JPH07263211A - Isotropic bond magnet and its production - Google Patents

Isotropic bond magnet and its production

Info

Publication number
JPH07263211A
JPH07263211A JP6076543A JP7654394A JPH07263211A JP H07263211 A JPH07263211 A JP H07263211A JP 6076543 A JP6076543 A JP 6076543A JP 7654394 A JP7654394 A JP 7654394A JP H07263211 A JPH07263211 A JP H07263211A
Authority
JP
Japan
Prior art keywords
powder
magnet
temperature
phase
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6076543A
Other languages
Japanese (ja)
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6076543A priority Critical patent/JPH07263211A/en
Publication of JPH07263211A publication Critical patent/JPH07263211A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a powder alloy of microcrystal aggregate having constitutional phases of an Fe3B type compound and alpha-iron and an Nd2Fe14B type crystal structure suitable for production of a bond magnet having a specified remanent magnetic flux density. CONSTITUTION:The powder alloy for permanent magnet has a composition represented by a formula Fe100-x-y-zBxRyMz (R represents one or two kinds of Pr and Nd, M represents one or more than one kind of Al, Si, S, Ni-, Cu, Zn, Ga, Ag, Pt, Au, or Pb) where, 10<=x<=30at%, 3<=y<=5at% and 0.1<=z<=3at%. An Fe3B type compound and alpha-iron coexist with a compound having Nd2Fe14B type crystal structure in one powder particle of a microcrystal aggregate. The average crystal particle size of each constitutional phase is in the range of 1-50nm and a powder having average particle size in the range of 3-500mum is bonded by resin to produce an isotropic bond magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、スピ
ーカー用並びにメーターおよびフォーカスコンバージェ
ンスリングなどに最適な等方性ボンド磁石とその製造方
法に係り、希土類元素を少量含有する特定組成のFe−
B−R−M(M=Al,Si,S,Ni,Cu,Zn,
Ga,Ag,Pt,Au,Pb)合金溶湯を回転ロール
を用いた超急冷法、スプラット急冷法、ガスアトマイズ
法あるいはこれらの併用法にてアモルファス組織あるい
は微細結晶とアモルファスが混在する組織とし、特定の
熱処理にてFe3B型化合物並びにα−鉄とNd2Fe14
B型結晶構造の構成相との微細結晶集合体からなる合金
粉末を得、これを樹脂にて結合することにより、ハード
フェライト磁石では得られなかった8kG以上の残留磁
束密度Brを有し、温度特性にすぐれたFe−B−R系
ボンド磁石を得ることができる等方性ボンド磁石とその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an isotropic bonded magnet most suitable for various motors, speakers, meters, focus convergence rings and the like and a method for producing the same, and Fe-containing a specific composition containing a small amount of a rare earth element.
B-R-M (M = Al, Si, S, Ni, Cu, Zn,
Ga, Ag, Pt, Au, Pb) alloy melt is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by an ultra-quenching method using a rotating roll, a splat quenching method, a gas atomizing method or a combination thereof By heat treatment, Fe 3 B type compound and α-iron and Nd 2 Fe 14
By obtaining an alloy powder composed of a fine crystal aggregate with a constituent phase of a B-type crystal structure and binding it with a resin, a residual magnetic flux density Br of 8 kG or more, which cannot be obtained with a hard ferrite magnet, is obtained, The present invention relates to an isotropic bonded magnet capable of obtaining an Fe-BR bonded magnet having excellent characteristics and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高い残留磁束密度Brを要求される分野
や高温並びに低温下での使用を要求される永久磁石に
は、主にBrが10kG以上、固有保磁力iHcが0.
5kOe〜2kOeの磁気特性を有するアルニコ磁石、
あるいはBrが8kG以上、iHcが6kOe以上のS
m−Co磁石が使用されている。
2. Description of the Related Art In fields requiring a high residual magnetic flux density Br and permanent magnets required to be used at high and low temperatures, Br is mainly 10 kG or more and an intrinsic coercive force iHc is 0.
An alnico magnet having a magnetic characteristic of 5 kOe to 2 kOe,
Or S with Br of 8 kG or more and iHc of 6 kOe or more
m-Co magnets are used.

【0003】これらの磁石は、原産国からの供給量が不
安定であり、安定的に入手し難いCoを主原料としてお
り、アルニコ磁石の場合で20〜30wt%、Sm−C
o磁石で50〜65wt%も含有している。また、Sm
−Co磁石に含有されるSmは希土類鉱物中に含まれる
量が少なく極めて高価で安定的に入手し難い問題があ
る。しかし、自動車の電装品用のモーターやスピードメ
ーターに用いられる磁石は、80℃以上の環境で使用さ
れる可能性があるため、かかる用途にはアルニコ磁石並
びにSm−Co磁石が、はるかに安価で入手できるハー
ドフェライトをしのいで主流を占めている。
These magnets are mainly made of Co, which is difficult to obtain stably because the supply amount from the country of origin is unstable. In the case of Alnico magnet, 20 to 30 wt%, Sm-C
It also contains 50 to 65 wt% of a magnet. Also, Sm
There is a problem that Sm contained in a Co magnet is extremely expensive because it is contained in a rare earth mineral in a small amount and is difficult to obtain stably. However, magnets used for motors and speedometers for automobile electrical components may be used in an environment of 80 ° C. or higher, so Alnico magnets and Sm-Co magnets are much cheaper for such applications. It occupies the mainstream over the available hard ferrites.

【0004】特に、Sm−Co磁石は今日の自動車の燃
費向上の要請から高価な磁石であるにもかかわらず、そ
の優れた磁気特性を有することから、小型高性能化が要
求される磁気回路に使用されている。そこで、CoやS
mを含有せず、磁気特性と温度特性のすぐれた永久磁石
材料が要求されているが、現在のところ大量生産が可能
で安価に提供でき、Brが8kG以上のボンド磁石は見
出されていない。
In particular, the Sm-Co magnet is an expensive magnet due to the demand for improving the fuel efficiency of today's automobiles, but has excellent magnetic characteristics, so that it is suitable for a magnetic circuit that requires a small size and high performance. It is used. So Co and S
A permanent magnet material that does not contain m and is excellent in magnetic characteristics and temperature characteristics is required, but at present, a bonded magnet having a Br of 8 kG or more, which can be mass-produced and can be provided at low cost, has not been found. .

【0005】[0005]

【発明が解決しようとする課題】CoやSmを含有しな
いNd−Fe−B系磁石において、最近、Nd4Fe77
19(at%)近傍でFe3B型化合物を主相とする磁
石材料が提案(R.Coehoorn等、J.de P
hys.,C8,1988,669〜670頁)され
た。この磁石材料はアモルファスリボンを熱処理するこ
とにより、Fe3B相とNd2Fe14B相が混在する結晶
集合組織を有する準安定構造の永久磁石材料であり、1
0kG程度のBrと2〜3kOeのiHcを有するが、
硬磁性材料になり得るための熱処理条件が狭く限定さ
れ、工業生産上実用的でない。
Recently, in an Nd-Fe-B system magnet containing no Co or Sm, Nd 4 Fe 77 was used.
A magnetic material having a Fe 3 B type compound as a main phase in the vicinity of B 19 (at%) is proposed (R. Coehorn et al., J. de P.
hys. , C8, 1988, pp. 669-670). This magnet material is a metastable structure permanent magnet material having a crystal texture in which Fe 3 B phase and Nd 2 Fe 14 B phase are mixed by heat-treating an amorphous ribbon.
Although it has Br of about 0 kG and iHc of 2 to 3 kOe,
The heat treatment conditions for becoming a hard magnetic material are narrowly limited, which is not practical in industrial production.

【0006】また、このFe3B型化合物を主相とする
Nd−Fe−B系磁石のNdの一部をDyとTbで置換
してiHcを3〜5kOeに改善する研究が発表されて
いるが、高価な元素を添加する問題のほか、添加希土類
元素はその磁気モーメントがNdやFeの磁気モーメン
トと反平行して結合するため磁化並びに減磁曲線の角形
性が減少する問題がある(R.Coehoorn、J.
Magn,Magn,Mat.、83(1990)22
8〜230頁)。
Further, a study has been published to improve iHc to 3 to 5 kOe by substituting a part of Nd of the Nd-Fe-B system magnet having the Fe 3 B type compound as a main phase with Dy and Tb. However, in addition to the problem of adding an expensive element, there is a problem that the magnetic moment of the rare earth element added is coupled antiparallel to the magnetic moments of Nd and Fe, and the squareness of the magnetization and demagnetization curve is reduced (R Coehoorn, J .;
Magn, Magn, Mat. , 83 (1990) 22
8 to 230).

【0007】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理して硬磁性材料化できるが、iHcが低く、かつ前記
熱処理条件が狭く、安定した工業生産ができず、アルニ
コ磁石やSm−Co磁石の代替えとして安価に提供する
ことができない。
In any case, Fe 3 B type Nd-Fe-B
The system magnet can be made into a hard magnetic material by heat treatment after being made amorphous by the ultra-quenching method, but iHc is low and the heat treatment conditions are narrow, and stable industrial production cannot be performed. As an alternative, it cannot be provided inexpensively.

【0008】この発明は、軟磁性相と硬磁性相が同一組
織内に混在し、希土類濃度が低い鉄系永久磁石材料に着
目し、この磁石のiHcを向上させ、安定した工業生産
が可能な製造方法の確立と、8kG以上の残留磁束密度
Brを有しハードフェライト磁石に匹敵するコストパフ
ォーマンスを有し、安価に提供できる等方性ボンド磁石
とその製造方法の提供を目的としている。
The present invention focuses on an iron-based permanent magnet material in which a soft magnetic phase and a hard magnetic phase are mixed in the same structure and has a low rare earth concentration, and the iHc of this magnet is improved to enable stable industrial production. It is an object of the present invention to establish a manufacturing method, to provide an isotropic bonded magnet which has a residual magnetic flux density Br of 8 kG or more and has cost performance comparable to that of a hard ferrite magnet, and which can be provided at low cost, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】この発明は、軟磁性相と
硬磁性相が同一組織内に混在し、希土類濃度が4at%
程度と低い鉄系永久磁石のiHcを向上させ、安定した
工業生産が可能な製造方法を目的に種々検討した結果、
希土類元素の含有量が少なく、Al,Si,S,Ni,
Cu,Zn,Ga,Ag,Pt,Au,Pbの少なくと
も1種を少量添加した鉄基の特定組成の合金溶湯を超急
冷法等にてアモルファス組織あるいは微細結晶とアモル
ファスが混在する組織とし、特定の熱処理にてFe3
型化合物並びにα−鉄とNd2Fe14B型結晶構造の構
成相との微細結晶集合体からなる合金粉末を得ることに
より、アルニコ磁石やSm−Co磁石に匹敵する10k
G以上の残留磁束密度Brを有するボンド磁石に最適の
永久磁石合金粉末が得られることを知見し、さらに、こ
の合金粉末を樹脂にて結合することにより、CoやSm
を含有せずに8kG以上の残留磁束密度Brを有し、磁
気特性と温度特性がすぐれた等方性ボンド磁石が得られ
ることを知見し、この発明を完成した。
According to the present invention, a soft magnetic phase and a hard magnetic phase are mixed in the same structure, and the rare earth concentration is 4 at%.
As a result of various studies aimed at improving the iHc of the iron-based permanent magnet, which is as low as a degree, and enabling stable industrial production,
The content of rare earth elements is low, and Al, Si, S, Ni,
The alloy melt of the iron-based specific composition to which a small amount of at least one of Cu, Zn, Ga, Ag, Pt, Au, and Pb is added is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, etc. Heat treatment of Fe 3 B
By obtaining an alloy powder consisting of a type compound and a fine crystal aggregate of α-iron and the constituent phases of the Nd 2 Fe 14 B type crystal structure, it is possible to obtain an alloy powder of 10k which is comparable to Alnico magnets and Sm-Co magnets.
It was found that an optimum permanent magnet alloy powder can be obtained for a bond magnet having a residual magnetic flux density Br of G or more, and further, by binding this alloy powder with a resin, Co or Sm can be obtained.
It was found that an isotropic bonded magnet having a residual magnetic flux density Br of not less than 8 kG and having excellent magnetic characteristics and temperature characteristics can be obtained without containing Al, and completed the present invention.

【0010】この発明は、組成式をFe100-x-y-zx
yz (但しRはPrまたはNdの1種または2種、
MはAl,Si,S,Ni,Cu,Zn,Ga,Ag,
Pt,Au,Pbの1種または2種以上)と表し、組成
範囲を限定する記号x、y、z、wが下記値を満足し、
Fe3B型化合物並びにα−鉄と、Nd2Fe14B型結晶
構造を有する化合物とが同一粉末粒子中に共存し、各構
成相の平均結晶粒径が1nm〜50nmの範囲にある微
細結晶集合体であり、平均粒径が3μm〜500μmで
ある粉末を樹脂にて結合したことを特徴とする等方性ボ
ンド磁石である。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
The present invention uses the composition formula Fe 100-xyz B x
R y M z (where R is one or two of Pr or Nd,
M is Al, Si, S, Ni, Cu, Zn, Ga, Ag,
Pt, Au, Pb) or two or more), and the symbols x, y, z, w for limiting the composition range satisfy the following values,
Fe 3 B type compound and α-iron, and a compound having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is a fine crystal in the range of 1 nm to 50 nm. An isotropic bonded magnet, which is an aggregate, in which powders having an average particle diameter of 3 μm to 500 μm are bonded with a resin. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%

【0011】また、この発明は、(1)組成式をFe
100-x-y-zxyz (但しRはPrまたはNdの1種
または2種、MはAl,Si,S,Ni,Cu,Zn,
Ga,Ag,Pt,Au,Pbの1種または2種以上)
と表し、組成範囲を限定する記号x、y、zが上述の値
を満足する合金溶湯を回転ロールを用いた超急冷法、ス
プラット急冷法、ガスアトマイズ法あるいはこれらを組
み合せて急冷し、アモルファス組織あるいは微細結晶と
アモルファスが混在する組織となし、(2)さらに結晶
化が開始する温度付近から600℃〜700℃の処理温
度までの昇温速度が10℃/分〜50℃/秒になる結晶
化熱処理を施し、(3)Fe3B型化合物並びにα−鉄
と、Nd2Fe14B型結晶構造を有する化合物とが同一
粉末粒子中に共存し、各構成相の平均結晶粒径が1nm
〜50nmの範囲にある微結晶集合体を得たのち、
(4)これを平均粒径3μm〜500μmに粉砕した磁
石合金粉末を樹脂にて結合ことを特徴とする等方性ボン
ド磁石の製造方法である。
Further, according to the present invention, (1) the composition formula is represented by Fe
100-xyz B x R y M z (where R is one or two of Pr or Nd, M is Al, Si, S, Ni, Cu, Zn,
One or more of Ga, Ag, Pt, Au, Pb)
And the symbols x, y, and z that limit the composition range satisfy the above-mentioned values, and the alloy melt is quenched by a super-quenching method using a rotating roll, a splat quenching method, a gas atomizing method, or a combination of these methods. (2) Crystallization in which the temperature rising rate from around the temperature at which crystallization starts to the processing temperature of 600 ° C to 700 ° C is 10 ° C / min to 50 ° C / sec. After heat treatment, (3) the Fe 3 B type compound and α-iron, and the compound having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm.
After obtaining a microcrystalline aggregate in the range of ˜50 nm,
(4) A method for producing an isotropic bonded magnet, characterized in that the magnet alloy powder pulverized to have an average particle size of 3 μm to 500 μm is bonded with a resin.

【0012】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では3kOe以
上のiHcが得られず、また5at%を越えると8kG
以上のBrが得られないため、3〜5at%の範囲とす
る。
Reasons for limiting the composition The rare earth element R has high magnetic characteristics only when one or two kinds of Pr or Nd are contained in a specific amount, and other rare earth elements R,
For example, in the case of Ce and La, the characteristic that iHc is 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. When R is less than 3 at%, iHc of 3 kOe or more cannot be obtained, and when it exceeds 5 at%, 8 kG.
Since the above Br cannot be obtained, the range is set to 3 to 5 at%.

【0013】Bは、10at%未満では超急冷法を用い
てもアモルファス組織が得られず、熱処理を施しても3
kOe未満のiHcしか得られない。また、30at%
を越えると減磁曲線の角形性が著しく低下し、8kG以
上のBrが得られないため、10〜30at%の範囲と
する。好ましくは、15〜20at%が良い。
If B is less than 10 at%, an amorphous structure cannot be obtained even if the ultra-quench method is used, and even if a heat treatment is applied, it becomes 3
Only iHc less than kOe can be obtained. Also, 30 at%
If it exceeds, the squareness of the demagnetization curve remarkably deteriorates and Br of 8 kG or more cannot be obtained, so the range is set to 10 to 30 at%. It is preferably 15 to 20 at%.

【0014】Al、Si、S、Ni、Cu、Zn、G
a、Ag、Pt、Au、Pbは減磁曲線の角型性を改善
し、Brおよび(BH)maxを増大させる効果を有す
るが、0.1at%未満ではかかる効果が得られず、3
at%を超えると8kG以上のBrが得られないため、
0.1〜3at%の範囲とする。好ましくは、0.5〜
1.5at%が良い。
Al, Si, S, Ni, Cu, Zn, G
Although a, Ag, Pt, Au, and Pb have the effect of improving the squareness of the demagnetization curve and increasing Br and (BH) max, if less than 0.1 at%, such an effect cannot be obtained.
When it exceeds at%, since Br of 8 kG or more cannot be obtained,
The range is 0.1 to 3 at%. Preferably 0.5 to
1.5at% is good.

【0015】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above-mentioned elements.

【0016】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスあるいは微細結晶とアモルファスが
混在する組織となし、結晶化が開始する温度付近から6
00℃〜700℃の処理温度までの昇温速度が10℃/
分〜50℃/秒になる結晶化熱処理を施すことにより、
Fe3B型化合物並びにα−鉄と、Nd2Fe14B型結晶
構造を有する化合物相とが同一粉末中に共存し、各構成
相の平均結晶粒径が1nm〜50nmの範囲にある微結
晶集合体を得ることが最も重要であり、合金溶湯の超急
冷処理には公知の回転ロールを用いた超急冷法を採用で
きるが、実質的にアモルファスもしくは微細結晶がアモ
ルファスの混在する組織が得られれば、回転ロールを用
いた超急冷法の他にもスプラット急冷法、ガスアトマイ
ズ法あるいはこれらを組み合せた急冷方法を採用しても
よい。例えば、Cu製ロールを用いる場合は、そのロー
ル表面周速度が10〜50m/秒の範囲が好適な急冷組
織が得られるため好ましい。すなわちロール周速度が1
0m/秒未満ではアモルファス組織とならず好ましくな
い。また50m/秒を超えると、結晶化の際、良好な硬
磁気特性の得られる微細結晶集合体とならず好ましくな
い。ただし、少量のα−Fe相が急冷組織中に存在して
いても磁気特性を著しく低下させるものでなく許容され
る。
Reasons for Limiting Manufacturing Conditions In the present invention, the molten alloy having the above-mentioned specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, and the temperature is about 6 from the temperature at which crystallization starts.
The temperature rising rate from the processing temperature of 00 ° C to 700 ° C is 10 ° C /
By performing the crystallization heat treatment at a temperature of min.
Fe 3 B type compounds and α-iron, and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder, and the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm It is most important to obtain an aggregate, and a super-quenching method using a known rotating roll can be adopted for the super-quenching treatment of the molten alloy, but it is possible to obtain a structure in which amorphous or fine crystals are substantially mixed. For example, a splat quenching method, a gas atomizing method, or a quenching method combining these methods may be adopted in addition to the super quenching method using a rotating roll. For example, when a Cu roll is used, a roll surface peripheral velocity in the range of 10 to 50 m / sec is preferable because a suitable quenched structure can be obtained. That is, the roll peripheral speed is 1
When it is less than 0 m / sec, an amorphous structure is not formed, which is not preferable. On the other hand, if it exceeds 50 m / sec, it is not preferable because it does not form a fine crystal aggregate capable of obtaining good hard magnetic properties during crystallization. However, even if a small amount of α-Fe phase is present in the quenched structure, it does not significantly deteriorate the magnetic properties and is acceptable.

【0017】この発明において、上述の特定組成の合金
溶湯を超急冷法にてアモルファスあるいは微細結晶とア
モルファスが混在する組織となした後、磁気特性が最高
となる熱処理条件は組成に依存するが、熱処理温度が6
00℃未満ではNd2Fe14B相が析出しないためiH
cが発現しない。また700℃を超えると粒成長が著し
く、iHc、Brおよび減磁曲線の角形性が劣化し、上
述の磁気特性が得られないため、熱処理温度は600〜
700℃に限定する。熱処理雰囲気は酸化をふせぐた
め、Arガス、N2ガスなどの不活性ガス雰囲気中もし
くは10-2Torr以上の真空中が好ましい。磁気特性
は熱処理時間には依存しないが、6時間を越えるような
場合、若干時間の経過とともにBrが低下する傾向があ
るため、好ましくは6時間未満が良い。
In the present invention, the heat treatment conditions for maximizing the magnetic properties after the alloy melt of the above-mentioned specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method depend on the composition, Heat treatment temperature is 6
If the temperature is less than 00 ° C, the Nd 2 Fe 14 B phase does not precipitate, so iH
c is not expressed. Further, when the temperature exceeds 700 ° C., grain growth is remarkable, iHc, Br, and the squareness of the demagnetization curve are deteriorated, and the above-mentioned magnetic properties cannot be obtained.
Limit to 700 ° C. Since the heat treatment atmosphere prevents oxidation, it is preferably in an atmosphere of an inert gas such as Ar gas or N 2 gas or in a vacuum of 10 -2 Torr or more. The magnetic characteristics do not depend on the heat treatment time, but if it exceeds 6 hours, Br tends to decrease with the passage of time, so that it is preferably less than 6 hours.

【0018】この発明において重要な特徴として、熱処
理に際して結晶化が開始する温度付近以上からの昇温速
度であり、10℃/分未満の昇温速度では、昇温中に粒
成長が起こり、良好な硬磁気特性の得られる微細結晶集
合体とならず、3kOe以上のiHcが得られず好まし
くない。また、50℃/秒を越える昇温速度では、60
0℃を通過してから生成するNd2Fe14B相の析出が
十分に行われず、iHcが低下するだけでなく、Br点
近傍の減磁曲線の第2象限に磁化の低下のある減磁曲線
となり、(BH)maxが低下するため好ましくない。
結晶化が開始する温度は本磁石組成の非晶質合金中にお
いてFe3Bおよびα−Feが結晶化する温度であり、
昇温過程における発熱反応として、DTA、DSCなど
の手法を用いて明瞭に測定できる。なお、熱処理に際し
て結晶化開始温度までの昇温速度は任意であり、急速加
熱などを適用して処理能率を高めることができる。
An important feature of the present invention is the rate of temperature increase from around the temperature at which crystallization starts during heat treatment. At a rate of temperature increase of less than 10 ° C./minute, grain growth occurs during temperature increase, which is good. It is not preferable because it does not form a fine crystal aggregate having excellent hard magnetic properties and iHc of 3 kOe or more cannot be obtained. Further, at a temperature rising rate exceeding 50 ° C./second, 60
The Nd 2 Fe 14 B phase generated after passing 0 ° C. is not sufficiently precipitated, and not only the iHc decreases, but also the demagnetization with a decrease in the magnetization in the second quadrant of the demagnetization curve near the Br point. It becomes a curve and (BH) max decreases, which is not preferable.
The temperature at which crystallization starts is the temperature at which Fe 3 B and α-Fe crystallize in the amorphous alloy of the present magnet composition,
The exothermic reaction in the temperature rising process can be clearly measured using a technique such as DTA or DSC. In the heat treatment, the temperature rising rate up to the crystallization start temperature is arbitrary, and rapid heating or the like can be applied to increase the processing efficiency.

【0019】結晶構造 この発明による永久磁石合金粉末の結晶相は、強磁性を
有するFe3B型化合物並びにα−鉄からなる軟磁性相
と、Nd2Fe14B型結晶構造を有する硬磁性相とが同
一粉末中に共存し、各構成相の平均結晶粒径が1nm〜
50nmの範囲の微細結晶集合体からなることを特徴と
している。この発明において、磁石合金の平均結晶粒径
が50nmを超えると、Brおよび減磁曲線の角形性が
劣化し、Br≧8kG、(BH)max≧8MGOeの
磁気特性を有する等方性ボンド磁石を得ることができな
い。また、平均結晶粒径は細かいほど好ましいが、1n
m未満の平均結晶粒径を得ることは工業生産上困難であ
るため、下限を1nmとする。
Crystal Structure The crystal phase of the permanent magnet alloy powder according to the present invention includes a soft magnetic phase composed of Fe 3 B type compound having ferromagnetism and α-iron, and a hard magnetic phase having Nd 2 Fe 14 B type crystal structure. Coexist in the same powder, and the average crystal grain size of each constituent phase is 1 nm to
It is characterized by comprising a fine crystal aggregate in the range of 50 nm. In the present invention, when the average grain size of the magnet alloy exceeds 50 nm, the squareness of Br and the demagnetization curve deteriorates, and an isotropic bonded magnet having magnetic characteristics of Br ≧ 8 kG and (BH) max ≧ 8 MGOe is obtained. Can't get Further, the smaller the average crystal grain size is, the more preferable, but 1n
Since it is difficult to obtain an average crystal grain size of less than m in industrial production, the lower limit is set to 1 nm.

【0020】磁石化方法 特定組成の合金溶湯を前述の超急冷法にてアモルファス
組織あるいは微細結晶とアモルファスが混在する組織と
なし、結晶化が開始する温度付近から600℃〜700
℃の処理温度までの昇温速度が10℃/分〜50℃/秒
になる結晶化熱処理を施すことにより、平均結晶粒径が
1nm〜50nmの範囲にある微結晶集合体を得た永久
磁石合金粉末を用いて磁石化するには、公知のボンド磁
石化方法の何れも採用することができ、必要な場合は、
当該合金を平均結晶粒径が3〜500μmに粉砕したの
ち、公知のバインダーと混合して所要のボンド磁石とな
すことにより、8kG以上の残留磁束密度Brを有する
等方性ボンド磁石を得ることができる。複雑形状や薄肉
形状の磁石が得られるボンド磁石としての特徴を生か
し、高精度の成型を行うには、粉末の粒径は十分小さい
ことが必要であるが、アトマイズで得られる粒径が10
0μmを越える合金粉末は急冷時に十分粉末内部まで冷
却されず大部分がα−Fe相となるため、熱処理を施し
てもFe3B並びにNd2Fe14B相が析出せずに、硬磁
性材料となり得ない。また、3μm未満の粒径では、比
表面積増大に伴い多量の樹脂を使用する必要があり、充
填密度が低下して好ましくないため、粉末粒径を3μm
〜500μmに限定する。
Magnetization Method A molten alloy having a specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the above-mentioned ultra-quenching method, and 600 ° C. to 700 ° C. from around the temperature at which crystallization starts.
A permanent magnet having a fine crystal aggregate having an average crystal grain size in the range of 1 nm to 50 nm obtained by performing a crystallization heat treatment at a temperature rising rate up to a treatment temperature of 10 ° C. of 10 ° C./min to 50 ° C./sec. To magnetize using the alloy powder, any of the known bond magnetizing methods can be adopted, and if necessary,
It is possible to obtain an isotropic bonded magnet having a residual magnetic flux density Br of 8 kG or more by crushing the alloy to an average crystal grain size of 3 to 500 μm and then mixing it with a known binder to form a required bonded magnet. it can. The particle size of the powder must be sufficiently small in order to perform high-precision molding by taking advantage of the characteristics of a bonded magnet that can obtain a magnet with a complicated shape or a thin shape, but the particle size obtained by atomization is 10
Since the alloy powder exceeding 0 μm is not sufficiently cooled to the inside of the powder during the rapid cooling and most of it becomes the α-Fe phase, the Fe 3 B and Nd 2 Fe 14 B phases do not precipitate even if the heat treatment is performed, and the hard magnetic material It cannot be. If the particle size is less than 3 μm, a large amount of resin needs to be used as the specific surface area increases, and the packing density decreases, which is not preferable.
To 500 μm.

【0021】この発明によるボンド磁石は等方性磁石で
あり、以下に示す圧縮成型、射出成型、押し出し成型、
圧延成型、樹脂含浸法など公知のいずれの製造方法であ
ってもよい。圧縮成型の場合は、磁性粉末に熱硬化性樹
脂、カップリング剤、滑剤等を添加混練したのち、圧縮
成型して加熱樹脂を硬化して得られる。射出成型、押し
出し成型、圧延成型の場合は、磁性粉末に熱可塑性樹
脂、カップリング剤、滑剤等を添加混練したのち、射出
成型、押し出し成型、圧延成型のいずれかの方法にて成
型して得られる。樹脂含浸法においては、磁性粉末を圧
縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を
含浸させ、加熱して樹脂を硬化させて得る。また、磁性
粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑
性樹脂を含浸させて得る。
The bonded magnet according to the present invention is an isotropic magnet, and is manufactured by the following compression molding, injection molding, extrusion molding,
Any known manufacturing method such as rolling molding or resin impregnation method may be used. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, and then compression molding and curing the heating resin. In the case of injection molding, extrusion molding, and roll molding, after kneading the magnetic powder with thermoplastic resin, coupling agent, lubricant, etc., and then molding by injection molding, extrusion molding, or roll molding. To be In the resin impregnation method, magnetic powder is compression-molded, heat-treated as necessary, impregnated with a thermosetting resin, and heated to cure the resin. Alternatively, the magnetic powder may be obtained by compression molding, heat treatment if necessary, and impregnation with a thermoplastic resin.

【0022】この発明において、ボンド磁石中の磁性粉
末の重量比は、前記製法により異なるが、70〜99.
5wt%であり、残部0.5〜30wt%が樹脂その他
である。圧縮成型の場合、磁性粉末の重量比は95〜9
9.5wt%、射出成型の場合、磁性粉末の充填率は9
0〜95wt%、樹脂含浸法の場合、磁性粉末の重量比
は96〜99.5wt%が好ましい。この発明における
合成樹脂は、熱硬化性、熱可塑性のいずれの性質を有す
るものも利用できるが、熱的に安定な樹脂が好ましく、
例えば、ポリアミド、ポリイミド、フェノール樹脂、弗
素樹脂、けい素樹脂、エポキシ樹脂などを適宜選定でき
る。
In the present invention, the weight ratio of the magnetic powder in the bonded magnet is 70 to 99.
5% by weight, and the remaining 0.5 to 30% by weight is resin or the like. In the case of compression molding, the weight ratio of magnetic powder is 95-9
9.5 wt%, in the case of injection molding, the filling rate of magnetic powder is 9
0 to 95 wt%, and in the case of the resin impregnation method, the weight ratio of the magnetic powder is preferably 96 to 99.5 wt%. As the synthetic resin in the present invention, those having any of thermosetting and thermoplastic properties can be used, but a thermally stable resin is preferable,
For example, polyamide, polyimide, phenol resin, fluorine resin, silicon resin, epoxy resin and the like can be appropriately selected.

【0023】[0023]

【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−B−R−M(RはPrまたはNd、MはA
l、Si、S、Ni、Cu、Zn、Ga、Ag、Pt、
Au、Pbの1種もしくは2種以上)の合金溶湯を超急
冷法にてアモルファス組織あるいは微細結晶とアモルフ
ァスが混在する組織となし、得られたリボン、フレー
ク、球状粉末を結晶化が開始する温度付近から600〜
700℃での温度処理までの昇温速度が10℃/分〜5
0℃/秒になる結晶化熱処理を施すことにより、強磁性
を有するFe3B型化合物並びにα−鉄からなる軟磁性
相と、Nd2Fe14B型結晶構造を有する硬磁性相とが
同一粉末中に共存し、各構成相の平均結晶粒径が1nm
〜50nmの範囲にある微結晶集合体を得る。この際、
M(=Al、Si、S、Ni、Cu、Zn、Ga、A
g、Pt、Au、Pb)を加えると、Mを含まない組成
に比べ約1/2〜1/3に結晶粒が微細化し、この微細
結晶化によりBrおよび角形性の向上が得られ、iHc
≧3kOe、Br≧10kG、(BH)max≧9MG
Oeの磁気特性を有する永久磁石合金粉末を得ることが
でき、これを粉末粒径が3μm〜500μmの粉末とな
して樹脂と結合することにより、iHc≧3kOe、B
r≧8kG、(BH)max≧8MGOeの磁気特性を
有する等方性ボンド磁石を得ることができる。
The present invention is characterized in that Fe-B-R-M (R is Pr or Nd, M is A) of a specific composition containing a small amount of rare earth elements.
l, Si, S, Ni, Cu, Zn, Ga, Ag, Pt,
The temperature at which crystallization of the obtained ribbons, flakes, or spherical powders is achieved by forming a molten alloy of one or more of Au and Pb) into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method. 600 ~ from the neighborhood
Temperature rising rate up to temperature treatment at 700 ° C is 10 ° C / min to 5
By performing the crystallization heat treatment at 0 ° C./sec, the soft magnetic phase composed of the Fe 3 B type compound having ferromagnetism and α-iron and the hard magnetic phase having the Nd 2 Fe 14 B type crystal structure are the same. Coexist in powder, average grain size of each constituent phase is 1 nm
Microcrystalline aggregates in the range of -50 nm are obtained. On this occasion,
M (= Al, Si, S, Ni, Cu, Zn, Ga, A
g, Pt, Au, Pb), the crystal grains become finer by about 1/2 to 1/3 as compared with the composition containing no M, and the fine crystallization can improve the Br and the squareness.
≧ 3 kOe, Br ≧ 10 kG, (BH) max ≧ 9 MG
It is possible to obtain a permanent magnet alloy powder having a magnetic property of Oe, which is made into a powder having a powder particle size of 3 μm to 500 μm and combined with a resin to obtain iHc ≧ 3 kOe, B
An isotropic bonded magnet having magnetic characteristics of r ≧ 8 kG and (BH) max ≧ 8 MGOe can be obtained.

【0024】[0024]

【実施例】【Example】

実施例1 表1のNo.1〜13の組成となるように、純度99.
5%以上のFe、Al、Si、S、Ni、Cu、Zn、
Ga、Ag、Pt、Au、Pb、B、Nd、Prの金属
を用いて、総量が30grとなるように秤量し、底部に
直径0.8mmのオリフィスを有する石英るつぼ内に投
入し、圧力56cmHgのAr雰囲気中で高周波加熱に
より溶解し、溶解温度を1300℃にした後、湯面をA
rガスにより加圧してロール周速度20m/秒にて回転
する室温のCu製ロールの外周面に0.7mmの高さか
ら溶湯を噴出させて、幅2〜3mm、厚み20〜40μ
mの超急冷薄帯を作製した。得られた超急冷薄帯をCu
Kαの特性X線によりアモルファスであることを確認し
た。
Example 1 No. 1 in Table 1 Purity of 99.
5% or more of Fe, Al, Si, S, Ni, Cu, Zn,
Metals of Ga, Ag, Pt, Au, Pb, B, Nd, and Pr were weighed so that the total amount was 30 gr, put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and the pressure was 56 cmHg. Melted by high frequency heating in Ar atmosphere, and the melting temperature was set to 1300 ° C.
The molten metal is jetted from a height of 0.7 mm onto the outer peripheral surface of a room temperature Cu roll that is pressurized with r gas and rotates at a roll peripheral speed of 20 m / sec, and has a width of 2 to 3 mm and a thickness of 20 to 40 μm.
An ultra-quenched ribbon of m was prepared. The obtained ultra-quenched ribbon is Cu
It was confirmed to be amorphous by the characteristic X-ray of Kα.

【0025】この超急冷薄帯をArガス中で、結晶化が
始まる580℃〜600℃以上を表1に示す昇温速度で
昇温し、表1に示す熱処理温度で7分間保持し、その後
室温まで冷却して薄帯を取り出し、幅2〜3mm、厚み
20〜40μm、長さ3〜5mmの試料を作製し、VS
Mを用いて磁気特性を測定した。測定結果としてNo.
2の試料の減磁曲線(試料形状;幅3mm、厚み30μ
m、長さ3mm)を図1に示す。なお、試料の構成相を
CuKαの特性X線で調査した結果、α−Fe相、Fe
3B相、Nd2Fe14B相が混在する多相組織であった。
なお、Al、Si、S、Ni、Cu、Zn、Ga、A
g、Pt、Au、Pbはこれらの各相でFeの一部を置
換する。平均結晶粒径はいずれも30nm以下であっ
た。
This ultra-quenched ribbon was heated in Ar gas at a temperature rising rate shown in Table 1 at a temperature of 580 ° C. to 600 ° C. at which crystallization begins, and was held at the heat treatment temperature shown in Table 1 for 7 minutes, and thereafter. After cooling to room temperature, the thin strip was taken out, and a sample having a width of 2 to 3 mm, a thickness of 20 to 40 μm, and a length of 3 to 5 mm was prepared.
The magnetic properties were measured using M. No. as the measurement result.
Demagnetization curve of sample 2 (sample shape; width 3 mm, thickness 30 μ
m, length 3 mm) is shown in FIG. As a result of investigating the constituent phases of the sample by the characteristic X-ray of CuKα, it was found that α-Fe phase, Fe
It had a multi-phase structure in which 3 B phase and Nd 2 Fe 14 B phase were mixed.
In addition, Al, Si, S, Ni, Cu, Zn, Ga, A
g, Pt, Au and Pb replace part of Fe in each of these phases. The average crystal grain size was 30 nm or less in all cases.

【0026】得られた超急冷薄帯を表1の熱処理後に平
均粉末粒径を150μm以下に粉砕し、エポキシ樹脂か
らなるバインダーを3wt%の割合で混合したのち、、
6ton/cm2の圧力で圧縮成型し、150℃で硬化
処理して12mm×12mm×8mm寸法のボンド磁石
を作成した。得られたボンド磁石の密度はいずれも6.
0gr/cm3であり、磁気特性並びに25℃〜140
℃におけるBr及びiHcの温度係数を表2に示す。
The obtained ultra-quenched ribbon was heat-treated in Table 1 and then pulverized to an average powder particle size of 150 μm or less, and a binder made of an epoxy resin was mixed at a ratio of 3 wt%.
It was compression molded at a pressure of 6 ton / cm 2 and cured at 150 ° C. to prepare a bonded magnet having dimensions of 12 mm × 12 mm × 8 mm. The density of each of the obtained bonded magnets was 6.
0 gr / cm 3 , magnetic properties and 25 ° C to 140
Table 2 shows the temperature coefficients of Br and iHc at ° C.

【0027】比較例 表1のNo.14〜16の組成となるように純度99.
5%以上のFe、B、Rを用いて実施例1と同条件で超
急冷薄帯を作製した。得られた薄帯を実施例1と同一条
件の熱処理を施し、冷却後に実施例1と同条件で試料化
(比較例No.14〜16)してVSMを用いて磁気特
性を測定した。測定結果としてNo.15の試料の減磁
曲線(試料形状;幅3mm、厚み30μm、長さ3m
m)を図1に示す。なお、試料の構成相はFe3B相を
主相とするα−Fe相とNd2Fe14B相の多相組織で
あり、平均結晶粒径は50nm前後とNo.1〜No.
13の試料に比べ粗大であった。得られた薄帯を実施例
1と同一条件の熱処理を施し、冷却後に実施例1と同条
件で粉砕して、平均粒径60μmの粉末を得たのち、実
施例1と同一条件にてボンド磁石を作成した。得られた
ボンド磁石の磁石特性並びに25℃〜140℃における
永久磁石合金粉末が有するBr及びiHcの温度係数を
表2に示す。
Comparative Example No. 1 in Table 1 Purity of 99.
An ultra-quenched ribbon was produced under the same conditions as in Example 1 using 5% or more of Fe, B, and R. The obtained ribbon was heat-treated under the same conditions as in Example 1, cooled, and then sampled under the same conditions as in Example 1 (Comparative Examples Nos. 14 to 16), and the magnetic characteristics were measured using VSM. No. as the measurement result. Demagnetization curve of 15 samples (sample shape; width 3 mm, thickness 30 μm, length 3 m
m) is shown in FIG. The constituent phase of the sample is a multi-phase structure of α-Fe phase and Nd 2 Fe 14 B phase having Fe 3 B phase as a main phase, and the average crystal grain size is around 50 nm and No. 1-No.
It was coarser than the 13 samples. The obtained ribbon was subjected to a heat treatment under the same conditions as in Example 1, cooled and then pulverized under the same conditions as in Example 1 to obtain a powder having an average particle size of 60 μm, and then bonded under the same conditions as in Example 1. I made a magnet. Table 2 shows the magnetic properties of the obtained bonded magnet and the temperature coefficients of Br and iHc of the permanent magnet alloy powder at 25 ° C to 140 ° C.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成のFe−B−R−M(RはPr またはN
d、Mは Al、Si、S、Ni、Cu、Zn、Ga、
Ag、Pt、Au、Pbの1種もしくは2種以上)の合
金溶湯を超急冷法にてアモルファス組織あるいは微細結
晶とアモルファスが混在する組織となし、得られたリボ
ン、フレーク、球状粉末に特定条件の熱処理を施すこと
により、Fe3B型化合物並びにα−鉄と、Nd2Fe14
B型結晶構造を有する化合物相とが同一粉末中に共存
し、各構成相の平均結晶粒径が1nm〜50nmの範囲
にある微結晶集合体を得る。この際、M(=Al、S
i、S、Ni、Cu、Zn、Ga、Ag、Pt、Au、
Pb)を加えることで組織がMを含まない組成に比べ1
/2〜1/3に微細化されることによりBrおよび減磁
曲線の角形性が向上し、iHc≧3kOe、Br≧10
kG、(BH)max≧9MGOeの磁気特性を有する
温度特性に優れた永久磁石合金粉末を得ることができ、
これを樹脂にて結合することにより、SmやCoを含ま
ず、製造方法が簡単で大量生産に適しているため、ハー
ドフェライト磁石を越える磁気的性能、すなわち、iH
c≧3kOe、Br≧8kG、(BH)max≧8MG
Oeの磁気特性を有し、かつ温度特性に優れた安価な等
方性ボンド磁石を安定して提供できる。
INDUSTRIAL APPLICABILITY The present invention has a specific composition of Fe-B-RM (where R is Pr or N) with a low content of rare earth elements.
d and M are Al, Si, S, Ni, Cu, Zn, Ga,
One or more alloy melts of Ag, Pt, Au and Pb) are made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, and the ribbon, flakes and spherical powders obtained have specific conditions. Heat treatment of Fe 3 B type compound and α-iron, Nd 2 Fe 14
A compound phase having a B-type crystal structure coexists in the same powder, and a fine crystal aggregate having an average crystal grain size of each constituent phase in the range of 1 nm to 50 nm is obtained. At this time, M (= Al, S
i, S, Ni, Cu, Zn, Ga, Ag, Pt, Au,
By adding Pb), compared with the composition in which the tissue does not contain M, 1
The squareness of Br and the demagnetization curve is improved by reducing the size to / 2 to 1/3, iHc ≧ 3 kOe, Br ≧ 10
It is possible to obtain a permanent magnet alloy powder having an excellent temperature characteristic having a magnetic characteristic of kG, (BH) max ≧ 9 MGOe,
By combining this with a resin, it does not contain Sm or Co, the manufacturing method is simple, and it is suitable for mass production.
c ≧ 3 kOe, Br ≧ 8 kG, (BH) max ≧ 8 MG
An inexpensive isotropic bonded magnet having Oe magnetic characteristics and excellent temperature characteristics can be stably provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】減磁曲線を示すグラフである。FIG. 1 is a graph showing a demagnetization curve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-y-zxyz
(但しRはPrまたはNdの1種または2種、MはA
l,Si,S,Ni,Cu,Zn,Ga,Ag,Pt,
Au,Pbの1種または2種以上)と表し、組成範囲を
限定する記号x、y、zが下記値を満足し、Fe3B型
化合物並びにα−鉄と、Nd2Fe14B型結晶構造を有
する化合物相とが同一粉末粒子中に共存し、各構成相の
平均結晶粒径が1nm〜50nmの範囲にある微細結晶
集合体であり、平均粒径が3μm〜500μmである粉
末を樹脂にて結合したことを特徴とする等方性ボンド磁
石。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
1. The composition formula is Fe 100-xyz B x R y M z
(However, R is one or two of Pr or Nd, M is A
l, Si, S, Ni, Cu, Zn, Ga, Ag, Pt,
Au, Pb 1 type or 2 types or more), and the symbols x, y, z for limiting the composition range satisfy the following values, and Fe 3 B type compounds and α-iron, and Nd 2 Fe 14 B type crystals A powder is a fine crystal aggregate in which the compound phase having a structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm, and the average grain size of the powder is 3 μm to 500 μm. An isotropic bonded magnet characterized by being bonded by. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%
【請求項2】 組成式をFe100-x-y-zxyz (但
しRはPrまたはNdの1種または2種、MはAl,S
i,S,Ni,Cu,Zn,Ga,Ag,Pt,Au,
Pbの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、zが下記値を満足する合金溶湯を回転ロ
ールを用いた超急冷法、スプラット急冷法、ガスアトマ
イズ法あるいはこれらを組み合せて急冷し、アモルファ
ス組織あるいは微細結晶とアモルファスが混在する組織
となし、さらに結晶化が開始する温度付近から600℃
〜700℃の処理温度までの昇温速度が10℃/分〜5
0℃/秒になる結晶化熱処理を施し、Fe3B型化合物
並びにα−鉄と、Nd2Fe14B型結晶構造を有する化
合物とが同一粉末粒子中に共存し、各構成相の平均結晶
粒径が1nm〜50nmの範囲にある微結晶集合体を得
たのち、これを平均粒径3μm〜500μmに粉砕した
磁石合金粉末を樹脂にて結合したことを特徴とする等方
性ボンド磁石の製造方法。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
2. The composition formula is Fe 100-xyz B x R y M z (wherein R is one or two of Pr or Nd, M is Al, S
i, S, Ni, Cu, Zn, Ga, Ag, Pt, Au,
One or more of Pb) and the symbols x, y, and z for limiting the composition range satisfying the following values, an alloy melt is subjected to an ultra-quenching method using a rotating roll, a splat quenching method, a gas atomizing method, or the like. Combined and rapidly cooled to form an amorphous structure or a structure in which fine crystals and amorphous coexist, and 600 ° C from around the temperature at which crystallization starts.
The temperature rising rate up to the processing temperature of ~ 700 ° C is 10 ° C / min ~ 5
The Fe 3 B type compound and α-iron and the compound having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle after the crystallization heat treatment at 0 ° C./sec. A microcrystalline aggregate having a particle size in the range of 1 nm to 50 nm is obtained, and then magnet alloy powder crushed to have an average particle size of 3 μm to 500 μm is bonded with a resin to form an isotropic bonded magnet. Production method. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%
JP6076543A 1994-03-22 1994-03-22 Isotropic bond magnet and its production Pending JPH07263211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6076543A JPH07263211A (en) 1994-03-22 1994-03-22 Isotropic bond magnet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6076543A JPH07263211A (en) 1994-03-22 1994-03-22 Isotropic bond magnet and its production

Publications (1)

Publication Number Publication Date
JPH07263211A true JPH07263211A (en) 1995-10-13

Family

ID=13608189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6076543A Pending JPH07263211A (en) 1994-03-22 1994-03-22 Isotropic bond magnet and its production

Country Status (1)

Country Link
JP (1) JPH07263211A (en)

Similar Documents

Publication Publication Date Title
KR0149901B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
EP0542529A1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
US6019859A (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP2986611B2 (en) Fe-BR bonded magnet
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP2925840B2 (en) Fe-BR bonded magnet
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JPH07263211A (en) Isotropic bond magnet and its production
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3032385B2 (en) Fe-BR bonded magnet
JPH0657311A (en) Production of rare earth alloy magnet powder
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3131040B2 (en) Method for producing Fe-BR bonded magnet
JPH0636916A (en) Fe-b-r base bond magnet
JP3131022B2 (en) Fe-BR bonded magnet
JPH07161513A (en) Iron based bond magnet and its production