JP5326747B2 - Method for preventing degranulation of R-Fe-B sintered magnet - Google Patents

Method for preventing degranulation of R-Fe-B sintered magnet Download PDF

Info

Publication number
JP5326747B2
JP5326747B2 JP2009084791A JP2009084791A JP5326747B2 JP 5326747 B2 JP5326747 B2 JP 5326747B2 JP 2009084791 A JP2009084791 A JP 2009084791A JP 2009084791 A JP2009084791 A JP 2009084791A JP 5326747 B2 JP5326747 B2 JP 5326747B2
Authority
JP
Japan
Prior art keywords
magnet
partial pressure
layer
degranulation
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084791A
Other languages
Japanese (ja)
Other versions
JP2010251341A (en
Inventor
真秀 藤原
吉村  公志
篤 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009084791A priority Critical patent/JP5326747B2/en
Publication of JP2010251341A publication Critical patent/JP2010251341A/en
Application granted granted Critical
Publication of JP5326747B2 publication Critical patent/JP5326747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently preventing particle shedding caused by mechanical processing for an R-Fe-B-based sintered magnet. <P>SOLUTION: In the method for preventing the particle shedding of an R-Fe-B-based sintered magnet, grindstone processing is performed for the surface of the magnet followed by performing heat treatment at 200-600&deg;C under an atmosphere of 1&times;10<SP>2</SP>to 1&times;10<SP>5</SP>Pa of oxygen partial pressure and 0.1 to 1,000 Pa (excluding 1,000 Pa) of steam partial pressure to form a modified layer on the surface. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、R−Fe−B系焼結磁石に対する機械的加工によって生じる脱粒の防止方法に関する。   The present invention relates to a method for preventing degranulation caused by mechanical processing on an R—Fe—B based sintered magnet.

Nd−Fe−B系焼結磁石に代表されるR−Fe−B系焼結磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから今日様々な分野で使用されているが、反応性の高い希土類金属:Rを含むため、大気中で酸化腐食されやすいという特質を有する(特許文献1)。この特質に起因して、R−Fe−B系焼結磁石は、その製造工程における最終段階で行われる寸法調整などを目的とした機械的加工を行うことで、磁石に加わった力によって発生する加工劣化層(表面から深さ数μm〜数10μmの微細なクラックや歪みが発生した領域)から水分が磁石内部に浸入し、粒界相(Rリッチ相)を腐食することで脱粒を引き起こし、その結果、磁石の重量減少を招く。この現象は当業者の間ではよく知られた事実であるが、その効果的な防止方法については未だ見出されていないのが現状である。   R-Fe-B-based sintered magnets represented by Nd-Fe-B-based sintered magnets are widely used today because they use resource-rich and inexpensive materials and have high magnetic properties. Although it is used in various fields, since it contains a highly reactive rare earth metal: R, it has the property of being easily oxidized and corroded in the atmosphere (Patent Document 1). Due to this characteristic, the R-Fe-B sintered magnet is generated by the force applied to the magnet by performing mechanical processing for the purpose of dimensional adjustment performed at the final stage in the manufacturing process. Moisture penetrates into the magnet from the work-deteriorated layer (a region where micro cracks and strains of several μm to several tens of μm deep from the surface), and corrodes the grain boundary phase (R-rich phase), thereby causing degranulation. As a result, the weight of the magnet is reduced. Although this phenomenon is well known among those skilled in the art, an effective prevention method has not yet been found.

特許第3519069号公報Japanese Patent No. 3519069

そこで本発明は、R−Fe−B系焼結磁石に対する機械的加工によって生じる脱粒を効果的に防止する方法を提供することを目的とする。   Then, an object of this invention is to provide the method of preventing effectively the graining produced by the mechanical processing with respect to a R-Fe-B type sintered magnet.

本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、磁石表面に対して平面研削加工などに例示される砥石加工を行った後、酸素分圧と水蒸気分圧を適切に制御した酸化性雰囲気下での熱処理を行うことによって磁石表面を改質することで、脱粒を効果的に防止することができることを見出した。   As a result of intensive studies in view of the above points, the present inventor appropriately controlled oxygen partial pressure and water vapor partial pressure after performing grinding wheel processing exemplified by surface grinding on the magnet surface. It has been found that degranulation can be effectively prevented by modifying the magnet surface by performing a heat treatment in an oxidizing atmosphere.

上記の知見に基づいて完成された本発明のR−Fe−B系焼結磁石の脱粒防止方法は、請求項1記載の通り、磁石表面に対して砥石加工を行った後、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、200℃〜600℃で熱処理を行うことで、その表面に、磁石の内側から順に、R、Fe、Bおよび酸素を含み、横方向に伸びる長さが0.5μm〜30μmで厚みが50nm〜400nmのR濃化層を有する主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイトを主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する改質層を形成することを特徴とする(但し前記改質層の表面にポリイミド樹脂被膜を形成したR−Fe−B系焼結磁石を除く)。
また、請求項2記載のR−Fe−B系焼結磁石の脱粒防止方法は、請求項1記載のR−Fe−B系焼結磁石の脱粒防止方法において、番手が♯60〜♯400の粒度を有する砥石を用いて加工を行うことを特徴とする。
また、請求項3記載のR−Fe−B系焼結磁石の脱粒防止方法は、請求項1または2記載のR−Fe−B系焼結磁石の脱粒防止方法において、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)を1〜400とすることを特徴とする。
また、請求項4記載のR−Fe−B系焼結磁石の脱粒防止方法は、請求項1乃至3のいずれかに記載のR−Fe−B系焼結磁石の脱粒防止方法において、常温から熱処理を行う温度までの昇温を、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことを特徴とする。
また、請求項5記載のR−Fe−B系焼結磁石の脱粒防止方法は、請求項1乃至4のいずれかに記載のR−Fe−B系焼結磁石の脱粒防止方法において、改質層中の主層の組成が、改質されていない磁石の組成と比較すると、Feの含量が減少し、酸素の含量が増加していることを特徴とする。
The method for preventing degranulation of the R—Fe—B sintered magnet of the present invention completed on the basis of the above knowledge, as described in claim 1, after the grindstone is processed on the magnet surface, the oxygen partial pressure is By performing heat treatment at 200 ° C. to 600 ° C. in an atmosphere of 1 × 10 2 Pa to 1 × 10 5 Pa and water vapor partial pressure of 0.1 Pa to 1000 Pa (excluding 1000 Pa), the inside of the magnet In order, the main layer having an R-concentrated layer containing R, Fe, B, and oxygen, having a laterally extending length of 0.5 μm to 30 μm and a thickness of 50 nm to 400 nm, at least R, Fe, and oxygen A modified layer having at least three outermost layers containing iron oxide mainly composed of hematite as a constituent component is formed (provided that a polyimide resin film is formed on the surface of the modified layer ) R-Fe-B firing Except for the magnet).
Further, the method for preventing degranulation of the R—Fe—B based sintered magnet according to claim 2 is the method for preventing degranulation of the R—Fe—B based sintered magnet according to claim 1, wherein the count is # 60 to # 400. Processing is performed using a grindstone having a particle size.
Further, the method for preventing degranulation of an R—Fe—B based sintered magnet according to claim 3 is the method for preventing degranulation of an R—Fe—B based sintered magnet according to claim 1 or 2, wherein the oxygen partial pressure and the water vapor content are reduced. The pressure ratio (oxygen partial pressure / water vapor partial pressure) is 1 to 400.
Further, the method for preventing the degranulation of the R—Fe—B based sintered magnet according to claim 4 is the method for preventing the degranulation of the R—Fe—B based sintered magnet according to any one of claims 1 to 3. The temperature rise to the temperature at which the heat treatment is performed is performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa.
Furthermore, the method for preventing degranulation of an R—Fe—B based sintered magnet according to claim 5 is the modification of the method for preventing degranulation of an R—Fe—B based sintered magnet according to any one of claims 1 to 4. Compared with the composition of the unmodified magnet, the composition of the main layer in the layer is characterized in that the Fe content is decreased and the oxygen content is increased.

本発明によれば、R−Fe−B系焼結磁石に対する機械的加工によって生じる脱粒を効果的に防止する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of preventing effectively the granulation which arises by the mechanical processing with respect to a R-Fe-B type sintered magnet can be provided.

本発明のR−Fe−B系焼結磁石の脱粒防止方法の実施に好適な連続処理炉の一例の概略図(側面図)である。It is the schematic (side view) of an example of the continuous processing furnace suitable for implementation of the degreasing prevention method of the R-Fe-B type sintered magnet of this invention. 実施例1における表面改質された磁石体試験片の電界放出型走査電子顕微鏡を用いた断面観察の結果を示す写真である。It is a photograph which shows the result of the cross-sectional observation using the field emission type | mold scanning electron microscope of the surface-modified magnet body test piece in Example 1. FIG. 同、表面改質された磁石体試験片の表面改質された部分(表面改質層)を構成する最表層を、表面からX線回折装置を用いて分析した結果を示すチャートである。It is a chart which shows the result of having analyzed the outermost layer which comprises the surface-modified part (surface modification layer) of the surface-modified magnet body test piece from the surface using the X-ray-diffraction apparatus.

本発明のR−Fe−B系焼結磁石の脱粒防止方法は、磁石表面に対して砥石加工を行った後、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、200℃〜600℃で熱処理を行うことで、その表面に改質層を形成することを特徴とするものである。砥石加工は機械的加工の一種であるゆえ、加工劣化層の発生を惹起するものであるが、本発明者は、砥石加工を行うことによって磁石の表面組成が均一化されることを見出し、この作用を有する砥石加工と好適に制御された酸化熱処理を組み合わせることで、優れた脱粒防止の実現を可能にした。即ち、R−Fe−B系焼結磁石の表面は、主に主相(RFe14B相)と粒界相(Rリッチ相)で構成されており、その組成は均一でないため、そのままの状態では磁石に対して均一な酸化熱処理が行えないが、磁石表面に対して砥石加工を行った後、酸素分圧と、10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下で熱処理を行うことにより、表面組成が均一化された磁石の表面全体に対して優れた耐食性を発揮する改質層を均一に形成することができることで、脱粒を効果的に防止することができる。酸化性雰囲気下で熱処理を行うことによって磁石の表面を改質する方法は既にいくつか知られており、例えば、特開2006−156853号公報、特開2006−210864号公報、特開2007−103523号公報、特開2007−207936号公報には、水蒸気を単独で利用して、或いは、水蒸気に酸素を組み合わせて酸化性雰囲気を形成して熱処理を行う方法が記載されている。しかしながら、これらの特許文献において提案されているような、水蒸気分圧が高い(10hPa(1000Pa)以上)雰囲気下で熱処理を行った場合、磁石の表面で起こる酸化反応によって水素が副産物として大量に生成し、磁石が生成した水素を吸蔵して脆化することで磁気特性が低下してしまう恐れがある。これに対し、酸素分圧と、10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下で熱処理を行えば、優れた耐食性を発揮する表面改質を磁石に対して効果的に行うことができるとともに、過剰な水蒸気の存在によって引き起こされる水素の大量生成に伴う磁石の磁気特性の低下を抑制することができる。 In the method for preventing the degranulation of the R—Fe—B based sintered magnet of the present invention, after grinding the stone surface, the oxygen partial pressure is 1 × 10 2 Pa to 1 × 10 5 Pa and the water vapor partial pressure is By performing heat treatment at 200 ° C. to 600 ° C. in an atmosphere of 0.1 Pa to 1000 Pa (excluding 1000 Pa), a modified layer is formed on the surface. Grinding wheel processing is a kind of mechanical processing, which causes the generation of a work-degraded layer, but the present inventor has found that the surface composition of the magnet is made uniform by performing grinding wheel processing. Combining an effective grinding wheel processing and a suitably controlled oxidation heat treatment has made it possible to achieve excellent anti-granulation prevention. That is, the surface of the R—Fe—B based sintered magnet is mainly composed of a main phase (R 2 Fe 14 B phase) and a grain boundary phase (R rich phase), and its composition is not uniform. In this state, a uniform oxidation heat treatment cannot be performed on the magnet. However, after grinding the magnet surface, the heat treatment is performed in an oxidizing atmosphere in which the oxygen partial pressure and the water vapor partial pressure of less than 10 hPa are appropriately controlled. By performing the step, it is possible to uniformly form a modified layer exhibiting excellent corrosion resistance with respect to the entire surface of the magnet having a uniform surface composition, thereby effectively preventing degranulation. Several methods for modifying the surface of a magnet by performing a heat treatment in an oxidizing atmosphere are already known. For example, JP 2006-156683 A, JP 2006-210864 A, and JP 2007-103523 A. Japanese Patent Application Laid-Open No. 2007-207936 describes a method of performing heat treatment using water vapor alone or by combining oxygen with water vapor to form an oxidizing atmosphere. However, when heat treatment is performed in an atmosphere with a high water vapor partial pressure (10 hPa (1000 Pa) or more) as proposed in these patent documents, a large amount of hydrogen is generated as a by-product due to an oxidation reaction that occurs on the surface of the magnet. However, there is a possibility that the magnetic properties may be deteriorated by occlusion of hydrogen generated by the magnet and embrittlement. On the other hand, if heat treatment is performed in an oxidizing atmosphere in which the oxygen partial pressure and the water vapor partial pressure of less than 10 hPa are appropriately controlled, surface modification that exhibits excellent corrosion resistance can be effectively performed on the magnet. In addition, it is possible to suppress a decrease in the magnetic properties of the magnet due to the mass production of hydrogen caused by the presence of excess water vapor.

本発明において磁石表面に対して行う砥石加工は、砥石を用いて磁石表面を加工する操作を意味し、研削加工や切断加工がその具体例として挙げられる。より具体的には、例えば矩形磁石や板状磁石などの表面加工に適用することができる、平面研削盤や両頭研削盤を用いて行われる平面研削加工や、例えば弓形磁石などのような曲面を有する磁石の表面加工に適用することができる、総形砥石などを用いて行われる成形研削加工の他、砥石切断機を用いて行われる切断加工などが挙げられるが、砥石を用いて磁石表面を加工するものである限り、種々の形状の磁石に対して適用されるどのような砥石加工であってもよい。使用する砥石は番手が♯60〜♯400の粒度を有するものが望ましい。番手が♯60未満であると(粒度が粗すぎると)、磁石表面が必要以上に加工されてしまうことによって磁石の寸法精度に無視できない悪影響を及ぼす恐れがある一方、番手が♯400を超えると(粒度が細かすぎると)、磁石の表面組成の均一化が不十分になる恐れがある。なお、砥石の回転数は600rpm〜2000rpmが望ましい。また、加工装置への磁石の送り込み速度は0.01m/分〜5m/分が望ましく、0.1m/分〜4m/分がより望ましい。砥石加工は、磁石の切断や寸法調整のための研削などを別の方法で行った後に行ってもよいが、磁石の切断や寸法調整のための研削などを砥石加工によって行うことで、これらの操作と磁石の表面組成の均一化を同時に達成することができる。   The grindstone processing performed on the magnet surface in the present invention means an operation of processing the magnet surface using a grindstone, and specific examples thereof include grinding and cutting. More specifically, for example, a surface grinding process using a surface grinding machine or a double-head grinding machine, which can be applied to a surface machining process such as a rectangular magnet or a plate magnet, or a curved surface such as an arcuate magnet is used. This can be applied to the surface processing of magnets having a shape grinding process performed using a general-purpose grinding wheel, etc., as well as a cutting process performed using a grinding wheel cutting machine. Any grindstone processing applied to magnets of various shapes may be used as long as it is to be processed. It is desirable that the grindstone used has a grain size of # 60 to # 400. If the count is less than # 60 (if the particle size is too coarse), the surface of the magnet may be processed more than necessary, which may adversely affect the dimensional accuracy of the magnet. On the other hand, if the count exceeds # 400 (If the particle size is too fine), the surface composition of the magnet may become insufficiently uniform. In addition, as for the rotation speed of a grindstone, 600 rpm-2000 rpm are desirable. Further, the feeding speed of the magnet to the processing apparatus is preferably 0.01 m / min to 5 m / min, and more preferably 0.1 m / min to 4 m / min. Grinding stone processing may be performed after another method such as cutting of the magnet or grinding for dimension adjustment. However, by grinding the grinding of the magnet or dimension adjustment by grinding wheel processing, Operation and uniform surface composition of the magnet can be achieved simultaneously.

磁石表面に対して砥石加工を行った後に行う酸化熱処理は、優れた耐食性を発揮する改質層をより効果的かつ低コストに磁石表面に形成するためには、酸素分圧は5×10Pa〜5×10Paが望ましく、1×10Pa〜4×10Paがより望ましい。水蒸気分圧は250Pa〜900Paが望ましく、400Pa〜700Paがより望ましい。また、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)は1〜400が望ましく、5〜100がより望ましい。処理室内の酸化性雰囲気は、例えば、これらの酸化性ガスを所定の分圧となるように個別に導入することによって形成してもよいし、これらの酸化性ガスが所定の分圧で含まれる露点を有する大気を導入することによって形成してもよい。また、処理室内には、窒素やアルゴンなどの不活性ガスを共存させてもよい。 Oxidation heat treatment performed after grinding the magnet surface is performed with an oxygen partial pressure of 5 × 10 3 in order to form a modified layer exhibiting excellent corrosion resistance on the magnet surface more effectively and at low cost. Pa~5 × 10 4 Pa is preferred, 1 × 10 4 Pa~4 × 10 4 Pa is more preferable. The water vapor partial pressure is preferably 250 Pa to 900 Pa, and more preferably 400 Pa to 700 Pa. The ratio of oxygen partial pressure to water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) is preferably 1 to 400, and more preferably 5 to 100. The oxidizing atmosphere in the processing chamber may be formed, for example, by individually introducing these oxidizing gases so as to have a predetermined partial pressure, or these oxidizing gases are included at a predetermined partial pressure. You may form by introduce | transducing the atmosphere which has a dew point. Further, an inert gas such as nitrogen or argon may coexist in the processing chamber.

熱処理温度を200℃〜600℃と規定するのは、200℃未満の温度で処理を行うと磁石表面に対して所望する改質が行い難くなる恐れがある一方、600℃を超える温度で処理を行うと磁石の磁気特性に悪影響を及ぼす恐れや磁石表面の改質が過剰に行われてしまうことで形成された改質層が脱落したりする恐れがあるからである。熱処理温度は250℃〜550℃が望ましく、300℃〜450℃がより望ましい。なお、処理時間は1分〜3時間が望ましい。   The reason why the heat treatment temperature is defined as 200 ° C. to 600 ° C. is that if the treatment is performed at a temperature lower than 200 ° C., it is difficult to perform a desired modification on the magnet surface. This is because if done, the magnetic properties of the magnet may be adversely affected, and the modified layer formed due to excessive modification of the magnet surface may fall off. The heat treatment temperature is preferably 250 ° C to 550 ° C, more preferably 300 ° C to 450 ° C. The processing time is preferably 1 minute to 3 hours.

常温(例えば10℃〜30℃)から熱処理温度までの昇温は、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことが望ましい。昇温工程を雰囲気制御せずに例えば大気中で行うと、昇温時に大気中に含まれる水分による酸化反応が磁石の表面で起こることで、水素の大量発生に伴う磁石の磁気特性の低下を招く恐れがある。また、大気中に含まれる水分の量は季節によって変動するので、年間を通して安定した品質の表面改質を磁石に対して行えない恐れがある。これに対し、上記の雰囲気は、適度の酸素と水蒸気を含んでいるので、昇温工程自体が磁石の表面改質に好ましい影響を与え、磁石に対する優れた耐食性の付与と磁気特性の低下の抑制に寄与する。常温から熱処理温度までの昇温速度は100℃/時間〜1800℃/時間が望ましく、昇温時間は20分〜2時間が望ましい。磁石を熱処理温度まで昇温させた後は、すぐさま熱処理工程に移ってもよいし、昇温工程の雰囲気中で磁石をしばらく保持してから(例えば1分〜60分)熱処理工程に移ってもよい。 The temperature rise from room temperature (for example, 10 ° C. to 30 ° C.) to the heat treatment temperature is performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa. It is desirable to do. If the temperature raising step is performed in the air without controlling the atmosphere, for example, an oxidation reaction due to moisture contained in the air occurs at the time of temperature rising, and the magnetic characteristics of the magnet are reduced due to the large amount of hydrogen generated. There is a risk of inviting. In addition, since the amount of moisture contained in the atmosphere varies depending on the season, there is a risk that surface modification with stable quality throughout the year cannot be performed on the magnet. On the other hand, since the above atmosphere contains moderate oxygen and water vapor, the temperature raising process itself has a favorable effect on the surface modification of the magnet, and imparts excellent corrosion resistance to the magnet and suppresses deterioration of the magnetic properties. Contribute to. The rate of temperature increase from room temperature to the heat treatment temperature is preferably 100 ° C./hour to 1800 ° C./hour, and the temperature increase time is preferably 20 minutes to 2 hours. After the magnet is heated to the heat treatment temperature, it may be immediately transferred to the heat treatment step, or after the magnet is held for a while (for example, 1 to 60 minutes) in the atmosphere of the temperature increase step, the heat treatment step may be performed. Good.

熱処理を行った後の降温も、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことが望ましい。このような雰囲気中で降温することにより、工程中に磁石の表面が結露して腐食の原因となることを防ぐことができる。 The temperature lowering after the heat treatment is also desirably performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa. By lowering the temperature in such an atmosphere, it is possible to prevent the surface of the magnet from condensing and causing corrosion during the process.

昇温工程、熱処理工程、降温工程は、磁石が収容された処理室内の環境を順次変化させることで行ってもよいし、処理室内をそれぞれの環境に制御した領域に分割し、各領域に磁石を順次移動させることで行ってもよい。   The temperature raising process, the heat treatment process, and the temperature lowering process may be performed by sequentially changing the environment in the processing chamber in which the magnet is accommodated, or the processing chamber is divided into regions controlled by the respective environments, and the magnet is divided into each region. You may carry out by moving sequentially.

図1(a)は、昇温工程、熱処理工程、降温工程を、内部がそれぞれの環境に制御された領域に分割され、各領域に磁石を順次移動させることで行うことができる連続処理炉の一例の概略図(側面図)である。図1(a)に示す連続処理炉においては、ベルトコンベアなどの移動手段によって磁石を図の左から右に移動させながら各処理を施す。矢印は図略の給気手段と排気手段によって形成される各領域における雰囲気ガスの流れである。昇温領域の入口および降温領域の出口は、例えばエアカーテンで区画され、昇温領域と熱処理領域の境界および熱処理領域と降温領域の境界は、例えば矢印の雰囲気ガスの流れにより区画される(これらの区画は機械的にシャッターで行われてもよい)。図1(b)は、図1(a)に示す連続処理炉の内部を移動する磁石の温度変化を示す図である。このような連続処理炉を用いれば、大量の磁石に対して安定した品質の表面改質を連続的に行うことができる。   FIG. 1 (a) shows a continuous processing furnace in which the temperature raising process, the heat treatment process, and the temperature lowering process can be performed by dividing the interior into regions controlled by the respective environments and moving the magnets sequentially to each region. It is a schematic diagram (side view) of an example. In the continuous processing furnace shown in FIG. 1 (a), each processing is performed while moving the magnet from the left to the right in the drawing by moving means such as a belt conveyor. Arrows indicate the flow of the atmospheric gas in each region formed by an unillustrated air supply means and exhaust means. The inlet of the temperature rising region and the outlet of the temperature falling region are partitioned by, for example, an air curtain, and the boundary between the temperature rising region and the heat treatment region and the boundary between the heat treatment region and the temperature lowering region are partitioned by, for example, the flow of the atmospheric gas indicated by the arrows (these This may be done mechanically with a shutter). FIG.1 (b) is a figure which shows the temperature change of the magnet which moves the inside of the continuous processing furnace shown to Fig.1 (a). If such a continuous processing furnace is used, surface modification with stable quality can be continuously performed for a large number of magnets.

以上の工程によってR−Fe−B系焼結磁石の表面に形成される改質層は、磁石の内側から順に、R、Fe、Bおよび酸素を含む主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイト(α−Fe)を主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する。表面改質層中の主層は、その組成を表面改質されていない磁石(素材)の組成と比較すると、Feの含量が減少し、酸素の含量が増加しており、酸素の含量は例えば2.5質量%〜15質量%である。表面改質層中の主層は、横方向に伸びる長さが0.5μm〜30μmで厚みが50nm〜400nmのR濃化層を有する場合がある。このR濃化層は、磁石に存在した加工歪部分にRが析出して形成されたものと推察され、脱粒などによる磁石の強度の低下を補強し、また、部品に埋め込む際の接着剤を介した部品との接着強度の向上に寄与すると考えられる。表面改質層中の最表層は、その構成成分として含まれる酸化鉄の90質量%以上がヘマタイトであることが望ましい。より望ましくは95質量%以上であり、さらに望ましくは98質量%以上である。酸化鉄がヘマタイトを高比率で含有し、マグネタイト(Fe)をできる限り含まないことが、磁石の表面改質を行うことによる優れた耐食性の付与に寄与する。酸素分圧と、10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下で熱処理を行うことで、表面改質層中の最表層を、ヘマタイトを高比率で含有する酸化鉄から構成されるようにすることができる。また、砥石加工を行うことで磁石表面の組成を均一化してから酸化熱処理を行うことにより、最表層をヘマタイトによる表面被覆率が高い均一なものとすることができる。ヘマタイトによる表面被覆率は90%以上が望ましく95%以上がより望ましい。これとは対照的に、特許文献3〜特許文献6に記載されているような水蒸気分圧が高い雰囲気下で熱処理を行うと、表面改質層中の最表層を構成する酸化鉄はマグネタイトを高比率で含有するようになる。なお、最表層に構成成分として含まれる酸化鉄中のヘマタイトの比率は例えばラマン分析法で磁石表面から分析することにより求めることができる。表面改質層中の主層と最表層の間に位置する非晶質層は、磁石に含まれるRやFeが酸化反応によって酸化物に変換される際、安定な結晶形成がなされなかった部分であると考えられる。 The modified layer formed on the surface of the R—Fe—B based sintered magnet by the above steps includes, in order from the inside of the magnet, a main layer containing R, Fe, B and oxygen, and at least R, Fe and oxygen. It has at least three layers of an outermost layer containing an amorphous layer and iron oxide mainly composed of hematite (α-Fe 2 O 3 ) as a constituent component. When the composition of the main layer in the surface-modified layer is compared with the composition of the magnet (material) that is not surface-modified, the Fe content is decreased and the oxygen content is increased. It is 2.5 mass%-15 mass%. The main layer in the surface modified layer may have an R-concentrated layer having a length extending in the lateral direction of 0.5 μm to 30 μm and a thickness of 50 nm to 400 nm. This R-concentrated layer is presumed to be formed by precipitation of R in the work strain part existing in the magnet, reinforcing the decrease in the strength of the magnet due to degranulation, etc. It is thought that it contributes to the improvement of the adhesive strength with the interposed parts. As for the outermost layer in the surface modified layer, it is desirable that 90% by mass or more of iron oxide contained as a constituent component is hematite. More preferably, it is 95 mass% or more, More preferably, it is 98 mass% or more. The fact that iron oxide contains hematite in a high ratio and does not contain magnetite (Fe 3 O 4 ) as much as possible contributes to imparting excellent corrosion resistance by performing surface modification of the magnet. By performing heat treatment in an oxidizing atmosphere in which the oxygen partial pressure and the water vapor partial pressure of less than 10 hPa are appropriately controlled, the outermost layer in the surface modified layer is composed of iron oxide containing hematite in a high ratio. Can be. Further, the surface of the outermost layer can be made uniform with a high surface coverage by hematite by performing the oxidation heat treatment after homogenizing the composition of the magnet surface by grinding. The surface coverage by hematite is desirably 90% or more, and more desirably 95% or more. In contrast, when heat treatment is performed in an atmosphere having a high water vapor partial pressure as described in Patent Documents 3 to 6, iron oxide constituting the outermost layer in the surface modified layer is magnetite. Contains at a high ratio. The ratio of hematite in iron oxide contained as a constituent component in the outermost layer can be obtained by analyzing from the magnet surface by, for example, Raman analysis. The amorphous layer located between the main layer and the outermost layer in the surface modified layer is a portion where stable crystals were not formed when R or Fe contained in the magnet was converted into an oxide by an oxidation reaction. It is thought that.

なお、R−Fe−B系焼結磁石の表面に形成される表面改質層の厚みは0.5μm〜10μmが望ましい。厚みが薄すぎると十分な耐食性を発揮しない恐れがある一方、厚みが厚すぎると磁石の磁気特性に悪影響を及ぼす恐れがある。表面改質層中の主層の厚みは0.4μm〜9.9μmが望ましく、1μm〜7μmがより望ましい。非晶質層の厚みは100nm以下であることが望ましく、70nm以下がより望ましい(下限値は例えば10nmが望ましい)。最表層の厚みは10nm〜300nmであることが望ましく、50nm〜200nmがより望ましい。   The thickness of the surface modification layer formed on the surface of the R—Fe—B based sintered magnet is preferably 0.5 μm to 10 μm. If the thickness is too thin, sufficient corrosion resistance may not be exhibited. On the other hand, if the thickness is too thick, the magnetic properties of the magnet may be adversely affected. The thickness of the main layer in the surface modification layer is preferably 0.4 μm to 9.9 μm, and more preferably 1 μm to 7 μm. The thickness of the amorphous layer is preferably 100 nm or less, more preferably 70 nm or less (the lower limit is preferably 10 nm, for example). The thickness of the outermost layer is desirably 10 nm to 300 nm, and more desirably 50 nm to 200 nm.

また、以上の酸化熱処理の前および/または後に、さらに、酸素分圧が1×10−2Pa〜50Paで水蒸気分圧が1×10−7Pa〜1×10−2Paの雰囲気下、200℃〜600℃で熱処理を行ってもよい。かかる熱処理を付加することにより、R−Fe−B系焼結磁石の表面改質をより確実なものとすることができる。処理時間は1分〜3時間が望ましい。 Also, more than prior to oxidation heat treatment and / or after further under an atmosphere of an oxygen partial pressure of 1 × water vapor partial pressure of 1 × 10 -7 at 10 -2 Pa~50Pa Pa~1 × 10 -2 Pa , 200 Heat treatment may be performed at a temperature of from 600C to 600C. By adding such heat treatment, the surface modification of the R—Fe—B based sintered magnet can be made more reliable. The treatment time is preferably 1 minute to 3 hours.

本発明が適用されるR−Fe−B系焼結磁石としては、例えば、下記の製造方法によって製造したものが挙げられる。
25質量%以上40質量%以下の希土類元素Rと、0.6質量%〜1.6質量%のB(硼素)と、残部Feおよび不可避不純物とを包含する合金を用意する。ここで、Rの一部は重希土類元素RHで置換されてもよい。また、Bの一部はC(炭素)によって置換されていてもよいし、Feの一部は(50質量%以下)は、他の遷移金属元素(例えば、CoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素Mを0.01〜1.0質量%程度含有していてもよい。
上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。
まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶解し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕処理前に例えば1〜10mmのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。
[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」や単に「水素処理」と称する場合がある)工程を行う。水素粉砕処理後の粗粉砕粉合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性の低下が抑制できるからである。
水素粉砕処理によって、希土類合金は、その平均粒径が500μm以下の大きさにまで粉砕される。水素粉砕処理後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすればよい。
[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度(典型的には平均粒径3〜5μm)の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で合金粉末粒子の表面を被覆する。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.5〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm程度になるように設定される。
[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば、1000〜1200℃)で焼結を更に進める工程とを順次行うことが好ましい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石体が形成される。焼結工程の後、時効処理(400℃〜700℃)や寸法調整のための研削を行ってもよい。
Examples of the R—Fe—B based sintered magnet to which the present invention is applied include those manufactured by the following manufacturing method.
An alloy containing 25% by mass or more and 40% by mass or less of rare earth element R, 0.6% by mass to 1.6% by mass of B (boron), the balance Fe and inevitable impurities is prepared. Here, a part of R may be substituted with a heavy rare earth element RH. Further, a part of B may be substituted by C (carbon), and a part of Fe (50% by mass or less) is substituted by another transition metal element (for example, Co or Ni). Also good. This alloy is suitable for a variety of purposes, including Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.01 to 1.0% by mass of at least one additive element M selected from the group consisting of Bi may be contained.
The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy by a strip casting method will be described.
First, a raw material alloy having the above composition is melted by high-frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after holding this molten metal at about 1350 ° C., it is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy ingot having a thickness of about 0.3 mm. The alloy slab thus produced is pulverized into, for example, 1 to 10 mm flakes before the next hydrogen pulverization treatment. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement treatment process (hereinafter sometimes referred to as “hydrogen pulverization treatment” or simply “hydrogen treatment”) is performed inside the hydrogen furnace. When the coarsely pulverized powder alloy powder after the hydrogen pulverization treatment is taken out from the hydrogen furnace, the takeout operation is preferably performed in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. By doing so, it is possible to prevent the coarsely pulverized powder from oxidizing and generating heat, and to suppress the deterioration of the magnetic properties of the magnet.
By the hydrogen pulverization treatment, the rare earth alloy is pulverized to an average particle size of 500 μm or less. After the hydrogen pulverization treatment, the embrittled raw material alloy is preferably crushed more finely and cooled. When the raw material is taken out in a relatively high temperature state, the cooling process time may be relatively long.
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. In this way, a fine powder of about 0.1 to 20 μm (typically an average particle size of 3 to 5 μm) can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.
[Press molding]
In this embodiment, for example, 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant. Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a known press machine. The intensity of the applied magnetic field is, for example, 1.5 to 1.7 Tesla (T). The molding pressure is set so that the green density of the molded body is, for example, about 4 to 4.5 g / cm 3 .
[Sintering process]
With respect to said powder molded body, the step of holding at a temperature in the range of 650 to 1000 ° C. for 10 to 240 minutes, and then sintering at a temperature higher than the above holding temperature (for example, 1000 to 1200 ° C.). It is preferable to sequentially perform the further steps. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Then, sintering progresses and a sintered magnet body is formed. After the sintering step, aging treatment (400 ° C. to 700 ° C.) and grinding for dimension adjustment may be performed.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted.

(実施例1)
Nd:16.4、Pr:4.7、Dy:9.4、B:1.00、Co:2.0、Al:0.15、Ga:0.07、Cu:0.1、残部:Fe(単位は質量%)の組成を有する厚さ0.2〜0.3mmの合金薄片をストリップキャスト法により作製した。
次に、この合金薄片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.04wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、平均粉末粒径が約3μmの微粉末を作製し、酸化防止のために鉱物油中に回収した。
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により200℃で2時間の脱脂工程と1050℃で4時間の焼結工程を行い、焼結体ブロックを得た。
得られた焼結体ブロックの表面に対し、真空中にて480℃で8時間の時効処理を行った後、平面研削盤(大昌精機社製)を用いて平面研削加工を行い(砥石の番手:♯100、砥石の回転数:1500rpm、研削盤への磁石の送り込み速度:0.6m/分)、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。
次に、この磁石体試験片をアルコール洗浄した後、露点0℃の大気(酸素分圧20000Pa,水蒸気分圧600Pa,酸素分圧/水蒸気分圧=33.3)の雰囲気下、410℃で2時間の熱処理を行うことで、表面改質された磁石体試験片を得た。なお、磁石体試験片の室温から熱処理温度までの昇温は、露点−40℃の大気(酸素分圧20000Pa,水蒸気分圧12.9Pa)の雰囲気下、約900℃/時間の昇温速度で行った(昇温時間は25分)。また、熱処理後の降温も、同様の雰囲気下で行った。この磁石体試験片を樹脂埋め研磨後、イオンビーム断面加工装置(SM09010:日本電子社製)を用いて試料作製し、電界放出形走査電子顕微鏡(S−4300:日立ハイテクノロジーズ社製)を用いて断面観察を行った結果を図2に示す。図2から明らかなように、この観察ポイントでは、磁石体試験片の表面に形成された改質層の厚みは約5.2μmであること、この改質層は複数の層からなり、少なくとも主層と、厚みが約120nmの最表層が存在することがわかった。さらに、改質層中には、厚みが約100nmで長さが約5μmのRからなる層状構造(Rの組成が85質量%以上のR濃化層)が水平方向(磁石体の表面と略平行方向)に形成されていることが確認できた。改質層中の主層の組成と素材(磁石体試験片)の組成をエネルギー分散型X線分析装置(Genesis2000:EDAX社製)を用いて分析した結果を表1に示す。表1から明らかなように、改質層中の主層は素材に比較してFeの含量が少ない反面、酸素の含量が非常に多いことがわかった。さらに、表面改質された磁石体試験片の表面付近の断面観察を、透過型電子顕微鏡(HF2100:日立ハイテクノロジー社製)を用いて行った結果、選択した観察ポイントでは、主層と厚みが約150nmの最表層の間には、厚みが約60nmの層が存在することがわかった。また、この層は非晶質であることがわかった(電子線回折分析による)。改質層中の非晶質層と最表層の組成を、エネルギー分散型X線分析装置(EDX:NORAN社製)を用いて分析した結果、改質層中の最表層はRがほとんど存在しない酸化鉄から構成されること、非晶質層はRとFeの複合酸化物から構成されることがわかった。また、表面改質された磁石体試験片の改質層中の最表層を、表面からX線回折装置(RINT2400:Rigaku社製)を用いて分析した結果を図3に示す。図3から明らかなように、改質層中の最表層はヘマタイトを主体とする層であることがわかった(図中の◆:ヘマタイトのピーク)。このヘマタイトを主体とする最表層は、熱処理によって素材の主相(RFe14B)の一部が分解されたことでFeが主相から流出するとともに酸化して形成されたものであると推測された。さらに、表面改質された磁石体試験片の改質層中の最表層を、表面からラマン分光分析装置(Holo Lab 5000R:KAISER OPTICAL SYSTEM社製)を用いて分析した結果、最表層に構成成分として含まれる酸化鉄のすべて(100質量%)がヘマタイトであること、ヘマタイトによる表面被覆率は96.1%であることがわかった。また、この表面改質された磁石体試験片に対し、プレッシャークッカーテスト(125℃、85%RH、0.2MPa、以下同じ)を200時間行い、脱粒による磁石の重量減少量(試験前との比較による)を測定したところ、0.07g/mであった。以上の結果から、上記の方法によれば、脱粒を効果的に防止することができることがわかった。
Example 1
Nd: 16.4, Pr: 4.7, Dy: 9.4, B: 1.00, Co: 2.0, Al: 0.15, Ga: 0.07, Cu: 0.1, balance: An alloy flake having a composition of Fe (unit: mass%) and having a thickness of 0.2 to 0.3 mm was produced by strip casting.
Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with hydrogen gas at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.
After adding 0.04 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the above hydrogen treatment and mixing, an average powder particle size of about 3 μm is obtained by performing a pulverization step with a jet mill device. A fine powder was made and recovered in mineral oil to prevent oxidation.
The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus, and a degreasing process at 200 ° C. for 2 hours and a sintering process at 1050 ° C. for 4 hours were performed in a vacuum furnace to obtain a sintered body block.
The surface of the obtained sintered body block was subjected to an aging treatment at 480 ° C. for 8 hours in a vacuum, and then surface grinding using a surface grinder (manufactured by Daisho Seiki Co., Ltd.) : # 100, rotational speed of the grindstone: 1500 rpm, magnet feeding speed to grinding machine: 0.6 m / min), sintered magnet whose thickness is adjusted to 6 mm × length 7 mm × width 7 mm (hereinafter referred to as “magnet test”) Referred to as "piece").
Next, this magnet body test piece was washed with alcohol, and then at 2 ° C. at 410 ° C. in an atmosphere of dew point 0 ° C. in the atmosphere (oxygen partial pressure 20000 Pa, water vapor partial pressure 600 Pa, oxygen partial pressure / water vapor partial pressure = 33.3). By performing heat treatment for a time, a surface-modified magnet body test piece was obtained. The temperature of the magnet specimen from room temperature to the heat treatment temperature is about 900 ° C./hour in an atmosphere with a dew point of −40 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 12.9 Pa). (The temperature rising time was 25 minutes). Further, the temperature drop after the heat treatment was performed in the same atmosphere. After this magnet body test piece was resin-filled and polished, a sample was prepared using an ion beam cross-section processing apparatus (SM09010: manufactured by JEOL Ltd.), and a field emission scanning electron microscope (S-4300: manufactured by Hitachi High-Technologies Corporation) was used. The results of cross-sectional observation are shown in FIG. As is clear from FIG. 2, at this observation point, the thickness of the modified layer formed on the surface of the magnet test piece is about 5.2 μm, and this modified layer is composed of a plurality of layers, at least the main layer. It was found that there was a layer and an outermost layer having a thickness of about 120 nm. Further, in the modified layer, a layered structure composed of R having a thickness of about 100 nm and a length of about 5 μm (an R-concentrated layer having an R composition of 85% by mass or more) extends in the horizontal direction (approximately the same as the surface of the magnet body). It was confirmed that the film was formed in a parallel direction. Table 1 shows the results of analyzing the composition of the main layer in the modified layer and the composition of the material (magnet body test piece) using an energy dispersive X-ray analyzer (Genesis 2000: manufactured by EDAX). As is clear from Table 1, it was found that the main layer in the modified layer had a very high oxygen content while the Fe content was lower than that of the raw material. Furthermore, as a result of performing cross-sectional observation near the surface of the surface-modified magnetic body test piece using a transmission electron microscope (HF2100: manufactured by Hitachi High-Technology Corporation), the main layer and thickness are selected at the selected observation point. It was found that there was a layer having a thickness of about 60 nm between the outermost layers of about 150 nm. This layer was found to be amorphous (by electron diffraction analysis). As a result of analyzing the composition of the amorphous layer and the outermost layer in the modified layer using an energy dispersive X-ray analyzer (EDX: manufactured by NORAN), there is almost no R in the outermost layer in the modified layer. It was found that it was composed of iron oxide, and the amorphous layer was composed of a composite oxide of R and Fe. Moreover, the result of having analyzed the outermost layer in the modified layer of the surface-modified magnetic body test piece from the surface using an X-ray diffractometer (RINT2400: manufactured by Rigaku) is shown in FIG. As is apparent from FIG. 3, it was found that the outermost layer in the modified layer was a layer mainly composed of hematite (♦ in the figure: peak of hematite). The outermost layer mainly composed of hematite is formed by oxidizing part of the main phase (R 2 Fe 14 B) of the raw material by heat treatment, so that Fe flows out of the main phase and is oxidized. Was guessed. Furthermore, as a result of analyzing the outermost layer in the modified layer of the surface-modified magnetic body test piece from the surface using a Raman spectroscopic analyzer (manufactured by Holo Lab 5000R: KAISER OPTICAL SYSTEM), a constituent component is formed on the outermost layer. It was found that all of the iron oxide contained as (100% by mass) is hematite and the surface coverage by hematite is 96.1%. In addition, a pressure cooker test (125 ° C., 85% RH, 0.2 MPa, the same applies hereinafter) is performed on the surface-modified magnet body test piece for 200 hours, and the weight reduction amount of the magnet due to degranulation (from before the test) (By comparison) was 0.07 g / m 2 . From the above results, it was found that according to the above method, degranulation can be effectively prevented.

(実施例2)
実施例1と同じ方法で得た焼結体ブロックに対し、実施例1と同じ条件で時効処理を行った後、実施例1と同じ条件で平面研削加工を行い、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。この磁石体試験片をアルコール洗浄した後、熱処理時間を30分とすること以外は実施例1と同じ条件で熱処理を行うことで、表面改質された磁石体試験片を得た。この磁石体試験片について実施例1と同様の評価を行ったところ、磁石体試験片の表面に形成された改質層は、厚みが約1.9μmであり、その構成は実施例1で得た表面改質された磁石体試験片における改質層と同様であることがわかった(最表層の厚み:約60nm)。この表面改質された磁石体試験片に対し、プレッシャークッカーテストを200時間行い、脱粒による磁石の重量減少量(試験前との比較による)を測定したところ、0.21g/mであった。以上の結果から、上記の方法によれば、脱粒を効果的に防止することができることがわかった。
(Example 2)
The sintered body block obtained by the same method as in Example 1 was subjected to an aging treatment under the same conditions as in Example 1, and then surface grinding was performed under the same conditions as in Example 1 to obtain a thickness of 6 mm × length of 7 mm × A sintered magnet whose dimensions were adjusted to 7 mm in width (hereinafter referred to as “magnet body test piece”) was obtained. After the magnet body test piece was washed with alcohol, heat treatment was performed under the same conditions as in Example 1 except that the heat treatment time was 30 minutes, thereby obtaining a surface-modified magnet body test piece. When this magnet body test piece was evaluated in the same manner as in Example 1, the modified layer formed on the surface of the magnet body test piece had a thickness of about 1.9 μm, and the configuration was obtained in Example 1. It was found that this was the same as the modified layer in the surface-modified magnetic body test piece (the thickness of the outermost layer: about 60 nm). A pressure cooker test was performed on the surface-modified magnet body test piece for 200 hours, and the weight loss of the magnet due to degranulation (by comparison with before the test) was measured to be 0.21 g / m 2 . . From the above results, it was found that according to the above method, degranulation can be effectively prevented.

(実施例3)
実施例1と同じ方法で得た焼結体ブロックに対し、実施例1と同じ条件で平面研削加工を行い、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。この磁石体試験片をアルコール洗浄した後、実施例1と同じ条件で時効処理を行った。次に、時効処理を行った磁石体試験片に対し、熱処理時間を30分とすること以外は実施例1と同じ条件で熱処理を行うことで、表面改質された磁石体試験片を得た。この磁石体試験片について実施例1と同様の評価を行ったところ、磁石体試験片の表面に形成された改質層は、厚みが約2.2μmであり、その構成は実施例1で得た表面改質された磁石体試験片における改質層と同様であることがわかった(最表層の厚み:約75nm)。この表面改質された磁石体試験片に対し、プレッシャークッカーテストを200時間行い、脱粒による磁石の重量減少量(試験前との比較による)を測定したところ、0.09g/mであった。以上の結果から、上記の方法によれば、脱粒を効果的に防止することができることがわかった。
(Example 3)
The sintered body block obtained by the same method as in Example 1 was subjected to surface grinding under the same conditions as in Example 1, and the size was adjusted to 6 mm in thickness, 7 mm in length, and 7 mm in width. This was referred to as “body specimen”. After this magnet body test piece was washed with alcohol, an aging treatment was performed under the same conditions as in Example 1. Next, the magnet body test piece subjected to aging treatment was subjected to heat treatment under the same conditions as in Example 1 except that the heat treatment time was set to 30 minutes, thereby obtaining a surface-modified magnet body test piece. . When this magnet body test piece was evaluated in the same manner as in Example 1, the modified layer formed on the surface of the magnet body test piece had a thickness of about 2.2 μm, and the configuration was obtained in Example 1. It was found that this was the same as the modified layer in the surface-modified magnetic body specimen (thickness of the outermost layer: about 75 nm). A pressure cooker test was performed on the surface-modified magnet body test piece for 200 hours, and the weight loss of the magnet due to degranulation (by comparison with before the test) was measured to be 0.09 g / m 2 . . From the above results, it was found that according to the above method, degranulation can be effectively prevented.

(比較例1)
実施例2と同じ方法で得た磁石体試験片に対し、プレッシャークッカーテストを200時間行い、脱粒による磁石の重量減少量(試験前との比較による)を測定したところ、1.55g/mであり、脱粒の発生が認められた。
(Comparative Example 1)
A pressure cooker test was performed for 200 hours on the magnet test piece obtained in the same manner as in Example 2, and the weight loss of the magnet due to degranulation (by comparison with that before the test) was measured to find 1.55 g / m 2. The occurrence of degranulation was observed.

(比較例2)
実施例3と同じ方法で得た時効処理を行った磁石体試験片に対し、プレッシャークッカーテストを200時間行い、脱粒による磁石の重量減少量(試験前との比較による)を測定したところ、0.6g/mであり、比較例1と比べて程度は弱いものの脱粒の発生が認められた。
(Comparative Example 2)
A pressure cooker test was performed for 200 hours on the magnet body test piece obtained by the same method as in Example 3, and the weight loss of the magnet due to degranulation (by comparison with before the test) was measured. It was 0.6 g / m 2 , and although the degree was weaker than that of Comparative Example 1, occurrence of degranulation was observed.

(まとめ)
実施例1〜実施例3、比較例1、比較例2のそれぞれにおいて行ったプレッシャークッカーテストの結果をまとめて表2に示す。比較例1から明らかなように、機械的加工を砥石加工である平面研削加工で行った場合でも、脱粒の発生が認められた。また、比較例2から明らかなように、砥石加工を行ってから時効処理を行うことで、脱粒は軽減された。これは、時効処理によって液相化した粒界成分が、磁石内部から微細なクラックに沿って加工劣化層に供給され、加工劣化層が修復されたことによるものと考察された。
一方、実施例1〜実施例3から明らかなように、磁石表面に対して砥石加工を行った後、酸素分圧と水蒸気分圧を適切に制御した酸化性雰囲気下での熱処理を行うことによって磁石表面を改質することで、脱粒を効果的に防止できた。これは、酸化熱処理を行う前に磁石表面に対して砥石加工を行ったことで、磁石の表面組成が均一化され、これにより磁石の表面全体に均一な酸化熱処理を行うことが可能となり、優れた耐食性を発揮する、少なくとも酸素の含量が素材よりも多い主層と、RとFeの複合酸化物から構成される非晶質層と、安定なヘマタイトを主体とする酸化鉄を構成成分とする最表層を有する構成からなる改質層が、磁石の表面全体にわたって形成され、磁石内部への水分の浸入を効果的に阻止していることが寄与していると考えられた。砥石加工によって磁石の表面組成が均一化されるのは、砥石加工で発生する研削粉(主成分は主相を構成するFeである)が磁石表面に再付着するとともに表面で延伸され、この磁石表面における研削粉の再付着と延伸が繰り返し行われることや、砥石加工によって磁石表面の凹凸が延伸されることによるものであると考察された。また、実施例1において改質層中に確認されたRからなる層状構造は、熱処理によって素材の主相の一部が分解されたことで主相から流出したRや、熱処理によって液相化した粒界成分が、素材と改質層の熱膨張率の違いにより改質層中に僅かに発生したクラック部分に供給されて形成されたものであると推測され、このRからなる層状構造も、加工劣化層の修復に寄与していることが考えられた。また、実施例2と実施例3においては、実施例1において改質層中に確認されたRからなる層状構造は今回の観察条件では確認することができなかったが、実施例2では比較例2における時効処理による脱粒防止効果よりも優れた効果が得られ、実施例3では実施例2で得られた効果よりもより優れた効果が得られたことから、本発明によって得られる砥石加工と酸化熱処理の組み合わせによる脱粒防止効果は、時効処理による脱粒防止効果よりも優れていることがわかった。
これらの結果は、砥石加工による表面組成の均一化作用と、酸素分圧と、10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下での熱処理による表面改質層の形成作用が相乗的に発揮され、磁石表面に形成された改質層が磁石内部への水分の浸入を効果的に阻止するとともに、加工劣化層に存在する微細なクラックや、層中に内在する加工歪みに対し、主相から流出したRや液相化した粒界成分がこれらを効果的に補修することなどによって得られるものであると考えられる。時効処理によっても液相化した粒界成分が加工劣化層に供給されてその修復がなされるが、この作用はクラックに対しては有効であるものの、層中に内在する加工歪みに対しては必ずしもそうではないと思われる。そのため、加工劣化層に内在する加工歪みは、磁石を他の部材と接着したり、磁石が苛酷環境に晒されたりすることで顕在化されて脱粒の原因となる。本発明では、砥石加工を行うことによって組成が均一化された磁石表面に改質層を形成することで、素材と表面改質層の僅かな熱膨張係数の差異を利用して磁石表面にさらに歪みを与えることにより、加工劣化層に内在する加工歪みを積極的に顕在化させ、顕在化した加工歪みを熱処理によって主相から流出したRや液相化した粒界成分で補修する。実施例1において改質層中に確認されたRからなる層状構造は、こうして補修された加工歪みの痕跡であると推察される。
(Summary)
Table 2 summarizes the results of the pressure cooker test performed in each of Examples 1 to 3, Comparative Example 1, and Comparative Example 2. As is clear from Comparative Example 1, even when the mechanical processing was performed by surface grinding, which is grinding wheel processing, occurrence of degranulation was observed. Further, as apparent from Comparative Example 2, degranulation was reduced by performing the aging treatment after the grinding wheel was processed. It was considered that this was due to the fact that the grain boundary components that had become a liquid phase by aging treatment were supplied from the inside of the magnet along the fine cracks to the work-degraded layer, and the work-degraded layer was repaired.
On the other hand, as is apparent from Examples 1 to 3, by performing a grindstone process on the magnet surface, by performing a heat treatment in an oxidizing atmosphere in which the oxygen partial pressure and water vapor partial pressure are appropriately controlled. By modifying the magnet surface, degranulation could be effectively prevented. This is because the surface composition of the magnet is made uniform by performing the grinding wheel processing on the magnet surface before performing the oxidation heat treatment, which makes it possible to perform a uniform oxidation heat treatment on the entire surface of the magnet. The main component is a main layer having at least oxygen content higher than that of the material, an amorphous layer composed of a composite oxide of R and Fe, and iron oxide mainly composed of stable hematite. It was considered that the modified layer having the structure having the outermost layer was formed over the entire surface of the magnet and effectively prevented moisture from entering into the magnet. The surface composition of the magnet is made uniform by the grinding wheel processing because the grinding powder generated by the grinding wheel processing (main component is Fe constituting the main phase) is reattached to the magnet surface and stretched on the surface. It was considered that the re-adhesion and stretching of the grinding powder on the surface were repeated, and that the irregularities on the magnet surface were stretched by grinding wheel processing. In addition, the layered structure composed of R confirmed in the modified layer in Example 1 was converted into a liquid phase by R flowing out of the main phase because a part of the main phase of the material was decomposed by the heat treatment or by heat treatment. It is speculated that the grain boundary component is formed by being supplied to a crack portion slightly generated in the modified layer due to the difference in thermal expansion coefficient between the raw material and the modified layer. It was thought that it contributed to the repair of the processing deteriorated layer. Further, in Example 2 and Example 3, the layered structure composed of R confirmed in the modified layer in Example 1 could not be confirmed under the present observation conditions, but Example 2 was a comparative example. Since the effect superior to the degranulation preventing effect due to the aging treatment in No. 2 was obtained, and in Example 3, an effect superior to the effect obtained in Example 2 was obtained, the grinding wheel processing obtained by the present invention and It was found that the anti-granulation effect by the combination of oxidative heat treatment is superior to the anti-granulation effect by the aging treatment.
These results are synergistic between the homogenization of the surface composition by grinding wheel processing and the formation of the surface modification layer by heat treatment in an oxidizing atmosphere in which the oxygen partial pressure and the water vapor partial pressure of less than 10 hPa are appropriately controlled. The modified layer formed on the surface of the magnet effectively prevents moisture from entering the inside of the magnet, and against fine cracks existing in the work-degraded layer and work distortions inherent in the layer. It is considered that R flowing out from the main phase and liquid phase grain boundary components are obtained by effectively repairing these. The grain boundary component that has become a liquid phase by the aging treatment is supplied to the work-deteriorated layer and repaired, but this action is effective against cracks, but it is effective against work strains inherent in the layer. It seems not necessarily so. For this reason, the processing strain inherent in the processing deteriorated layer is manifested by bonding the magnet to another member or exposing the magnet to a harsh environment, thereby causing grain loss. In the present invention, a modified layer is formed on the surface of the magnet whose composition has been made uniform by grinding, thereby further utilizing the difference in coefficient of thermal expansion between the material and the surface modified layer to further increase the magnet surface. By imparting strain, the processing strain inherent in the work-deteriorated layer is positively manifested, and the manifested processing strain is repaired by R flowing out of the main phase by heat treatment or a liquid phase grain boundary component. It is inferred that the layered structure composed of R confirmed in the modified layer in Example 1 is a trace of the working strain thus repaired.

本発明は、R−Fe−B系焼結磁石に対する機械的加工によって生じる脱粒を効果的に防止する方法を提供することができる点において産業上の利用可能性を有する。


INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for effectively preventing degranulation caused by mechanical processing on an R—Fe—B based sintered magnet.


Claims (5)

磁石表面に対して砥石加工を行った後、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、200℃〜600℃で熱処理を行うことで、その表面に、磁石の内側から順に、R、Fe、Bおよび酸素を含み、横方向に伸びる長さが0.5μm〜30μmで厚みが50nm〜400nmのR濃化層を有する主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイトを主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する改質層を形成することを特徴とするR−Fe−B系焼結磁石(但し前記改質層の表面にポリイミド樹脂被膜を形成したR−Fe−B系焼結磁石を除く)の脱粒防止方法。 After grindstone processing on the magnet surface, in an atmosphere with an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 0.1 Pa to 1000 Pa (excluding 1000 Pa), 200 ° C. to By performing heat treatment at 600 ° C., the surface contains R, Fe, B and oxygen in order from the inside of the magnet, the length extending in the lateral direction is 0.5 μm to 30 μm, and the thickness is 50 nm to 400 nm. Forming a modified layer having at least three layers of a main layer having a chemical layer, an amorphous layer containing at least R, Fe and oxygen, and an outermost layer containing iron oxide mainly composed of hematite as a constituent component R-Fe-B sintered magnets (excluding R-Fe-B sintered magnet to form a polyimide resin film on the surface of the modified layer) shedding prevention how the to. 番手が♯60〜♯400の粒度を有する砥石を用いて加工を行うことを特徴とする請求項1記載のR−Fe−B系焼結磁石の脱粒防止方法。   2. The method for preventing the degranulation of an R—Fe—B based sintered magnet according to claim 1, wherein the grinding is performed using a grindstone having a grain size of # 60 to # 400. 酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)を1〜400とすることを特徴とする請求項1または2記載のR−Fe−B系焼結磁石の脱粒防止方法。   The ratio of oxygen partial pressure and water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) is set to 1 to 400, and the method for preventing degranulation of an R-Fe-B sintered magnet according to claim 1 or 2. 常温から熱処理を行う温度までの昇温を、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことを特徴とする請求項1乃至3のいずれかに記載のR−Fe−B系焼結磁石の脱粒防止方法。 The temperature rise from room temperature to the temperature at which heat treatment is performed is performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa. The method for preventing the degranulation of the R—Fe—B based sintered magnet according to claim 1. 改質層中の主層の組成が、改質されていない磁石の組成と比較すると、Feの含量が減少し、酸素の含量が増加していることを特徴とする請求項1乃至4のいずれかに記載のR−Fe−B系焼結磁石の脱粒防止方法。   The composition of the main layer in the modified layer is such that the Fe content is decreased and the oxygen content is increased compared to the composition of the unmodified magnet. A method for preventing degranulation of an R—Fe—B sintered magnet according to claim 1.
JP2009084791A 2009-03-26 2009-03-31 Method for preventing degranulation of R-Fe-B sintered magnet Active JP5326747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084791A JP5326747B2 (en) 2009-03-26 2009-03-31 Method for preventing degranulation of R-Fe-B sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009077273 2009-03-26
JP2009077273 2009-03-26
JP2009084791A JP5326747B2 (en) 2009-03-26 2009-03-31 Method for preventing degranulation of R-Fe-B sintered magnet

Publications (2)

Publication Number Publication Date
JP2010251341A JP2010251341A (en) 2010-11-04
JP5326747B2 true JP5326747B2 (en) 2013-10-30

Family

ID=43313405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084791A Active JP5326747B2 (en) 2009-03-26 2009-03-31 Method for preventing degranulation of R-Fe-B sintered magnet

Country Status (1)

Country Link
JP (1) JP5326747B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959653B (en) * 2010-06-30 2016-02-10 日立金属株式会社 Through the manufacture method of the rare-earth sintered magnet of surface modification
JP5760400B2 (en) * 2010-11-17 2015-08-12 日立金属株式会社 Method for producing R-Fe-B sintered magnet
JP5691515B2 (en) * 2010-12-28 2015-04-01 日立金属株式会社 Method for producing corrosion-resistant R—Fe—B sintered magnet
JP7272029B2 (en) * 2019-03-19 2023-05-12 株式会社プロテリアル Cyclone collection device, rare earth magnet alloy crushing system, and method for producing RTB sintered magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064882B2 (en) * 1985-05-17 1994-01-19 住友特殊金属株式会社 Permanent magnet material processing method
JPH0613211A (en) * 1992-09-10 1994-01-21 Sumitomo Special Metals Co Ltd Permanent magnet having excellent corrosion resistance and manufacture thereof
JP2001160508A (en) * 1999-09-24 2001-06-12 Sumitomo Special Metals Co Ltd R-Fe-B PERMANENT MAGNET AND ITS MANUFACTURING METHOD
JP4029095B2 (en) * 2004-03-31 2008-01-09 Tdk株式会社 Rare earth magnet and manufacturing method thereof
JP2006041295A (en) * 2004-07-29 2006-02-09 Tdk Corp Manufacturing method of rare earth sintered magnet and manufacturing method of magnet for vcm (voice coil motor)
JP5098390B2 (en) * 2007-03-27 2012-12-12 Tdk株式会社 Rare earth magnets

Also Published As

Publication number Publication date
JP2010251341A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4636207B2 (en) Method for producing surface-modified rare earth sintered magnet and surface modified rare earth sintered magnet
EP2270822B1 (en) Rare earth magnet and its preparation
JP5472236B2 (en) Rare earth magnet manufacturing method and rare earth magnet
EP2169689A1 (en) R-fe-b type rare earth sintered magnet and process for production of the same
TWI786162B (en) CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD OF PRODUCING THE SAME
JP5692231B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP2014502034A5 (en)
WO2010113465A1 (en) Alloy for sintered r-t-b-m magnet and method for producing same
JP2013225533A (en) Method of manufacturing r-t-b-based sintered magnet
JP5900335B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5326747B2 (en) Method for preventing degranulation of R-Fe-B sintered magnet
JP2013207134A (en) Bulk rh diffusion source
JP6037213B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP7247670B2 (en) RTB permanent magnet and manufacturing method thereof
JP5326746B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP5786398B2 (en) Surface-modified R-Fe-B based sintered magnet and method for producing the same
JP5691515B2 (en) Method for producing corrosion-resistant R—Fe—B sintered magnet
JP5262903B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5262902B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5914974B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP7243609B2 (en) rare earth sintered magnet
JP2005268668A (en) Manufacturing method and apparatus of rare earth sintered magnet
JP4591748B2 (en) Manufacturing method and manufacturing apparatus of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350