didymium, etc.) can be used for reasons of availability.

なお、このRは純希土元素でなくてもよく、工業上入手
可能な範囲で製造上不可避な不純物を含有するものでも
差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、10原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を越えると、Rリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下して、すぐれた特
性の永久磁石が得られない。よって、希土類元素は、10
原子%〜30原子%の範囲とする。
R is an essential element in the novel permanent magnet material described above, and if it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as α-iron, so that high magnetic properties, especially high coercive force can be obtained. If it exceeds 30 at%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is 10
The range is from atomic% to 30 atomic%.

Bは、この発明による永久磁石材料における、必須元素
であって、2原子%未満では、菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、28原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. Rich non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

Feは、新規な上記系永久磁石材料において、必須元素で
あり、65原子%未満では残留磁束密度(Br)が低下し、80
原子%を越えると、高い保磁力が得られないので、Feは
65原子%〜80原子%の含有とする。
Fe is an essential element in the novel permanent magnet materials described above, and if the content is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and
If the atomic percentage is exceeded, high coercive force cannot be obtained, so Fe is
The content is 65 atom% to 80 atom%.

また、この発明による永久磁石材料において、Feの一部
をCoで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置換
量がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの置換量がFeとCoの合計量で5原
子%〜15原子%の場合は、(Br)は置換しない場合に比較
して増加するため、高磁束密度を得るためには好まし
い。
Further, in the permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 20%, on the contrary, the magnetic properties deteriorate, which is not preferable. When the substitution amount of Co is 5 atom% to 15 atom% as the total amount of Fe and Co, (Br) is increased as compared with the case of not substituting, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石は、R,B,Feの他、工
業的生産上不可避的不純物の存在を許容できるが、Bの
一部を4.0原子%以下のC、3.5原子%以下のP、2.5原
子%以下のS、3.5原子%以下のCuのうち少なくとも1
種、合計量で4.0原子%以下で置換することにより、永
久磁石の製造性改善、低価格化が可能である。
Further, the permanent magnet according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atom% or less of C, 3.5 atom% or less of P, At least one of 2.5 atomic% or less S and 3.5 atomic% or less Cu
It is possible to improve the manufacturability of permanent magnets and reduce the cost by substituting the total amount of seeds by 4.0 at% or less.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。しかし、保磁力改善のための添
加に伴ない残留磁束密度(Br)の低下を招来するので、従
来のハードフェライト磁石の残留磁束密度と同等以上と
なる範囲での添加が望ましい。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost. However, since the residual magnetic flux density (Br) is reduced with the addition for improving the coercive force, it is desirable to add the residual magnetic flux density in the range equal to or more than the residual magnetic flux density of the conventional hard ferrite magnet.

9.5原子%以下のAl、 4.5原子%以下のTi、 9.5原子%以下のV、 8.5原子%以下のCr、 8.0原子%以下のMn、 5.0原子%以下のBi、 9.5原子%以下のNb、 9.5原子%以下のTa、 9.5原子%以下のMo、 9.5原子%以下のW、 2.5原子%以下のSb、 7原子%以下のGe、 3.5原子%以下のSn、 5.5原子%以下のZr、 9.0原子%以下のNi、 9.0原子%以下のSi、 1.1原子%以下のZn、 5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf at least one type is added, provided that the maximum content is 2 or more types. By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

この発明による永久磁石は、 保磁力iHc≧1kOe、残留磁束密度Br>4kG、を示し、
最大エネルギー積(BH)maxは、最も好ましい組成範囲で
は、(BH)max≧10MGOeを示し、最大値は25MGOe以上に達
する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe and a residual magnetic flux density Br> 4 kG,
The maximum energy product (BH) max shows (BH) max ≧ 10 MGOe in the most preferable composition range, and the maximum value reaches 25 MGOe or more.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上をNd及びPrを主とする軽希土類金属が占める場
合で、R12原子%〜20原子%、B4原子%〜24原子
%、Fe74原子%〜80原子%、を主成分とするとき、(BH)
max35MGOe以上のすぐれた磁気特性を示し、特に軽希土
類金属がNdの場合には、その最大値が42MGOe以上に達す
る。
Further, the main component of R of the alloy powder for permanent magnets of the present invention is
When 50% or more is occupied by a light rare earth metal mainly composed of Nd and Pr, and R 12 atom% to 20 atom%, B 4 atom% to 24 atom%, and Fe 74 atom% to 80 atom% are the main components. , (BH)
It has excellent magnetic properties of more than max35MGOe, and its maximum value reaches more than 42MGOe especially when the light rare earth metal is Nd.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNdを使用し、これらを配合後高周
波溶解し、その後水冷銅鋳型に鋳造し、16.0Nd7.0B77Fe
なる組成の鋳塊を得た。
Examples Example 1 As a starting material, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd having a purity of 99.7% or more were used, and these were blended and then high-frequency melted, and then cast in a water-cooled copper mold to obtain 16.0Nd7.0B77Fe.
An ingot having the following composition was obtained.

その後このインゴットを、スタンプミルにより組粉砕
し、次にボールミルにより微粉砕し、平均粒度2.8μm
の微粉末を得た。
After that, this ingot was crushed by a stamp mill and then finely crushed by a ball mill to obtain an average particle size of 2.8 μm.
Of fine powder was obtained.

この微粉末を金型に挿入し、15kOeの磁界中で配向し、
磁界に平行方向に、1.2t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 15 kOe,
It was molded in a direction parallel to the magnetic field at a pressure of 1.2 t / cm 2 .

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条
件で焼結し、長さ25mm×幅40mm×厚み30mm寸法の焼結体
を得た。
The obtained molded body was sintered at 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of length 25 mm × width 40 mm × thickness 30 mm.

さらにAr中での800℃,1時間と630℃,2時間の2段時
効処理を施して永久磁石を作製した。
Furthermore, permanent magnets were manufactured by performing a two-step aging treatment at 800 ° C for 1 hour and 630 ° C for 2 hours in Ar.

上記の永久磁石を、大気中で、ダイヤモンド#200番を
砥石として、回転数2400rpm,送り速度5mm/minで、長さ
1.5mm×幅2.5mm×厚み1.0mm寸法に切出した。
Length of the above-mentioned permanent magnets in the air at a rotational speed of 2400 rpm, feed speed of 5 mm / min, using diamond # 200 as a grindstone.
Cut out to a size of 1.5 mm × width 2.5 mm × thickness 1.0 mm.

また、水分0.05wt%、で油溶性界面活性剤含有の植物性
油50%、鉱物性油50%混合油の中に浸漬して、ダイヤモ
ンド#200番を砥石として、回転数2400rpm,送り速度5m
m/minで、長さ1.5mm×幅2.5mm×厚み1.0mm寸法に切出し
た。
Also, it is immersed in a mixed oil of 50% vegetable oil containing 50% oil-soluble surfactant and 50% mineral oil with a water content of 0.05 wt% and diamond # 200 is used as a grindstone to rotate at 2400 rpm and feed speed at 5 m.
Cut out at a length of 1.5 mm × width of 2.5 mm × thickness of 1.0 mm at m / min.

研削前並びに研削により得られた各永久磁石材料の減磁
曲線を第1図に示し、また、Br,iHc及び(BH)maxの値
を、振動試料型磁力計(VSM)を用いて測定して第1表に
その結果を示す。第1図において、曲線aは研削前の永
久磁石で、曲線bは大気中研削の場合、曲線cは非酸化
性油中で研削した本発明の場合である。
Fig. 1 shows the demagnetization curves of each permanent magnet material obtained before and after grinding, and the values of Br, iHc and (BH) max were measured using a vibrating sample magnetometer (VSM). The results are shown in Table 1. In FIG. 1, a curve a is a permanent magnet before grinding, a curve b is a case of grinding in the atmosphere, and a curve c is a case of the present invention ground in a non-oxidizing oil.

実施例2 出発原料として、純度99.9%の電解鉄、フェロボロン
合金、純度99.7%以上のNdを使用し、これらを配合後高
周波溶解し、その後水冷銅鋳型に鋳造し、16.5Nd6.5B77
Feなる組成の鋳塊を得た。
Example 2 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd having a purity of 99.7% or more were used, and these were blended and then high-frequency melted, and then cast in a water-cooled copper mold to obtain 16.5Nd6.5B77.
An ingot having a composition of Fe was obtained.

その後このインゴットを、スタンプミルにより粗粉砕
し、次にボールミルにより微粉砕し、平均粒度2.8μm
の微粉末を得た。
After that, this ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain an average particle size of 2.8 μm.
Of fine powder was obtained.

この微粉末を金型に挿入し、15kOeの磁界中で配向し、
磁界に平行方向に、1.2t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 15 kOe,
It was molded in a direction parallel to the magnetic field at a pressure of 1.2 t / cm 2 .

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条
件で焼結し、長さ50mm×幅20mm×厚み12.0mm寸法の焼結
体を得た。
The obtained molded body was sintered under the conditions of 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of 50 mm in length × 20 mm in width × 12.0 mm in thickness.

さらにAr中での800℃,1時間と630℃,2時間の2段時
効処理を施して永久磁石を作製した。
Furthermore, permanent magnets were manufactured by performing a two-step aging treatment at 800 ° C for 1 hour and 630 ° C for 2 hours in Ar.

上記の永久磁石を、大気中で、ボラゾン#300番を砥石と
して、回転数2400rpm,送り速度2mm/minで、長さ8mm×
幅10mm×厚み1.5mm寸法に切出した。
The above permanent magnet, in the atmosphere, using borazon # 300 as a grindstone, rotation speed 2400 rpm, feed speed 2 mm / min, length 8 mm ×
Cut out to a width of 10 mm and a thickness of 1.5 mm.

また、純度99.5%のArガス中で、ボラゾン#300番を砥
石として、回転数2400rpm,送り速度2mm/minで、長さ8m
m×幅10mm×厚み1.5mm寸法に切出した。
Also, in Ar gas with a purity of 99.5%, borazon # 300 as a grindstone, rotation speed 2400 rpm, feed speed 2 mm / min, length 8 m
It was cut into a size of m x width 10 mm x thickness 1.5 mm.

研削前並びに研削により得られた各永久磁石材料の減磁
曲線を第2図に示し、また、Br,iHc及び(BH)maxの値
を、振動試料型磁力計(VSM)を用いて測定して第2表に
その結果を示す。第2図において、曲線aは研削前の永
久磁石で、曲線bは大気中研削の場合、曲線cはArガス
中で研削した本発明の場合である。
Fig. 2 shows the demagnetization curves of each permanent magnet material obtained before and after grinding, and the values of Br, iHc and (BH) max were measured using a vibrating sample magnetometer (VSM). The results are shown in Table 2. In FIG. 2, curve a is the permanent magnet before grinding, curve b is the case of grinding in air, and curve c is the case of the present invention ground in Ar gas.

第1図,第1表及び第2図,第2表の結果から明らかな
ように、非酸化性流体中での加工が、磁石の磁気特性劣
化防止にすこぶる有効であることが分る。
As is clear from the results shown in FIGS. 1 and 1 and FIGS. 2 and 2, the processing in the non-oxidizing fluid is extremely effective in preventing the deterioration of the magnetic characteristics of the magnet.

【図面の簡単な説明】[Brief description of drawings]

第1図と第2図は永久磁石材料の減磁曲線を示す図であ
る。曲線aは研削前の永久磁石で、曲線bは大気中研削
の場合、曲線cは非酸化性流体中で研削した本発明の場
合である。
1 and 2 are diagrams showing demagnetization curves of permanent magnet materials. Curve a is the permanent magnet before grinding, curve b is the case of grinding in air, and curve c is the case of the present invention ground in a non-oxidizing fluid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 裕 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 (72)発明者 広沢 哲 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yutaka Matsuura, 2-15, Egawa, Shimamoto-cho, Mishima-gun, Osaka Pref. 15-17 17 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)10原子%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、 主相が正方晶相からなる焼結磁石体を非酸化性流体中に
て切削あるいは研削加工することを特徴とする永久磁石
材料の加工方法。
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y.
Of 10 to 30 at%, B2 to 28 at%, Fe at 65 to 80 at% as the main component, and a sintered magnet body whose main phase is a tetragonal phase. A method for processing a permanent magnet material, which comprises cutting or grinding in an oxidizing fluid.
JP10667785A 1985-05-17 1985-05-17 Permanent magnet material processing method Expired - Lifetime JPH064882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10667785A JPH064882B2 (en) 1985-05-17 1985-05-17 Permanent magnet material processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10667785A JPH064882B2 (en) 1985-05-17 1985-05-17 Permanent magnet material processing method

Publications (2)

Publication Number Publication Date
JPS61264106A JPS61264106A (en) 1986-11-22
JPH064882B2 true JPH064882B2 (en) 1994-01-19

Family

ID=14439699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10667785A Expired - Lifetime JPH064882B2 (en) 1985-05-17 1985-05-17 Permanent magnet material processing method

Country Status (1)

Country Link
JP (1) JPH064882B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW440494B (en) 1999-05-13 2001-06-16 Sumitomo Spec Metals Machining method of rare earth alloy and manufacture of rare earth magnet using it
JP4591748B2 (en) * 2004-03-29 2010-12-01 Tdk株式会社 Manufacturing method and manufacturing apparatus of rare earth sintered magnet
JP5326746B2 (en) * 2009-03-26 2013-10-30 日立金属株式会社 Method for producing surface-modified R-Fe-B sintered magnet
JP5326747B2 (en) * 2009-03-26 2013-10-30 日立金属株式会社 Method for preventing degranulation of R-Fe-B sintered magnet

Also Published As

Publication number Publication date
JPS61264106A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
JP6440880B2 (en) Low-B rare earth magnet
EP0134304B1 (en) Permanent magnets
JPH0663086B2 (en) Permanent magnet material and manufacturing method thereof
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
JPH0319296B2 (en)
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH10125518A (en) Thin sheet magnet with fine crystal structure
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2000082610A (en) High electric resitivity rare earth permanent magnet and its manufacture
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
EP1632299A1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JPH064882B2 (en) Permanent magnet material processing method
JPH0561345B2 (en)
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH068488B2 (en) Permanent magnet alloy
JPH03170643A (en) Alloy for permanent magnet
JPH066777B2 (en) High-performance permanent magnet material
JPH045739B2 (en)
JPH07173501A (en) Permanent magnet alloy powder and production thereof
JPH0560241B2 (en)
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0633444B2 (en) Permanent magnet alloy
JPH11297518A (en) Pare-earth magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term