JPH07173501A - Permanent magnet alloy powder and production thereof - Google Patents

Permanent magnet alloy powder and production thereof

Info

Publication number
JPH07173501A
JPH07173501A JP5343903A JP34390393A JPH07173501A JP H07173501 A JPH07173501 A JP H07173501A JP 5343903 A JP5343903 A JP 5343903A JP 34390393 A JP34390393 A JP 34390393A JP H07173501 A JPH07173501 A JP H07173501A
Authority
JP
Japan
Prior art keywords
permanent magnet
phase
iron
alloy powder
magnetic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5343903A
Other languages
Japanese (ja)
Other versions
JP3519443B2 (en
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP34390393A priority Critical patent/JP3519443B2/en
Publication of JPH07173501A publication Critical patent/JPH07173501A/en
Application granted granted Critical
Publication of JP3519443B2 publication Critical patent/JP3519443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the permanent magnet alloy powder excellent in coercive force iHc and residual magnetic flux density Br by specifying the production conditions of a material having a specified composition and controlling the structure and crystal structure. CONSTITUTION:The molten (Fe, M)-Mn-B-R or (Fe, M, Co)-Mn-B-R alloy (R is Nd or Pr, and M is one or >=2 kinds among Al, Si, S, Ni, Cu, Zn, Ga, Ag, Pt, Au and Pb) having a specified composition is super rapidly cooled to form an amorphous structure or the structure wherein crystallites and the amorphous structure coexist, and crystallization heat treatment is applied under specified conditions to obtain a crystallite aggregate wherein a ferromagnetic soft magnetic phase consisting essentially of-iron and iron and a hard magnetic phase having an Nd3Fe14B-type crystal structure coexist in the same granular body and with the average crystal particle diameter of each phase controlled to 1-50nm. A permanent magnet powder having a low content of rare-earth element and having >=5kOe iHc and >=6.5kG Br is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーターやアク
チュエーター並びに磁気センサー用磁気回路などに最適
なボンド磁石用永久磁石合金粉末とその製造方法に係
り、希土類元素の含有量が少ない特定組成の(Fe,
M)−Mn−B−Rまたは(Fe,M,Co)−Mn−
B−R合金溶湯を回転ロールを用いた超急冷法、スプラ
ット急冷法、ガスアトマイズ法あるいはこれらの併用法
にてアモルファス組織あるいは微細結晶とアモルファス
が混在する組織とし、特定の熱処理にてα−鉄及び鉄を
主成分とする強磁性の軟磁性相とNd2Fe14B型結晶
構造の硬磁性相との微細結晶集合体からなる合金粉末を
得、これを樹脂にて結合することにより、ハードフェラ
イト磁石では得られない5kG以上の残留磁束密度Br
を有するFe−B−R系ボンド磁石を得ることができる
永久磁石合金粉末とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet alloy powder for bonded magnets, which is most suitable for various motors, actuators, magnetic circuits for magnetic sensors and the like, and a method for producing the same, and has a specific composition with a small content of rare earth elements ( Fe,
M) -Mn-BR or (Fe, M, Co) -Mn-
The B-R alloy melt is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by a super quenching method using a rotating roll, a splat quenching method, a gas atomizing method or a combination thereof, and α-iron and An alloy powder composed of a fine crystal aggregate of a ferromagnetic soft magnetic phase containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure was obtained, and by binding this with a resin, hard ferrite was obtained. Residual magnetic flux density Br of 5 kG or more that cannot be obtained with a magnet
The present invention relates to a permanent magnet alloy powder capable of obtaining a Fe-BR system bonded magnet having: and a manufacturing method thereof.

【0002】[0002]

【従来の技術】家電用機器や電装品用に用いられるステ
ッピングモーター、パワーモーター並びにアクチュエー
ターなどに使用される永久磁石は主にハードフェライト
磁石に限定されていたが、低温でのiHc低下に伴う低
温減磁特性が有ること、セラミックス材質のために機械
的強度が低くて割れ、欠けが発生し易いこと、複雑な形
状が得難いことなどの問題があった。
2. Description of the Related Art Permanent magnets used in stepping motors, power motors, actuators, etc. used for home appliances and electric components have been mainly limited to hard ferrite magnets, but at low temperatures due to lowering iHc, There are problems such as demagnetization characteristics, low mechanical strength due to the ceramic material, cracks and chips easily occur, and it is difficult to obtain a complicated shape.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされているが、従来のハ
ードフェライト磁石では得ることができない。
Nowadays, automobiles are strongly required to reduce fuel consumption in order to save resources and to improve fuel efficiency, and electric components for automobiles are required to be further reduced in size and weight. Also,
Designs for maximizing the performance-to-weight ratio are also being considered for applications such as home electric motors other than automobile electrical components. In the current motor structure, magnet materials with Br of about 5 to 7 kG are optimal. However, it cannot be obtained with a conventional hard ferrite magnet.

【0004】例えば、Nd−Fe−B系ボンド磁石では
かかる磁気特性を満足するが、金属の分離精製や還元反
応に多大の工程並びに大規模な設備を要するNdなどを
10〜15at%含有しているため、ハードフェライト
磁石に比較して著しく高価である。また、多極着磁の際
の磁極間ピッチが最小1.6mm程度であるため、ステ
ッピングモーターの回転むらの改善並びにサーボモータ
ーに匹敵する位置決め精度を得るためのより一層の多極
着磁ができず、現在のところ、5kG以上のBrを有
し、安価で容易に多極着磁が可能な永久磁石材料は、見
出されていない。
For example, an Nd-Fe-B based bonded magnet satisfies such magnetic characteristics, but contains 10 to 15 at% of Nd, which requires a large number of steps for separating and refining the metal and a reduction reaction and a large-scale facility. Therefore, it is significantly more expensive than a hard ferrite magnet. In addition, since the pitch between the magnetic poles when magnetizing multiple poles is a minimum of about 1.6 mm, it is possible to further improve the unevenness in rotation of the stepping motor and achieve more positioning accuracy comparable to that of a servo motor. At present, no inexpensive permanent magnet material has been found that has a Br of 5 kG or more and can be easily magnetized with multiple poles.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe7719(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.,C
8,1988,669〜670頁)された。この磁石材
料はアモルファスリボンを熱処理することにより、軟磁
性であるFe3Bと硬磁性であるNd2Fe14Bの結晶集
合組織を有する準安定構造の永久磁石であるが、iHc
が2〜3kOe程度と低く、またこのiHcを得るため
の熱処理条件が狭く限定され、工業生産上実用的でな
い。
On the other hand, Nd-Fe-B
In a magnet system, a magnet material having a Fe 3 B type compound as a main phase in the vicinity of Nd 4 Fe 77 B 19 (at%) has recently been proposed (R. Coehorn et al., J. de Phys., C).
8, 1988, pp. 669-670). This magnetic material is a metastable permanent magnet having a crystalline texture of soft magnetic Fe 3 B and hard magnetic Nd 2 Fe 14 B by heat-treating an amorphous ribbon.
Is as low as about 2 to 3 kOe, and the heat treatment conditions for obtaining this iHc are narrowly limited, which is not practical in industrial production.

【0006】このFe3B型化合物を主相とするNd−
Fe−B磁石のNdの一部をDyとTbで置換してiH
cを3〜5kOeに改善する研究が発表されているが、
高価な元素を添加するため原材料の価格が上がる問題の
ほか、添加希土類元素はその磁気モーメントがNdやF
eの磁気モーメントと反平行して結合するため磁化並び
に減磁曲線の角型性が劣化する問題がある(R.Coe
hoorn、J.Magn,Magn,Mat.、83
(1990)228〜230頁)。
Nd-containing the Fe 3 B type compound as a main phase
IH by replacing part of Nd of Fe-B magnet with Dy and Tb
A study to improve c to 3-5 kOe has been announced,
In addition to the problem that the price of raw materials rises due to the addition of expensive elements, the added rare earth elements have magnetic moments of Nd and F.
Since it is coupled antiparallel to the magnetic moment of e, there is a problem that the squareness of the magnetization and demagnetization curve deteriorates (R. Coe.
hoorn, J .; Magn, Magn, Mat. , 83
(1990) 228-230).

【0007】他の研究(Shen Bao−genら,
J.Magn, Magn,Mat.、89(199
1)335〜340頁)として、Feの一部をCoにて
置換してキュリー温度を上昇させ、iHcの温度係数を
改善するものであるが、Coの添加にともないBrを低
下させる問題がある。
Other studies (Shen Bao-gen et al.,
J. Magn, Magn, Mat. , 89 (199
1) 335 to 340), a part of Fe is replaced with Co to raise the Curie temperature and improve the temperature coefficient of iHc, but there is a problem that Br is lowered with the addition of Co. .

【0008】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理して硬磁性材料化できるが、iHcが低く、かつ前記
熱処理条件が狭く、安定した工業生産ができず、ハード
フェライト磁石の代替えとして安価に提供することがで
きない。
In any case, Fe 3 B type Nd-Fe-B
A system magnet can be made into a hard magnetic material by heat treatment after it is made amorphous by the ultra-quenching method, but iHc is low and the heat treatment conditions are narrow, stable industrial production cannot be performed, and it is an inexpensive alternative to a hard ferrite magnet. Cannot be provided.

【0009】この発明は、含有する希土類が少ないFe
−B−R系磁石(Rは希土類元素)のiHcを向上さ
せ、安定した工業生産を可能にするため、5kOe以上
の保磁力iHcと6kG以上の残留磁束密度Brを有し
ハードフェライト磁石に匹敵するコストパフォーマンス
を有し、安価に提供できるFe−B−R系磁石を得るた
めの永久磁石合金粉末とその製造方法の提供を目的とし
ている。
According to the present invention, Fe containing a small amount of rare earth is contained.
-In order to improve iHc of B-R magnets (R is a rare earth element) and enable stable industrial production, it has a coercive force iHc of 5 kOe or more and a residual magnetic flux density Br of 6 kG or more, and is comparable to a hard ferrite magnet. It is an object of the present invention to provide a permanent magnet alloy powder for obtaining an Fe-B-R magnet that has low cost performance and can be provided at low cost, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】この発明は、軟磁性相と
硬磁性相が混在する低希土類濃度のFe−B−R系磁石
のiHcを向上させ、安定した工業生産を可能にする永
久磁石合金粉末を目的に種々検討した結果、希土類元素
の含有量が少なく、鉄基合金あるいは鉄の一部をCoで
置換した鉄基合金に、MnとAl、Si、S、Ni、C
u、Zn、Ga、Ag、Pt、Au、Pbの1種または
2種以上を添加した特定組成の合金溶湯を超急冷法等に
てアモルファス組織あるいは微細結晶とアモルファスが
混在する組織となし、特定の昇温速度による熱処理にて
微細結晶集合体を得ることにより、ハードフェライト磁
石では得られなかった5.5kG以上の残留磁束密度B
rを有するボンド磁石に最適の希土類永久磁石合金粉末
が得られることを知見し、この発明を完成した。
The present invention improves the iHc of a Fe-BR system magnet having a low rare earth concentration in which a soft magnetic phase and a hard magnetic phase coexist, and enables a stable industrial production. As a result of various studies for the purpose of alloy powder, Mn and Al, Si, S, Ni, C were added to an iron-based alloy having a small content of rare earth elements and an iron-based alloy in which a part of iron was replaced by Co.
The alloy melt of a specific composition to which one or more of u, Zn, Ga, Ag, Pt, Au, and Pb are added has an amorphous structure or a structure in which fine crystals and amorphous are mixed by a super-quenching method, etc. The residual magnetic flux density B of 5.5 kG or more, which was not obtained in the hard ferrite magnet, was obtained by obtaining the fine crystal aggregate by the heat treatment at the heating rate of
The inventors have found that an optimum rare earth permanent magnet alloy powder can be obtained for a bonded magnet having r, and completed the present invention.

【0011】この発明は、組成式を(Fe1-aa
100-x-y-zMnxyz あるいは(Fe1-a-baCo)
100-x-y-zMnxyz (但しRはPrまたはNdの1
種または2種、MはAl、Si、S、Ni、Cu、Z
n、Ga、Ag、Pt、Au、Pbの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、a、
bが下記値を満足し、α−鉄及び鉄を主成分とする強磁
性の軟磁性相と、Nd2Fe14B型結晶構造を有する硬
磁性相とが同一粉末粒子中に共存し、各構成相の平均結
晶粒径が1nm〜50nmの範囲にあり、平均粒径が3
μm〜500μm、磁気特性がiHc≧5kOe、Br
≧6kG、(BH)max≧7MGOeであることを特
徴とする永久磁石合金粉末である。 0.01≦x≦7at% 10≦y≦30at% 3≦z≦6at% 0.005≦a≦0.3 0.005≦b≦0.5
[0011] This invention is a composition formula (Fe 1-a M a)
100-xyz Mn x B y R z or (Fe 1-ab M a Co )
100-xyz Mn x B y R z ( where R is 1 Pr or Nd
Or two, M is Al, Si, S, Ni, Cu, Z
n, Ga, Ag, Pt, Au, Pb), and symbols x, y, z, a, which limit the composition range.
b satisfies the following values, and α-iron and a ferromagnetic soft magnetic phase containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle. The average crystal grain size of the constituent phases is in the range of 1 nm to 50 nm, and the average grain size is 3
μm to 500 μm, magnetic characteristics iHc ≧ 5 kOe, Br
The permanent magnet alloy powder is characterized in that ≧ 6 kG and (BH) max ≧ 7 MGOe. 0.01 ≦ x ≦ 7 at% 10 ≦ y ≦ 30 at% 3 ≦ z ≦ 6 at% 0.005 ≦ a ≦ 0.3 0.005 ≦ b ≦ 0.5

【0012】また、この発明は、(1)組成式を(Fe
1-aa100-x-y-zMnxyz あるいは(Fe1-a-b
aCob100-x-y-zMnxyz (但しRはPrまた
はNdの1種または2種、MはAl、Si、S、Ni、
Cu、Zn、Ga、Ag、Pt、Au、Pbの1種また
は2種以上)と表し、組成範囲を限定する記号x、y、
z、a、bが上記値を満足する合金溶湯を回転ロールを
用いた超急冷法、スプラット急冷法、ガスアトマイズ法
あるいはこれらを組み合せて急冷し、アモルファス組織
あるいは微細結晶とアモルファスが混在する組織とな
し、(2)さらに結晶化が開始する温度付近から600
℃〜750℃の処理温度までの昇温速度が10℃/分〜
50℃/秒になる結晶化熱処理を施し、(3)α−鉄及
び鉄を主成分とする強磁性の軟磁性相と、Nd2Fe14
B型結晶構造を有する硬磁性相とが同一粉末粒子中に共
存し、各構成相の平均結晶粒径が1nm〜50nmの範
囲にある微結晶集合体を得たのち、(4)必要に応じて
これを、平均粒径3μm〜500μmに粉砕して磁石合
金粉末を得ることを特徴とする永久磁石合金粉末の製造
方法である。
Further, according to the present invention, (1) the composition formula is (Fe
1-a M a) 100- xyz Mn x B y R z or (Fe 1-ab
M a Co b) 100-xyz Mn x B y R z ( where R is Pr or one or two Nd, M is Al, Si, S, Ni,
Cu, Zn, Ga, Ag, Pt, Au, Pb), and symbols x, y, which limit the composition range.
The molten alloy having z, a, and b satisfying the above values is rapidly cooled by using a super-cooling method using a rotating roll, a splat quenching method, a gas atomizing method, or a combination thereof, to obtain an amorphous structure or a structure in which fine crystals and amorphous are mixed. , (2) 600 around the temperature at which crystallization starts
C. to 750.degree. C., the heating rate up to 10.degree. C./min.
Crystallization heat treatment at 50 ° C./sec is performed to (3) α-iron and a ferromagnetic soft magnetic phase containing iron as a main component and Nd 2 Fe 14
A hard magnetic phase having a B-type crystal structure coexists in the same powder particle, and after obtaining a microcrystalline aggregate having an average crystal grain size of each constituent phase in the range of 1 nm to 50 nm, (4) if necessary This is a method for producing a permanent magnet alloy powder, which comprises crushing this to an average particle size of 3 μm to 500 μm to obtain a magnet alloy powder.

【0013】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では5.0kO
e以上のiHcが得られず、また6at%を超えると6
kG以上のBrが得られないため、3〜6at%の範囲
とする。好ましいRの範囲は4〜5.5at%である。
Reasons for limiting the composition The rare earth element R has high magnetic properties only when it contains one or two of Pr or Nd in a specific amount.
For example, in the case of Ce and La, the characteristic that iHc is 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. R is 5.0 kO when less than 3 at%
If iHc of e or more cannot be obtained, and if it exceeds 6 at%, it is 6
Since Br of more than kG cannot be obtained, the range is 3 to 6 at%. The preferable range of R is 4 to 5.5 at%.

【0014】Bは、10at%未満では超急冷法を用い
てもアモルファス組織が得られず、熱処理を施しても3
kOe未満のiHcしか得られない。また30at%を
越えると5kOe以上のiHcが得られないため、10
〜30at%の範囲とする。好ましいBの範囲は15〜
20at%である。
If B is less than 10 at%, an amorphous structure cannot be obtained even if the ultra-quenching method is used, and even if a heat treatment is applied, it becomes 3
Only iHc less than kOe can be obtained. Further, if it exceeds 30 at%, iHc of 5 kOe or more cannot be obtained, so 10
The range is -30 at%. The preferred range of B is 15 to
It is 20 at%.

【0015】Mnは、iHcの向上に有効であるが、
0.01at%未満ではかかる効果が得られず、また、
7at%を超えるとBrが大きく低下し、6kG以上の
Brが得られないため、0.01〜7at%の範囲とす
る。好ましいMnの範囲は1〜5at%である。
Mn is effective in improving iHc,
If it is less than 0.01 at%, such an effect cannot be obtained, and
If it exceeds 7 at%, Br is greatly reduced, and Br of 6 kG or more cannot be obtained. Therefore, the range is 0.01 to 7 at%. The preferable range of Mn is 1 to 5 at%.

【0016】添加元素MのAl、Si、S、Ni、C
u、Zn、Ga、Ag、Pt、Au、Pbは、減磁曲線
の角型性を改善し、Brおよび(BH)maxを増大さ
せる効果を有するためにFeと置換するが、Feに対す
る置換量が0.5%未満ではかかる効果が得られず、3
0%を越えると5.5kG以上のBrが得られないた
め、Feに対する置換量はFe+Co+Mの0.5%〜
30%とする。好ましい範囲は1〜15%である。
Additive element M Al, Si, S, Ni, C
u, Zn, Ga, Ag, Pt, Au, and Pb are substituted with Fe because they have the effect of improving the squareness of the demagnetization curve and increasing Br and (BH) max. Is less than 0.5%, such an effect cannot be obtained, and 3
If it exceeds 0%, since Br of 5.5 kG or more cannot be obtained, the substitution amount with respect to Fe is 0.5% of Fe + Co + M.
30%. The preferred range is 1 to 15%.

【0017】Coは、Br、減磁曲線の角型性及び温度
特性の向上に有効であるが、Feに対する置換量が0.
5%未満ではかかる効果が得られず、また、50%を超
えると6kG以上のBrが得られないため、Feに対す
る置換量はFe+Co+Mの0.5〜50%の範囲とす
る。好ましいCoの範囲は2〜10%である。
Co is effective for improving Br, the squareness of the demagnetization curve, and the temperature characteristics, but the substitution amount of Fe with Co.
If it is less than 5%, such an effect cannot be obtained, and if it exceeds 50%, Br of 6 kG or more cannot be obtained. Therefore, the substitution amount for Fe is in the range of 0.5 to 50% of Fe + Co + M. The preferable range of Co is 2 to 10%.

【0018】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above-mentioned elements.

【0019】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファス組織あるいは微細結晶とアモルファ
スが混在する組織となし、結晶化が開始する温度付近か
ら600℃〜750℃の処理温度までの昇温速度が10
℃/分〜50℃/秒になる結晶化熱処理を施すことによ
り、α−鉄及び鉄を主成分とする強磁性の軟磁性相と、
Nd2Fe14B型結晶構造を有する硬磁性相とが同一粉
末粒子中に共存し、各構成相の平均結晶粒径が1nm〜
50nmの範囲にある微結晶集合体を得ることが最も重
要であり、合金溶湯の超急冷処理には公知の回転ロール
を用いた超急冷法を採用できるが、実質的にアモルファ
ス組織あるいは微細結晶とアモルファスが混在する組織
が得られれば、回転ロールを用いた超急冷法の他にもス
プラット急冷法、ガスアトマイズ法あるいはこれらを組
み合せた急冷方法を採用してもよい。例えば、Cu製ロ
ールを用いる場合は、そのロール表面周速度が10〜5
0m/秒の範囲が好適な急冷組織が得られるため好まし
い。すなわち周速度が10m/秒未満ではアモルファス
となら好ましくなく、ロール表面周速度が50m/秒を
超えると、結晶化の際、良好な硬磁気特性の得られる微
細結晶集合体とならず好ましくない。ただし、超急冷後
の組織において、少量のα−Fe相や準安定Nd−Fe
−B化合物相が急冷薄帯中に存在しても特性を著しく低
下させるものでなく許容される。
Reasons for limiting manufacturing conditions In the present invention, the molten alloy having the above-mentioned specific composition is formed into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, and the temperature is about 600.degree. The temperature rising rate up to the processing temperature of 750 ° C is 10
By performing a crystallization heat treatment at a temperature of 50 ° C./minute to 50 ° C./second, α-iron and a ferromagnetic soft magnetic phase containing iron as a main component,
A hard magnetic phase having an Nd 2 Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm to
It is most important to obtain a microcrystalline aggregate in the range of 50 nm, and a known superquenching method using a rotating roll can be adopted for the superquenching treatment of the molten alloy. If a structure in which amorphous is mixed is obtained, a splat quenching method, a gas atomizing method, or a quenching method combining these methods may be adopted in addition to the super quenching method using a rotating roll. For example, when a Cu roll is used, the roll surface peripheral velocity is 10 to 5
The range of 0 m / sec is preferable because a suitable quenched structure can be obtained. That is, if the peripheral velocity is less than 10 m / sec, it is not preferable if it is amorphous, and if the peripheral velocity of the roll surface exceeds 50 m / sec, it is not preferable because a fine crystal aggregate which can obtain good hard magnetic properties is obtained during crystallization. However, in the structure after ultra-quenching, a small amount of α-Fe phase or metastable Nd-Fe
The presence of the -B compound phase in the quenched ribbon is acceptable as it does not significantly deteriorate the properties.

【0020】この発明において、上述の特定組成の合金
溶湯を超急冷法にて実質的にアモルファス組織あるいは
微細結晶とアモルファスが混在する組織となした後、磁
気特性が最高となる熱処理は組成に依存するが、熱処理
温度が600℃未満ではNd2Fe14B相が析出しない
ためiHcが発現しない、また750℃を超えると粒成
長が著しく、iHc、Br及び減磁曲線の角型性が劣化
し、上述の磁気特性が得られないため、熱処理温度は6
00〜750℃に限定する。熱処理雰囲気は酸化を防止
するため、Ar、N2ガスなどの不活性ガス雰囲気もし
くは10-2Torr以上の真空中が好ましい。得られる
合金粉末の磁気特性は熱処理時間には依存しないが、6
時間を超えると若干時間の経過とともにBrが低下する
傾向にあるため、熱処理時間は6時間未満が好ましい。
In the present invention, after the molten alloy having the above-mentioned specific composition is formed into a substantially amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, the heat treatment that maximizes the magnetic characteristics depends on the composition. However, if the heat treatment temperature is lower than 600 ° C., iHc does not appear because the Nd 2 Fe 14 B phase does not precipitate, and if it exceeds 750 ° C., grain growth is remarkable, and iHc, Br, and the squareness of the demagnetization curve deteriorate. , The heat treatment temperature is 6 because the above magnetic characteristics cannot be obtained.
It is limited to 00 to 750 ° C. In order to prevent oxidation, the heat treatment atmosphere is preferably an inert gas atmosphere such as Ar or N 2 gas or a vacuum of 10 -2 Torr or more. The magnetic properties of the obtained alloy powder do not depend on the heat treatment time,
If it exceeds the time, Br tends to decrease with the passage of time, so the heat treatment time is preferably less than 6 hours.

【0021】この発明において重要な特徴として、熱処
理に際して結晶化が開始する温度付近からの昇温速度で
あり、10℃/分未満の昇温速度では、昇温中に粒成長
が起こり、良好な硬磁気特性が得られる微細結晶集合体
とならず、5kOe以上のiHcが得られず好ましくな
い。また、50℃/秒を超える昇温速度では、600℃
を通過してから生成するNd2Fe14B相の析出が十分
に行われず、iHcが低下するだけでなく、磁化曲線の
第2象限にBr点近傍に磁化の低下のある減磁曲線とな
り、(BH)maxが劣化するため好ましくない。な
お、熱処理に際して結晶化が開始する温度までの昇温速
度は任意であり、急速加熱などを適用して処理能率を高
めることができる。
An important feature of the present invention is the rate of temperature rise from around the temperature at which crystallization starts during heat treatment. At a rate of temperature rise of less than 10 ° C./minute, grain growth occurs during temperature rise, and good results are obtained. It is not preferable because it does not form a fine crystal aggregate that provides hard magnetic characteristics and iHc of 5 kOe or more cannot be obtained. In addition, at a heating rate exceeding 50 ° C / sec, 600 ° C
The Nd 2 Fe 14 B phase generated after passing through the alloy is not sufficiently precipitated, iHc not only decreases, but also a demagnetization curve with a decrease in magnetization near the Br point in the second quadrant of the magnetization curve, (BH) max is deteriorated, which is not preferable. The rate of temperature increase up to the temperature at which crystallization starts during heat treatment is arbitrary, and rapid heating or the like can be applied to increase the treatment efficiency.

【0022】結晶構造 この発明による希土類永久磁石合金粉末の結晶相は、α
−鉄及び鉄を主成分とする強磁性の軟磁性相と、Nd2
Fe14B型結晶構造を有する硬磁性相とが同一粉末粒子
中に共存し、各構成相の平均結晶粒径が1nm〜50n
mの微細結晶集合体からなることを特徴としている。さ
らに好ましい平均結晶粒径は1nm〜20nmである。
この発明において、永久磁石合金の平均結晶粒径が50
nmを超えると、減磁曲線の角型性が著しく劣化し、B
r≧6kG、(BH)max≧7MGOeの磁気特性を
得ることができない。また、平均結晶粒径は細かいほど
好ましいが、1nm未満の平均結晶粒径を得ることは工
業生産上困難であるため、下限を1nmとする。
Crystal Structure The crystal phase of the rare earth permanent magnet alloy powder according to the present invention is α
-Iron and a ferromagnetic soft magnetic phase containing iron as a main component, and Nd 2
The hard magnetic phase having the Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm to 50 n.
It is characterized by comprising a fine crystal aggregate of m. A more preferable average crystal grain size is 1 nm to 20 nm.
In the present invention, the average crystal grain size of the permanent magnet alloy is 50
When the thickness exceeds nm, the squareness of the demagnetization curve is significantly deteriorated, and B
Magnetic properties of r ≧ 6 kG and (BH) max ≧ 7 MGOe cannot be obtained. Further, the smaller the average crystal grain size is, the more preferable, but it is difficult to obtain the average crystal grain size of less than 1 nm in industrial production. Therefore, the lower limit is set to 1 nm.

【0023】磁石化方法 特定組成の合金溶湯を前述の超急冷法にてアモルファス
組織あるいは微細結晶とアモルファスが混在する組織と
なし、結晶化が開始する温度付近から600℃〜750
℃の処理温度までの昇温速度が10℃/分〜50℃/秒
になる結晶化熱処理を施すことにより、平均結晶粒径が
1nm〜50nmの微細結晶集合体として得たこの発明
による永久磁石合金粉末を用いて磁石化するには、75
0℃以下で固化、圧密化できる公知の焼結磁石化方法並
びにボンド磁石化方法の何れも採用することができ、必
要な場合は、当該合金を平均粒径が3μm〜500μm
の合金粉末に粉砕したのち、公知のバインダーと混合し
て所要のボンド磁石となすことにより、5kG以上の残
留磁束密度Brを有するボンド磁石を得ることができ
る。
Magnetization Method A molten alloy having a specific composition is formed into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the above-mentioned ultra-quenching method, and 600 ° C. to 750 ° C. near the temperature at which crystallization starts.
The permanent magnet according to the present invention obtained as a fine crystal aggregate having an average crystal grain size of 1 nm to 50 nm by performing a crystallization heat treatment at a temperature rising rate up to a treatment temperature of 10 ° C. of 10 ° C./min to 50 ° C./sec. To magnetize with alloy powder, 75
Any of the known sintered magnetizing method and bond magnetizing method that can be solidified and consolidated at 0 ° C. or less can be adopted, and if necessary, the alloy has an average particle diameter of 3 μm to 500 μm.
After being pulverized into the alloy powder (1) and mixed with a known binder to form a required bonded magnet, a bonded magnet having a residual magnetic flux density Br of 5 kG or more can be obtained.

【0024】[0024]

【作用】この発明は、希土類元素の含有量が少ない特定
組成の(Fe,M)−Mn−B−R合金溶湯あるいは
(Fe,M,Co)−Mn−B−R合金溶湯(RはNd
またはPr)を前述の超急冷法にて実質的にアモルファ
ス組織あるいは微細結晶とアモルファスが混在する組織
となし、得られたリボン、フレーク、球状粉末を結晶化
が開始する温度付近から600℃〜750℃の処理温度
までの昇温速度が10℃/分〜50℃/秒になる結晶化
熱処理を施すことにより、α−鉄及び鉄を主成分とする
強磁性の軟磁性相と、Nd2Fe14B型結晶構造を有す
る硬磁性相とが同一粉末粒子中に共存し、各構造相の平
均結晶粒径が1nm〜50nmの範囲にある微結晶集合
体を得る。この際、Mnを加えることで組織がMnを含
まない組成に比べ約1/2〜1/3に微細化されるこ
と、Mnの一部が硬磁性相であるR2Fe14B相のFe
原子と置換することでR2Fe14B相の異方性定数が向
上することにより、iHcは改善されるが、同時にMn
はFeとの磁気的結合が反強磁性的であるため磁化の大
幅な低下を招来する。しかしながら、添加元素M(A
l、Si、S、Ni、Cu、Zn、Ga、Ag、Pt、
Au、Pbの1種または2種以上)の添加により、Fe
−M、Mn−M、Fe−Mn−Mの強磁性を有する金属
間化合物を作るため、磁化の大幅な低下を招くことなく
iHcを改善することができる。さらに、Feの一部が
Coの一部で置換されることで、一層磁化の低下が抑制
され、Br及び減磁曲線の角型性を損なうことなくiH
cを改善することができる。また、R2Fe14B相のF
eの一部がCoで置換されることにより、キュリー温度
が上昇し、iHcの温度係数が改善され、iHc≧5k
Oe、Br≧6.5kG、(BH)max≧8MGOe
の磁気特性を有する温度特性の優れた永久磁石合金粉末
を得ることができる。
According to the present invention, the (Fe, M) -Mn-BR alloy melt or the (Fe, M, Co) -Mn-BR alloy melt (R is Nd) having a specific composition containing a small amount of rare earth elements is used.
Alternatively, Pr) is formed into a substantially amorphous structure or a structure in which fine crystals and amorphous are mixed by the above-mentioned rapid quenching method, and the obtained ribbons, flakes, and spherical powders are heated to about 600 ° C. to 750 ° C. from a temperature near the start of crystallization. By performing a crystallization heat treatment with a temperature rising rate up to a processing temperature of 10 ° C / min to 50 ° C / sec, α-iron and a ferromagnetic soft magnetic phase containing iron as a main component and Nd 2 Fe A hard magnetic phase having a 14 B-type crystal structure coexists in the same powder particle, and a fine crystal aggregate having an average crystal grain size of each structural phase in the range of 1 nm to 50 nm is obtained. At this time, by adding Mn, the structure is refined to about 1/2 to 1/3 as compared with the composition not containing Mn, and a part of Mn is Fe of the R 2 Fe 14 B phase which is a hard magnetic phase.
Substitution of atoms improves the anisotropy constant of the R 2 Fe 14 B phase, thereby improving iHc.
Causes a large decrease in magnetization because the magnetic coupling with Fe is antiferromagnetic. However, the additional element M (A
l, Si, S, Ni, Cu, Zn, Ga, Ag, Pt,
Fe, by adding one or more of Au and Pb)
Since an intermetallic compound having a ferromagnetism of -M, Mn-M, and Fe-Mn-M is produced, iHc can be improved without causing a significant decrease in magnetization. Further, by substituting a part of Fe with a part of Co, the decrease of the magnetization is further suppressed, and iH is obtained without impairing the squareness of Br and the demagnetization curve.
c can be improved. Also, the F of the R 2 Fe 14 B phase
By replacing a part of e with Co, the Curie temperature rises, the temperature coefficient of iHc is improved, and iHc ≧ 5k
Oe, Br ≧ 6.5 kG, (BH) max ≧ 8 MGOe
It is possible to obtain a permanent magnet alloy powder having the above magnetic characteristics and excellent temperature characteristics.

【0025】[0025]

【実施例】【Example】

実施例1 表1のNo.1〜10の組成となるように、純度99.
5%以上のFe、Co、Mn、Al、Si、S、Ni、
Cu、Zn、Ga、Ag、Pt、Au、Pb、B、N
d、Prの金属を用いて、総量が30grとなるように
秤量し、底部に直径0.8mmのオリフィスを有する石
英るつぼ内に投入し、圧力56cmHgのAr雰囲気中
で高周波加熱により溶解し、溶解温度を1400℃にし
た後、湯面をArガスにより加圧して室温にてロール周
速度20m/秒にて高速回転するCu製ロールの外周面
に0.7mmの高さから溶湯を噴出させて、幅2〜3m
m、厚み20μm〜40μmの超急冷薄帯を作製した。
得られた超急冷薄帯をCuKαの特性X線によりアモル
ファスであることを確認した。
Example 1 No. 1 in Table 1 Purity of 99.
5% or more of Fe, Co, Mn, Al, Si, S, Ni,
Cu, Zn, Ga, Ag, Pt, Au, Pb, B, N
d, Pr metal was weighed so that the total amount was 30 gr, put into a quartz crucible having a 0.8 mm diameter orifice at the bottom, and melted by high frequency heating in an Ar atmosphere with a pressure of 56 cmHg to melt. After the temperature was set to 1400 ° C., the molten metal surface was pressurized with Ar gas, and the molten metal was jetted from a height of 0.7 mm onto the outer peripheral surface of a Cu roll that rotates at high speed at a roll peripheral speed of 20 m / sec at room temperature. , Width 2-3m
m, and a super-quenched ribbon having a thickness of 20 μm to 40 μm was produced.
The obtained ultra-quenched ribbon was confirmed to be amorphous by the characteristic X-ray of CuKα.

【0026】この超急冷薄帯をArガス中で結晶化が開
始する580℃〜600℃まで急速加熱した後、580
℃以上を表1に示す昇温速度で昇温し、表1に示す熱処
理温度で7分間保持し、その後室温まで冷却して薄帯を
取り出し、幅2〜3mm、厚み20μm〜40μm、長
さ3mm〜5mmの試料を作製し、VSMを用いて磁気
特性を測定した。測定結果を表2に示す。なお、試料の
構成相を、CuKαの特性X線で調査した結果、Mn量
が3at%未満のときは、α−Fe相、Fe3B相、N
2Fe14B相が混在する多相組織であったが、Mn量
が3at%以上のときは、α−Fe相、Nd2Fe14
相は確認できたものの鉄を主成分とするホウ化物相など
は存在量が少ないため確認できなかった。なお、Mnと
Coはこれらの各相でFeの一部を置換する。平均結晶
粒径はいずれも30nm以下であった。
This ultra-quenched ribbon was rapidly heated to 580 ° C. to 600 ° C. at which crystallization started in Ar gas, and then 580
The temperature is raised at a temperature rising rate shown in Table 1 above, held at the heat treatment temperature shown in Table 1 for 7 minutes, then cooled to room temperature to take out a ribbon, and the width is 2-3 mm, the thickness is 20 μm-40 μm, and the length is A sample having a size of 3 mm to 5 mm was prepared and its magnetic characteristics were measured using VSM. The measurement results are shown in Table 2. As a result of investigating the constituent phases of the sample by the characteristic X-ray of CuKα, when the Mn amount is less than 3 at%, α-Fe phase, Fe 3 B phase, N
Although it was a multiphase structure in which d 2 Fe 14 B phase was mixed, when the Mn content was 3 at% or more, α-Fe phase and Nd 2 Fe 14 B phase were obtained.
Although the phases were confirmed, the boride phase containing iron as a main component could not be confirmed because the amount thereof was small. Note that Mn and Co replace part of Fe in each of these phases. The average crystal grain size was 30 nm or less in all cases.

【0027】比較例 表1のNo.11の組成となるように純度99.5%以
上のFe、B、Ndを用いて実施例1と同条件で超急冷
薄帯を作製した。得られた薄帯を実施例1と同一条件の
熱処理を施し、冷却後に実施例1と同条件で試料化(比
較例No.11)してVSMを用いて磁気特性を測定し
た。測定結果を表2に示す。なお、試料の構成相は、F
3B相を主相とするα−Fe相とNd2Fe14B相が混
在する多相組織であり、平均結晶粒径は50nm前後と
実施例No.1〜No.10に比べて粗大であった。
Comparative Example No. 1 in Table 1 An ultra-quenched ribbon was prepared under the same conditions as in Example 1 using Fe, B, and Nd having a purity of 99.5% or more so as to have a composition of 11. The obtained ribbon was subjected to heat treatment under the same conditions as in Example 1, cooled, and then sampled under the same conditions as in Example 1 (Comparative Example No. 11), and the magnetic characteristics were measured using VSM. The measurement results are shown in Table 2. The constituent phase of the sample is F
It has a multi-phase structure in which the α-Fe phase having the e 3 B phase as the main phase and the Nd 2 Fe 14 B phase coexist, and the average crystal grain size is around 50 nm and that of Example No. 1-No. It was coarse compared to 10.

【0028】実施例2 実施例1で得られた表1の組成No.2,7の超急冷薄
帯を、表1の熱処理後に平均粒径は150μm以下に粉
砕し、エポキシ樹脂からなるバインダーを3wt%の割
合で混合したのち、12mm×12mm×8mm寸法の
ボンド磁石を作成した。得られたボンド磁石(組成N
o.2)の磁気特性は、密度6.0g/cm3、iHc
=6.4kOe、Br=8.5kG、(BH)max=
8.7MGOeであった。得られたボンド磁石(組成N
o.6)の磁気特性は、密度6.0g/cm3、iHc
=6.0kOe、Br=8.6kG、(BH)max=
9.0MGOeであった。
Example 2 Composition No. of Table 1 obtained in Example 1 After the heat treatment shown in Table 1, the ultra-thin quenched thin ribbons Nos. 2 and 7 were crushed to an average particle diameter of 150 μm or less, and a binder made of an epoxy resin was mixed at a ratio of 3 wt%, and then a bond magnet having a size of 12 mm × 12 mm × 8 mm was prepared. Created. The obtained bonded magnet (composition N
o. The magnetic properties of 2) are: density 6.0 g / cm 3 , iHc
= 6.4 kOe, Br = 8.5 kG, (BH) max =
It was 8.7 MGOe. The obtained bonded magnet (composition N
o. The magnetic properties of 6) are as follows: density 6.0 g / cm 3 , iHc
= 6.0 kOe, Br = 8.6 kG, (BH) max =
It was 9.0 MGOe.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成の(Fe,M)−Mn−B−R合金溶湯ある
いは(Fe,M,Co)−Mn−B−R合金溶湯(Rは
NdまたはPr)を超急冷法にて実質的にアモルファス
組織あるいは微細結晶とアモルファスが混在する組織と
なし、得られたリボン、フレーク、球状粉末に特定条件
の結晶化熱処理を施すことにより、α−鉄及び鉄を主成
分とする強磁性の軟磁性相と、Nd2Fe14B型結晶構
造を有する硬磁性相とが同一粉末粒子中に共存し、各構
成相の平均結晶粒径が1nm〜50nmの範囲にある微
結晶集合体を得るもので、この際、Mnを加えることで
組織がMnを含まない組成に比べ約1/2〜1/3に微
細化されること、Mnの一部が硬磁性相であるR2Fe
14B相のFe原子と置換することでR2Fe14B相の異
方性定数が向上することにより、iHcは改善され、ま
た、MnはFeとの磁気的結合が反強磁性的であるため
磁化の低下を招来するが、添加元素M(Al、Si、
S、Ni、Cu、Zn、Ga、Ag、Pt、Au、Pb
の1種または2種以上)の添加により、Fe−M、Mn
−M、Fe−Mn−Mの強磁性を有する金属間化合物を
作るため、磁化の大幅な低下を招くことなくiHcを改
善することができ、さらに、Feの一部がCoの一部で
置換されることで、一層磁化の低下が抑制され、Br及
び減磁曲線の角型性を損なうことなくiHcを改善する
ことができる。また、R2Fe14B相のFeの一部がC
oで置換されることにより、キュリー温度が上昇し、i
Hcの温度係数が改善され、iHc≧5kOe、Br≧
6.5kG、(BH)max≧8MGOeの磁気特性を
有する温度特性の優れた永久磁石合金粉末を得ることが
できる。また、この発明による永久磁石合金粉末は、希
土類元素の含有量が少なく、製造方法が簡単で大量生産
に適しているため、5kOe以上のiHc、5kG以上
の残留磁束密度Brを有し、ハードフェライト磁石を超
える磁気的性能を有するボンド磁石を提供できる。
INDUSTRIAL APPLICABILITY According to the present invention, a (Fe, M) -Mn-BR alloy melt or a (Fe, M, Co) -Mn-BR alloy melt (R having a specific composition with a low content of rare earth elements) Is Nd or Pr) having a substantially amorphous structure or a structure in which fine crystals and amorphous are mixed by a super-quenching method, and subjecting the obtained ribbons, flakes and spherical powders to crystallization heat treatment under specific conditions, -Iron and a ferromagnetic soft magnetic phase containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm. To obtain a microcrystalline aggregate in the range of up to 50 nm. At this time, by adding Mn, the structure is refined to about 1/2 to 1/3 of the composition not containing Mn. R 2 Fe whose part is a hard magnetic phase
By improving the anisotropy constant of the R 2 Fe 14 B phase by substituting the Fe atoms of 14 B phase, iHc is improved, Moreover, Mn is magnetic coupling between Fe is antiferromagnetic Therefore, the magnetization is lowered, but the additive element M (Al, Si,
S, Ni, Cu, Zn, Ga, Ag, Pt, Au, Pb
1 type or 2 types or more of Fe-M, Mn
Since an intermetallic compound having a ferromagnetism of -M or Fe-Mn-M is produced, iHc can be improved without causing a large decrease in magnetization, and a part of Fe is replaced with a part of Co. As a result, the decrease in magnetization is further suppressed, and iHc can be improved without impairing the squareness of Br and the demagnetization curve. Further, a part of Fe in the R 2 Fe 14 B phase is C
Substitution with o raises the Curie temperature,
The temperature coefficient of Hc is improved, iHc ≧ 5 kOe, Br ≧
It is possible to obtain a permanent magnet alloy powder having a magnetic characteristic of 6.5 kG and (BH) max ≧ 8 MGOe and excellent temperature characteristics. In addition, the permanent magnet alloy powder according to the present invention has a low content of rare earth elements, a simple manufacturing method, and is suitable for mass production. It is possible to provide a bonded magnet having magnetic performance exceeding that of a magnet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 1/053

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成式を(Fe1-aa100-x-y-zMnx
yz (但しRはPrまたはNdの1種または2種、
MはAl、Si、S、Ni、Cu、Zn、Ga、Ag、
Pt、Au、Pbの1種または2種以上)と表し、組成
範囲を限定する記号x、y、z、aが下記値を満足し、
α−鉄及び鉄を主成分とする強磁性の軟磁性相と、Nd
2Fe14B型結晶構造を有する硬磁性相とが同一粉末粒
子中に共存し、各構成相の平均結晶粒径が1nm〜50
nmの範囲にあり、平均粒径が3μm〜500μm、磁
気特性がiHc≧5kOe、Br≧5.5kG、(B
H)max≧7MGOeであることを特徴とする永久磁
石合金粉末。 0.01≦x≦7at% 10≦y≦30at% 3≦z≦6at% 0.005≦a≦0.3
The method according to claim 1] composition formula (Fe 1-a M a) 100-xyz Mn x
B y R z (wherein R is one or two of Pr or Nd,
M is Al, Si, S, Ni, Cu, Zn, Ga, Ag,
Pt, Au, Pb) or two or more), and the symbols x, y, z, and a that limit the composition range satisfy the following values,
α-iron and a ferromagnetic soft magnetic phase containing iron as a main component, and Nd
A hard magnetic phase having a 2 Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm to 50 nm.
nm range, average particle size of 3 μm to 500 μm, magnetic properties of iHc ≧ 5 kOe, Br ≧ 5.5 kG, (B
H) A permanent magnet alloy powder, characterized in that max ≧ 7 MGOe. 0.01 ≦ x ≦ 7 at% 10 ≦ y ≦ 30 at% 3 ≦ z ≦ 6 at% 0.005 ≦ a ≦ 0.3
【請求項2】 組成式を(Fe1-a-baCob
100-x-y-zMnxyz (但しRはPrまたはNdの1
種または2種、MはAl、Si、S、Ni、Cu、Z
n、Ga、Ag、Pt、Au、Pbの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、a、
bが下記値を満足し、α−鉄及び鉄を主成分とする強磁
性の軟磁性相と、Nd2Fe14B型結晶構造を有する硬
磁性相とが同一粉末粒子中に共存し、各構成相の平均結
晶粒径が1nm〜50nmの範囲にあり、平均粒径が3
μm〜500μm、磁気特性がiHc≧5kOe、Br
≧6kG、(BH)max≧7MGOeであることを特
徴とする永久磁石合金粉末。 0.01≦x≦7at% 10≦y≦30at% 3≦z≦6at% 0.005≦a≦0.3 0.005≦b≦0.5
2. A method composition formula (Fe 1-ab M a Co b)
100-xyz Mn x B y R z ( where R is 1 Pr or Nd
Or two, M is Al, Si, S, Ni, Cu, Z
n, Ga, Ag, Pt, Au, Pb), and symbols x, y, z, a, which limit the composition range.
b satisfies the following values, and α-iron and a ferromagnetic soft magnetic phase containing iron as a main component and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle. The average crystal grain size of the constituent phases is in the range of 1 nm to 50 nm, and the average grain size is 3
μm to 500 μm, magnetic characteristics iHc ≧ 5 kOe, Br
Permanent magnet alloy powder characterized in that ≧ 6 kG and (BH) max ≧ 7 MGOe. 0.01 ≦ x ≦ 7 at% 10 ≦ y ≦ 30 at% 3 ≦ z ≦ 6 at% 0.005 ≦ a ≦ 0.3 0.005 ≦ b ≦ 0.5
【請求項3】 組成式を(Fe1-aa100-x-y-zMnx
yz (但しRはPrまたはNdの1種または2種、
MはAl、Si、S、Ni、Cu、Zn、Ga、Ag、
Pt、Au、Pbの1種または2種以上)と表し、組成
範囲を限定する記号x、y、z、aが下記値を満足する
合金溶湯を回転ロールを用いた超急冷法、スプラット急
冷法、ガスアトマイズ法あるいはこれらを組み合せて急
冷し、アモルファス組織あるいは微細結晶とアモルファ
スが混在する組織となし、さらに結晶化が開始する温度
付近から600℃〜750℃の処理温度までの昇温速度
が10℃/分〜50℃/秒になる結晶化熱処理を施し、
α−鉄及び鉄を主成分とする強磁性の軟磁性相と、Nd
2Fe14B型結晶構造を有する硬磁性相とが同一粉末粒
子中に共存し、各構成相の平均結晶粒径が1nm〜50
nmの範囲にある微結晶集合体を得たのち、必要に応じ
てこれを平均粒径3μm〜500μmに粉砕して永久磁
石合金粉末を得ることを特徴とする永久磁石合金粉末の
製造方法。 0.01≦x≦7at% 10≦y≦30at% 3≦z≦6at% 0.005≦a≦0.3
The 3. A composition formula (Fe 1-a M a) 100-xyz Mn x
B y R z (wherein R is one or two of Pr or Nd,
M is Al, Si, S, Ni, Cu, Zn, Ga, Ag,
(Pt, Au, Pb, one or more types), and the alloy melts whose symbols x, y, z, and a that limit the composition range satisfy the following values: Ultra rapid quenching method using a rotating roll, splat quenching method The gas atomization method or a combination thereof is rapidly cooled to form an amorphous structure or a structure in which fine crystals and amorphous are mixed, and the temperature rising rate from the temperature near the start of crystallization to a processing temperature of 600 ° C to 750 ° C is 10 ° C. / Min ~ 50 ° C / second heat treatment for crystallization,
α-iron and a ferromagnetic soft magnetic phase containing iron as a main component, and Nd
A hard magnetic phase having a 2 Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm to 50 nm.
A method for producing a permanent magnet alloy powder, which comprises obtaining a fine crystal aggregate in the range of nm and then pulverizing this to an average particle diameter of 3 μm to 500 μm to obtain a permanent magnet alloy powder, if necessary. 0.01 ≦ x ≦ 7 at% 10 ≦ y ≦ 30 at% 3 ≦ z ≦ 6 at% 0.005 ≦ a ≦ 0.3
【請求項4】 組成式を(Fe1-a-baCob
100-x-y-zMnxyz (但しRはPrまたはNdの1
種または2種、MはAl、Si、S、Ni、Cu、Z
n、Ga、Ag、Pt、Au、Pbの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、a、
bが下記値を満足する合金溶湯を回転ロールを用いた超
急冷法、スプラット急冷法、ガスアトマイズ法あるいは
これらを組み合せて急冷し、アモルファス組織あるいは
微細結晶とアモルファスが混在する組織となし、さらに
結晶化が開始する温度付近から600℃〜750℃の処
理温度までの昇温速度が10℃/分〜50℃/秒になる
結晶化熱処理を施し、α−鉄及び鉄を主成分とする強磁
性の軟磁性相と、Nd2Fe14B型結晶構造を有する硬
磁性相とが同一粉末粒子中に共存し、各構成相の平均結
晶粒径が1nm〜50nmの範囲にある微結晶集合体を
得たのち、必要に応じてこれを平均粒径3μm〜500
μmに粉砕して永久磁石合金粉末を得ることを特徴とす
る永久磁石合金粉末の製造方法。 0.01≦x≦7at% 10≦y≦30at% 3≦z≦6at% 0.005≦a≦0.3 0.005≦b≦0.5
The 4. A composition formula (Fe 1-ab M a Co b)
100-xyz Mn x B y R z ( where R is 1 Pr or Nd
Or two, M is Al, Si, S, Ni, Cu, Z
n, Ga, Ag, Pt, Au, Pb), and symbols x, y, z, a, which limit the composition range.
A molten alloy whose b satisfies the following value is rapidly cooled by using a rotating roll, a splat quenching method, a gas atomizing method or a combination thereof to form an amorphous structure or a structure in which fine crystals and amorphous are mixed, and further crystallized. Is subjected to crystallization heat treatment at a temperature rising rate of 10 ° C./min to 50 ° C./sec from a temperature near the start point to a treatment temperature of 600 ° C. to 750 ° C. to obtain α-iron and a ferromagnetic material containing iron as a main component. A soft magnetic phase and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and a fine crystal aggregate having an average crystal grain size of each constituent phase in the range of 1 nm to 50 nm is obtained. After that, if necessary, the average particle diameter is 3 μm to 500 μm.
A method for producing a permanent magnet alloy powder, which comprises pulverizing to a particle size of 袖 m to obtain a permanent magnet alloy powder. 0.01 ≦ x ≦ 7 at% 10 ≦ y ≦ 30 at% 3 ≦ z ≦ 6 at% 0.005 ≦ a ≦ 0.3 0.005 ≦ b ≦ 0.5
JP34390393A 1993-12-16 1993-12-16 Permanent magnet alloy powder and method for producing the same Expired - Lifetime JP3519443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34390393A JP3519443B2 (en) 1993-12-16 1993-12-16 Permanent magnet alloy powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34390393A JP3519443B2 (en) 1993-12-16 1993-12-16 Permanent magnet alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07173501A true JPH07173501A (en) 1995-07-11
JP3519443B2 JP3519443B2 (en) 2004-04-12

Family

ID=18365137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34390393A Expired - Lifetime JP3519443B2 (en) 1993-12-16 1993-12-16 Permanent magnet alloy powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3519443B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898287A3 (en) * 1997-08-22 1999-03-31 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications
US6800145B2 (en) 2001-05-17 2004-10-05 Nissan Motor Co., Ltd. Rare earth magnet alloy, manufacturing method thereof and product applied with rare earth magnet alloy
US7371292B2 (en) 2002-11-12 2008-05-13 Nissan Motor Co., Ltd. Nd-Fe-B type anisotropic exchange spring magnet and method of producing the same
CN100440389C (en) * 2003-04-19 2008-12-03 太原理工大学 Rare earth multiphase alloy material and its preparation
JP2016526298A (en) * 2013-05-31 2016-09-01 北京有色金属研究総院General Research Institute for Nonferrous Metals Rare earth permanent magnet powder, adhesive magnetic body including the same, and element using the adhesive magnetic body
CN107134338A (en) * 2017-05-17 2017-09-05 张卫华 A kind of neodymium iron boron binding magnetic of compound addition zinc and gadolinium and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898287A3 (en) * 1997-08-22 1999-03-31 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications
US6172589B1 (en) 1997-08-22 2001-01-09 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof or stepping motor and speaker using the alloy
US6800145B2 (en) 2001-05-17 2004-10-05 Nissan Motor Co., Ltd. Rare earth magnet alloy, manufacturing method thereof and product applied with rare earth magnet alloy
US7371292B2 (en) 2002-11-12 2008-05-13 Nissan Motor Co., Ltd. Nd-Fe-B type anisotropic exchange spring magnet and method of producing the same
CN100440389C (en) * 2003-04-19 2008-12-03 太原理工大学 Rare earth multiphase alloy material and its preparation
JP2016526298A (en) * 2013-05-31 2016-09-01 北京有色金属研究総院General Research Institute for Nonferrous Metals Rare earth permanent magnet powder, adhesive magnetic body including the same, and element using the adhesive magnetic body
US10079085B2 (en) 2013-05-31 2018-09-18 General Research Institute For Nonferrous Metals Rare-earth permanent magnetic powder, bonded magnet containing thereof and device using the bonded magnet
CN107134338A (en) * 2017-05-17 2017-09-05 张卫华 A kind of neodymium iron boron binding magnetic of compound addition zinc and gadolinium and preparation method thereof

Also Published As

Publication number Publication date
JP3519443B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JPH07166206A (en) Permanent magnet alloy powder and production thereof
JPH0657311A (en) Production of rare earth alloy magnet powder
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH07161513A (en) Iron based bond magnet and its production
JPH0653019A (en) Rare earth magnet, rare earth magnet alloy powder and its manufacture
JP2925840B2 (en) Fe-BR bonded magnet
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JPH05299222A (en) Fe-b-r bonded magnet
JPH0636916A (en) Fe-b-r base bond magnet
JPH07263211A (en) Isotropic bond magnet and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term