JP3131022B2 - Fe-BR bonded magnet - Google Patents

Fe-BR bonded magnet

Info

Publication number
JP3131022B2
JP3131022B2 JP04130141A JP13014192A JP3131022B2 JP 3131022 B2 JP3131022 B2 JP 3131022B2 JP 04130141 A JP04130141 A JP 04130141A JP 13014192 A JP13014192 A JP 13014192A JP 3131022 B2 JP3131022 B2 JP 3131022B2
Authority
JP
Japan
Prior art keywords
phase
powder
resin
magnet
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04130141A
Other languages
Japanese (ja)
Other versions
JPH05299225A (en
Inventor
哲 広沢
裕和 金清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP04130141A priority Critical patent/JP3131022B2/en
Publication of JPH05299225A publication Critical patent/JPH05299225A/en
Application granted granted Critical
Publication of JP3131022B2 publication Critical patent/JP3131022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、モーターやアクチュ
エーターなどに最適なFe-B-R系ボンド磁石に係り、希土
類元素の含有量が少ない特定組成のFe-Ni-B-(R,Dy)-M系
合金溶湯(但しRはPrまたはNdの1種または2種)を超急冷
法にて大部分をアモルファス組織となし、体心正方晶結
晶構造を有する鉄を主成分とするホウ化物相とNd2Fe14B
型結晶構造の構成相との微細結晶集合体からなる合金粉
末を樹脂にて結合することにより、ハードフェライト磁
石では得られなかった5kG以上の残留磁束密度Brを有す
るFe-B-R系ボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-BR based bonded magnet which is most suitable for a motor or an actuator, and has a specific composition of Fe-Ni-B- (R, Dy) -M having a low rare earth element content. system molten alloy (where R is one or two Pr or Nd) forms a majority of an amorphous tissue in rapid quenching, containing iron as a main component having a body-centered tetragonal Akirayui <br/> crystal structure Boride phase and Nd 2 Fe 14 B
The present invention relates to a Fe-BR based bonded magnet having a residual magnetic flux density Br of 5 kG or more, which cannot be obtained with a hard ferrite magnet, by bonding an alloy powder comprising a fine crystal aggregate with a constituent phase having a type crystal structure with a resin.

【0002】[0002]

【従来の技術】電装品用モーターやアクチュエーターな
どに使用される永久磁石は主にハードフェライト磁石に
限定されていたが、低温でのiHc低下に伴う低温減磁、
セラミックス材質のために機械的強度が低くて割れ、欠
けが発生し易いこと、複雑な形状が得難いことなどの問
題があった。
2. Description of the Related Art Permanent magnets used in motors and actuators for electrical components are mainly limited to hard ferrite magnets.
Due to the ceramic material, there were problems such as low mechanical strength, cracking and chipping easily occurring, and difficulty in obtaining a complicated shape.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが5
〜7kG程度のものが最適とされている。すなわち、使用
する磁石材料のBrが8kG以上の場合、現在のモーター構
造では磁路となる回転子やステーターの鉄板の断面積を
増大させる必要があり、重量の増大を招来するが、Brが
5〜7kGであれば性能対重量比を最大にすることができ
る。
[0003] Today, there is a strong demand for automobiles to improve fuel efficiency by reducing the weight of the vehicles in order to save resources, and it is required to further reduce the size and weight of electrical components for automobiles. Also,
Designs to maximize the performance-to-weight ratio are also being considered for applications such as motors for home appliances other than automotive electrical components.
Approximately 7 kG is considered optimal. In other words, when the Br of the magnet material used is 8 kG or more, the current motor structure needs to increase the cross-sectional area of the iron plate of the rotor or the stator, which becomes a magnetic path, and causes an increase in weight.
5-7kG can maximize the performance to weight ratio.

【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求されて
いるが、従来のハードフェライト磁石では得ることがで
きない。例えばNd-Fe-B系ボンド磁石ではかかる磁気特
性を満足するが、金属の分離精製や還元反応に多大の工
程並びに大規模な設備を要するNd等を10〜15at%含有し
ているため、ハードフェライト磁石に比較して著しく高
価であり、現在のところ大量生産が可能で安価に提供で
きるBrが5〜7kG程度の磁石材料は、見出されていない。
Accordingly, magnetic materials for small motors are required to have a residual magnetic flux density Br of at least 5 kG in terms of magnetic properties, but cannot be obtained with conventional hard ferrite magnets. For example, an Nd-Fe-B bonded magnet satisfies such magnetic properties, but contains 10 to 15 at% of Nd or the like, which requires a large number of steps and large-scale facilities for metal separation and purification and reduction reactions. Magnet materials with a Br of about 5 to 7 kG, which are significantly more expensive than ferrite magnets and can be mass-produced and can be provided at low cost, have not been found at present.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd-Fe-B系磁石
において、最近、Nd4Fe77B19(at%)近傍でFe3B型化合物
を主相とする磁石材料が提案(R.Coehoorn等、J.de Phy
s.、C8,1988,669〜670頁)された。この磁石材料はアモ
ルファスリボンを熱処理することにより、Fe3BとNd2Fe
14Bの結晶集合組織を有する準安定構造であるが、iHcが
2〜3kOe程度と高くなく、またこのiHcを得るための熱処
理条件が狭く限定され、工業生産上実用的でない。
On the other hand, among Nd-Fe-B based magnets, recently, a magnet material having a main phase of Fe 3 B type compound in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed (R .Coehoorn et al., J.de Phy
s., C8, 1988, 669-670). This magnet material is made by heat-treating an amorphous ribbon to obtain Fe 3 B and Nd 2 Fe.
It is a metastable structure with a crystal texture of 14 B, but iHc
It is not as high as about 2 to 3 kOe, and the heat treatment conditions for obtaining this iHc are narrow and limited, which is not practical for industrial production.

【0006】このFe3B型化合物を主相とする磁石材料に
添加元素を加えて多成分化し、性能向上を図った研究が
発表されている。その1つは希土類元素にNdのほかにDy
とTbを用いてiHcの向上を図るものであるが、高価な元
素を添加する問題のほか、添加希土類元素はその磁気モ
ーメントがNdやFeの磁気モーメントと反平行して結合す
るため磁化が減少する問題がある(R.Coehoorn、J.Magn,
Magn,Mat.、83(1990)228〜230頁)。
Researches have been published to improve the performance by adding an additional element to the magnet material having the Fe 3 B type compound as a main phase to make it a multi-component. One of them is rare earth elements, Nd, and Dy.
And Tb to improve iHc, but in addition to the problem of adding expensive elements, the magnetization of the added rare earth element decreases because its magnetic moment couples antiparallel to the magnetic moment of Nd or Fe (R. Coehoorn, J. Magn,
Magn, Mat., 83 (1990) pp. 228-230).

【0007】他の研究(Shen Bao-genら、J.Magn,Magn,M
at.、89(1991)335〜340頁)として、Feの一部をCoにて置
換してキュリー温度を上昇させ、iHcの温度係数を改善
するものがあるが、Coの添加にともないBrを低下させる
問題がある。
Other studies (Shen Bao-gen et al., J. Magn, Magn, M.
at., 89 (1991) pp. 335-340), a part of Fe is replaced with Co to increase the Curie temperature and improve the temperature coefficient of iHc, but with the addition of Co, Br There is a problem of lowering.

【0008】いずれにしてもFe3B型Nd-Fe-B系磁石は、
超急冷法によりアモルファス化した後、熱処理してハー
ド磁石材料化できるが、iHcが低く、かつ前記熱処理条
件が狭く、添加元素にて高iHc化を図ると磁気エネルギ
ー積が低下するなど、安定した工業生産ができず、ハー
ドフェライト磁石の代替えとして安価に提供することが
できない。
In any case, the Fe 3 B type Nd—Fe—B magnet is
After being made amorphous by the super-quenching method, heat treatment can be performed to form a hard magnet material.However, the iHc is low, and the heat treatment conditions are narrow. It cannot be manufactured industrially and cannot be provided at low cost as a substitute for hard ferrite magnets.

【0009】また、Nd-Fe-B系合金をアモルファス化す
るためには、超急冷時のロール周速度を著しく速くする
必要があり、製品の回収率や歩留りが低下する問題があ
り、さらにFe基合金であることから、保存時の腐食が進
行し易く、長期間の保存により初期の磁気特性が維持で
きずに劣化する問題があった。
Further, in order to make the Nd-Fe-B alloy amorphous, it is necessary to remarkably increase the peripheral speed of the roll during super-quenching, which causes a problem of lowering the product recovery rate and the yield. Since it is a base alloy, there is a problem that corrosion at the time of storage is apt to progress, and the magnetic properties at the initial stage cannot be maintained due to long-term storage, resulting in deterioration.

【0010】この発明は、Fe3B型Fe-B-R系磁石(Rは希土
類元素)に着目して、iHcと(BH)maxを向上させ、5kG以上
の残留磁束密度Brを有し安定した工業生産が可能なハー
ドフェライト磁石の代替えとして安価に提供できるFe3B
型B-Fe-R系ボンド磁石を目的としている。
The present invention focuses on Fe 3 B type Fe-BR based magnets (R is a rare earth element), improves iHc and (BH) max, and has a stable industrial flux having a residual magnetic flux density Br of 5 kG or more. Fe 3 B can be provided at low cost as an alternative to hard ferrite magnets that can be produced
It is intended for B-Fe-R type bonded magnets.

【0011】[0011]

【課題を解決するための手段】この発明は、Fe3B型系Fe
-B-R磁石のiHcと(BH)maxを向上させ、安定した工業生産
が可能な製造方法を目的に種々検討した結果、以下の知
見を得て完成したものである。希土類元素R(R:Pr、Ndの
1種または2種)の1部をDyにて置換することにより、Nd2F
e14B相の異方性磁界を向上させ、高保磁力を図ると共
に、少量の添加Niにより、Fe3B相中のFeの一部がNiで置
換されて、その結果、完全にアモルファス相を得なくて
も、Fe3Bと同じ結晶構造、すなわち、体心正方晶結晶構
造を有する鉄を主成分とするホウ化物相が折出し、さら
に急冷後、適当な熱処理によって、前記ホウ化物とNd2F
e14B型結晶構造の化合物を結晶化させる際に結晶粒径を
微細化する添加元素M(MはAl、Si、Cu、Ga、Ag、Auの1種
または2種)を添加することにより、Dy添加に伴う減磁曲
線の角形性の劣化と残留磁化の低下の問題を解決するこ
とができ、前記ホウ化物相とNd2Fe14B型結晶構造の化合
物相が同一粉末粒子中に共存し、しかもその平均結晶粒
径が5nm〜100nmの範囲内のとき、実用的に必要な2kOe以
上の固有保磁力を発揮し、この合金粉末を樹脂にて所要
形状に成型固化することにより、室温付近で準安定な結
晶構造相が分解することなく、永久磁石として利用可能
な形態として提供できる。
SUMMARY OF THE INVENTION The present invention provides an Fe 3 B type Fe
As a result of various studies for the purpose of improving the iHc and (BH) max of the -BR magnet and enabling stable industrial production, the magnet was completed with the following knowledge. Rare earth element R (R: Pr, Nd
By substituting Dy for one part of (1 or 2 types), Nd 2 F
improve the anisotropic magnetic field of the e 14 B phase, there is ensured a high coercive force, a small amount of additives Ni, part of Fe of the Fe 3 B phase is replaced with Ni, as a result, a completely amorphous phase without obtain the same crystal structure as Fe 3 B, i.e., out boride phase folding composed mainly of iron having a body-centered tetragonal Akirayui crystal structure, after further quenching, by appropriate heat treatment, and the borides Nd 2 F
additive element M (M is Al, Si, Cu, Ga, Ag, 1 kind or two kinds of Au) of refining the crystal grain size when crystallizing the compound of e 14 B type crystal structure by the addition of Can solve the problems of demagnetization curve squareness deterioration and remanence magnetization decrease due to Dy addition, and the boride phase and the compound phase of Nd 2 Fe 14 B type crystal structure coexist in the same powder particles. In addition, when the average crystal grain size is in the range of 5 nm to 100 nm, a specific coercive force of 2 kOe or more, which is practically necessary, is exhibited, and the alloy powder is molded and solidified into a required shape with a resin, thereby reducing the room temperature. The metastable crystal structure phase is not decomposed in the vicinity, and can be provided as a form usable as a permanent magnet.

【0012】この発明は、合金粉末の組成式をFe
100-x-y-zNixBy(R1-aDya)zMw (但しRはPrまたはNdの1
種または2種、MはAl、Si、Cu、Ga、Ag、Auの1種または2
種以上)と表し、組成範囲を限定する記号x、y、z、a、w
が下記値を満足し、体心正方晶結晶構造を有する鉄を主
成分とするホウ化物相とNd2Fe14B型結晶構造の構成相と
が同一粉末粒子中に共存し、各構成相の平均結晶粒径が
5nm〜100nmの範囲にあり、平均粒径が3μm〜500μmであ
る粉末を樹脂にて結合したことを特徴とするFe-B-R系ボ
ンド磁石である。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.9 0.1≦w≦3at%
According to the invention, the composition formula of the alloy powder is Fe
100-xyz Ni x B y ( R 1-a Dy a) z M w ( where R is 1 Pr or Nd
Species or two, M is one or two of Al, Si, Cu, Ga, Ag, Au
And x, y, z, a, w
There satisfies the following values, and the body-centered boride phase composed mainly of iron having a tetragonal Akirayui crystal structure and Nd 2 Fe 14 configuration phase B type crystal structure coexist in the same powder particles, the respective constituent phases Has an average grain size of
A Fe-BR-based bonded magnet characterized in that powder having an average particle diameter of 3 nm to 500 μm in a range of 5 nm to 100 nm is bonded with a resin. 0.01 ≦ x ≦ 2at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at% 0.02 ≦ a ≦ 0.9 0.1 ≦ w ≦ 3at%

【0013】この発明によるFe-B-R系ボンド磁石を得る
には、以下の製法による。 (1)組成式をFe100-x-y-zNixBy(R1-aDya)zMw (但しRはP
rまたはNdの1種または2種、MはAl、Si、Cu、Ga、Ag、Au
の1種または2種以上)と表し、組成範囲を限定する記号
x、y、z、a、wが上述の値を満足する合金溶湯を超急冷
法にて実質的に90%以上をアモルファス組織となし、 (2)さらに熱処理に際し500℃からの昇温速度を1〜15℃/
分で昇温して550〜700℃で5分〜6時間保持する熱処理を
施し、 (3)Fe3B型化合物を主相とし、Nd2Fe14B型結晶構造を有
する強磁性相を有し、平均結晶粒径が5nm〜100nmの微細
結晶集合体を得たのち、 (4)これを粉砕して得られた平均粒径が3〜500μmの粉末
を樹脂にて所要形状に成型固化する。
To obtain the Fe-BR based bonded magnet according to the present invention, the following manufacturing method is used. (1) the composition formula Fe 100-xyz Ni x B y (R 1-a Dy a) z M w ( where R is P
r or Nd one or two, M is Al, Si, Cu, Ga, Ag, Au
One or two or more), and a symbol that limits the composition range
x, y, z, a, w make the molten alloy satisfying the above values substantially 90% or more amorphous structure by ultra-quenching method. (2) Further increase the heating rate from 500 ° C during heat treatment. 1 ~ 15 ℃ /
Heat treatment at 550 to 700 ° C for 5 minutes to 6 hours, and (3) a ferromagnetic phase having a Fe 3 B type compound as a main phase and an Nd 2 Fe 14 B type crystal structure. Then, after obtaining a fine crystal aggregate having an average crystal grain size of 5 nm to 100 nm, (4) molding and solidifying a powder having an average grain size of 3 to 500 μm obtained by grinding the resin into a required shape. .

【0014】粉末の構成相の限定理由 この発明によるボンド磁石を構成する合金粉末は、1.6T
という高い飽和磁化を持つ体心正方晶結晶構造を有する
鉄を主成分とするホウ化物相を主相とすることを特徴と
している。このホウ化物はFe3BまたはそのFeの一部がNi
で置換された化合物であって、このホウ化物相はFe3Bま
たはその中のFeの一部がNiで置換されている。このホウ
化物相は特定の範囲で準安定的に空間群P4/nmnのNd2Fe
14B型結晶構造を有するNd2(Fe,Ni)14B強磁性相と共存で
きる。これらのホウ化物相と強磁性相が共存することが
高い磁束密度と十分なiHcを得るためには必須であり、
同一組成であっても、例えば鋳造法などではその製法に
起因して、C16型結晶構造を有するFe2B相と体心立方晶
のα-Fe相とが主相となると、高い磁化が得られるが、i
Hcは1kOe以下に劣化して磁石として使用できなくなるた
め好ましくない。
Reasons for Limiting Constituent Phase of Powder The alloy powder constituting the bonded magnet according to the present invention is 1.6 T
It is characterized in that the main phase of boride phase composed mainly of iron having a body-centered tetragonal Akirayui crystal structure having a high saturation magnetization that. This boride is composed of Fe 3 B or a part of Fe
In this boride phase, Fe 3 B or a part of Fe therein is substituted by Ni. This boride phase is metastable in a specific range with Nd 2 Fe in the space group P 4 / nmn.
It can coexist with Nd 2 (Fe, Ni) 14 B ferromagnetic phase having 14 B type crystal structure. The coexistence of these boride phase and ferromagnetic phase is essential for obtaining high magnetic flux density and sufficient iHc,
Be the same composition, for example in such casting due to its production method, when the Fe 2 B phase and the body-centered cubic alpha-Fe phase becomes the main phase having a C16 type crystal structure, high magnetization is obtained But i
Hc is not preferable because it deteriorates to 1 kOe or less and cannot be used as a magnet.

【0015】組成の限定理由 希土類元素Rは特定量のPrまたはNdの1種また2種に加え
て、Dyを含有するときのみ、高い磁気特性が得られ、他
の希土類、例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は磁
気特性の劣化を招来するとともに磁石を高価格にするた
め好ましくない。Rは、3at%未満では2kOe以上のiHcが得
られず、また5.5at%を超えると体心正方晶結晶構造の鉄
を主成分とするホウ化物相が生成せず、硬磁性を示さな
い準安定相のR2Fe23B3相が折出しiHcは著しく低下する
ので好ましくないため、3〜5.5at%の範囲とする。R中の
Dy量を0.02〜0.9に限定した理由は、0.02未満では4kOe
以上のiHcが得られず、また、0.9を超えるとBrの低下が
著しく好ましくないことによる。
Reasons for Limiting Composition Rare earth elements R can obtain high magnetic properties only when they contain Dy in addition to one or two kinds of specific amounts of Pr or Nd, and other rare earth elements such as Ce and La Characteristics with iHc of 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm are not preferable because they cause deterioration of magnetic characteristics and increase the price of magnets. If R is less than 3 at%, iHc of 2 kOe or more cannot be obtained, and if it exceeds 5.5 at% , iron having a body-centered tetragonal crystal structure
A boride phase containing no main component is not generated, and the metastable phase R 2 Fe 23 B 3 phase showing no hard magnetism is undesirably reduced because the iHc is remarkably reduced. I do. In R
The reason for limiting the Dy amount to 0.02 to 0.9 is that if it is less than 0.02, 4 kOe
This is because the above iHc cannot be obtained, and when it exceeds 0.9, the decrease in Br is extremely undesirable.

【0016】Bは、16at%未満および22at%を超えると2kO
e以上のiHcが得られないため、16〜22at%の範囲とす
る。
B is 2 kO if it is less than 16 at% and more than 22 at%.
Since iHc higher than e cannot be obtained, the range is 16 to 22 at%.

【0017】Niは、iHc及び減磁曲線の角形性の向上改
善に有効であるが、0.01at%未満ではかかる効果が得ら
れず、2at%を超えるとiHcは著しく低下し、2kOe以上のi
Hcが得られないため、0.01〜2at%の範囲とする。
Ni is effective for improving and improving the squareness of the iHc and demagnetization curve. However, if the content is less than 0.01 at%, such an effect cannot be obtained. If the content exceeds 2 at%, the iHc is remarkably reduced, and i more than 2 kOe.
Since Hc cannot be obtained, the range is 0.01 to 2 at%.

【0018】Al、Si、Cu、Ga、Ag、Auは微結晶組織の制
御に寄与し、熱処理温度範囲を拡大して減磁曲線の角形
性を改善し、磁気特性のBr、(BH)maxを増大させる効果
を有するが、かかる効果を得るには少なくとも0.1at%以
上の添加が必要であるが、3at%を超えるとかえって角形
性を劣化させ、(BH)maxも低下するため、0.1〜3at%の範
囲とする。
Al, Si, Cu, Ga, Ag, and Au contribute to control of the microcrystalline structure, expand the heat treatment temperature range, improve the squareness of the demagnetization curve, and increase the magnetic properties of Br and (BH) max. It is necessary to add at least 0.1 at% or more to obtain such an effect.However, if it exceeds 3 at%, the squareness is rather deteriorated, and (BH) max also decreases. The range is 3 at%.

【0019】Feは、上述の元素の含有残余を占める。Fe occupies the residual content of the above-mentioned elements.

【0020】結晶粒径、粉末粒径の限定理由 この発明のボンド磁石を構成する合金粉末中に共存する
体心正方晶結晶構造を有する鉄を主成分とするホウ化物
相とNd2Fe14B型結晶相は、いずれも強磁性相であるが、
前者相は単独では磁気的に軟質であり、後者相が共存す
ることがiHcを発現するのに不可欠である。しかし、単
に両相が共存するだけでは不十分であり、両者の平均結
晶粒径が5nm〜100nmの範囲にないと、減磁曲線の第2象
限の角形性が悪化して、永久磁石としては動作点におい
て十分な磁束を取り出すことができないため、平均結晶
粒径は5nm〜100nmに限定する。複雑形状や薄肉形状の磁
石が得られるボンド磁石としての特徴を生かし、高精度
の成形を行なうには、粉末の粒径は十分小さいことが必
要であるが、粉末粒径を小さくしすぎると比表面積増大
に伴い多量の樹脂をバインダーとして使用する必要があ
り、充填密度が低下して好ましくないため、粉末粒径を
3μm〜500μmに限定する。
The crystal grain size, powder particle size limitation reasons boride phase and Nd 2 Fe 14 composed mainly of iron having a body-centered tetragonal Akirayui crystal structure coexist in the alloy powder constituting the bonded magnet of the present invention The B-type crystal phases are all ferromagnetic phases,
The former phase alone is magnetically soft, and the coexistence of the latter phase is essential for expressing iHc. However, simply coexisting both phases is not enough, and if the average crystal grain size of both is not in the range of 5 nm to 100 nm, the squareness of the second quadrant of the demagnetization curve deteriorates, and as a permanent magnet, Since sufficient magnetic flux cannot be extracted at the operating point, the average crystal grain size is limited to 5 nm to 100 nm. In order to perform high-precision molding by taking advantage of the characteristics of bonded magnets that can produce magnets with complex shapes and thin shapes, it is necessary that the particle size of the powder be sufficiently small. It is necessary to use a large amount of resin as a binder as the surface area increases, and the packing density decreases.
Limited to 3 μm to 500 μm.

【0021】この発明によるボンド磁石は等方性磁石で
あり、以下に示す圧縮成型、射出成型、押し出し成型、
圧延成型、樹脂含浸法など公知のいずれの製造方法であ
ってもよい。圧縮成型の場合は、磁性粉末に熱硬化性樹
脂、カップリング剤、滑剤等を添加混練したのち、圧縮
成型して加熱し樹脂を硬化して得られる。射出成型、押
し出し成型、圧延成型の場合は、磁性粉末に熱可塑性樹
脂、カップリング剤、滑剤等を添加混練したのち、射出
成型、押し出し成型、圧延成型のいずれかの方法にて成
型して得られる。樹脂含浸法においては、磁性粉末を圧
縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を
含浸させ、加熱して樹脂を硬化させて得る。また、磁性
粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑
性樹脂を含浸させて得る。
The bonded magnet according to the present invention is an isotropic magnet, and has the following compression molding, injection molding, extrusion molding,
Any known production method such as rolling molding and resin impregnation may be used. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, and then compressing and heating to cure the resin. In the case of injection molding, extrusion molding, and rolling molding, a thermoplastic resin, a coupling agent, a lubricant, etc. are added and kneaded to the magnetic powder, and then molded by any of injection molding, extrusion molding, and rolling molding. Can be In the resin impregnation method, after magnetic powder is compression-molded, heat-treated if necessary, then impregnated with a thermosetting resin, and heated to cure the resin. Further, the magnetic powder is obtained by compression molding, heat-treating as necessary, and then impregnating with a thermoplastic resin.

【0022】この発明において、ボンド磁石中の磁性粉
末の充填率は、前記製法により異なるが、70〜99.5wt%
であり、残部0.5〜30wt%が樹脂その他である。圧縮成型
の場合、磁性粉末の充填率は95〜99.5wt%、射出成型の
場合、磁性粉末の充填率は90〜95wt%、樹脂含浸法の場
合、磁性粉末の充填率は96〜99.5wt%が好ましい
In the present invention, the filling ratio of the magnetic powder in the bonded magnet varies depending on the above-mentioned manufacturing method.
And the remaining 0.5 to 30% by weight is resin and the like. In the case of compression molding, the filling rate of magnetic powder is 95 to 99.5 wt%, in the case of injection molding, the filling rate of magnetic powder is 90 to 95 wt%, and in the case of resin impregnation method, the filling rate of magnetic powder is 96 to 99.5 wt% Is preferred

【0023】バインダーとして用いる合成樹脂は、熱硬
化性、熱可塑性のいずれの性質を有するものも利用でき
るが、熱的に安定な樹脂が好ましく、例えば、ポリアミ
ド、ポリイミド、フェノール樹脂、弗素樹脂、けい素樹
脂、エポキシ樹脂などを適宜選定できる。
As the synthetic resin used as the binder, those having both thermosetting properties and thermoplastic properties can be used, but thermally stable resins are preferable. For example, polyamides, polyimides, phenol resins, fluorine resins, and silicon resins are used. A basic resin, an epoxy resin, or the like can be appropriately selected.

【0024】[0024]

【作用】この発明は、希土類元素R(RはPr、Ndの1種また
は2種)の1部をDyにて置換することにより、特定組成のF
e-Ni-B-R-M系合金溶湯を超急冷法後、熱処理して空間群
I4の体心正方晶結晶構造を有する鉄を主成分とするホウ
化物相とNd2Fe14B型結晶相の準安定混合組織となす際
に、特定量のNiを含有するため、準安定相である空間群
I4の体心正方晶結晶構造を有する鉄を主成分とするホウ
化物相が安定化し、完全にアモルファス組織としなくて
も、空間群I4の該ホウ化物相を主相とする平均結晶粒径
が5nm〜100nmの微細結晶集合体となり、主相の体心正方
晶結晶構造を有する鉄を主成分とするホウ化物相のほ
か、Nd2Fe14B型結晶構造を有する強磁性相が共存するボ
ンド磁石用合金粉末が得られ、樹脂との結合により、iH
c≧4kOe、Br≧5kG、(BH)max≧3MGOeの磁気特性を有する
ボンド磁石を得ることができる。
According to the present invention, by replacing a part of the rare earth element R (R is one or two of Pr and Nd) with Dy, a specific composition F
e-Ni-BRM alloy melt is heat treated after ultra-rapid cooling method
When forming a metastable mixed structure of boride phase and Nd 2 Fe 14 B crystal phase composed mainly of iron having a body-centered tetragonal Akirayui crystal structure of I 4, for containing a certain amount of Ni, quasi Space group that is stable phase
Boride phase is stabilized mainly composed of iron having a body-centered tetragonal Akirayui crystal structure of I 4, completely without the amorphous structure, the average crystal main phase the boride phase of space group I 4 It becomes a fine crystal aggregate with a particle size of 5 nm to 100 nm, and the body-centered square of the main phase
Other boride phase composed mainly of iron having a Akirayui crystal structure, an alloy powder for a bonded magnet ferromagnetic phase having a Nd 2 Fe 14 B crystal structures coexist is obtained, by coupling with the resin, iH
It is possible to obtain a bonded magnet having magnetic characteristics of c ≧ 4 kOe, Br ≧ 5 kG, and (BH) max ≧ 3MGOe.

【0025】[0025]

【実施例】実施例 表1のNo.1〜6の組成となるように、純度99.5%以上のF
e、Ni、B、Nd、Pr、Dy、Cu、Ga、Ag、Au、Al、Siの金属
を用いて、総量が30grとなるように秤量し、底部に直径
0.8mmのオリフィスを有する石英るつぼ内に投入し、圧
力56cmHgのAr雰囲気中で高周波加熱により溶解し、溶解
温度を1400℃にした後、湯面をArガスにより加圧して室
温にてロール周速度20m/秒にて高速回転するCu製ロール
の外周面に0.7mmの高さから溶湯を噴出させて、幅2〜3m
m、厚み30〜40μmの超急冷薄帯を作製した。得られた超
急冷薄帯をCuKαの特性X線と薄帯の断面のSEM写真によ
り、大部分(約90vol%以上)がアモルファスであることを
確認した。
Examples Example 1 was prepared so that the composition of No. 1 to 6 in Table 1 had a purity of 99.5% or more.
Using a metal of e, Ni, B, Nd, Pr, Dy, Cu, Ga, Ag, Au, Al, Si, weigh so that the total amount becomes 30 gr,
Put into a quartz crucible with an orifice of 0.8 mm, melt it by high frequency heating in an Ar atmosphere at a pressure of 56 cmHg, set the melting temperature to 1400 ° C, pressurize the molten metal surface with Ar gas, and roll Spraying molten metal from a height of 0.7 mm onto the outer peripheral surface of a Cu roll that rotates at a high speed of 20 m / sec.
An ultra-quenched ribbon having a thickness of 30 to 40 μm was prepared. It was confirmed that most of the obtained ultra-quenched ribbons were amorphous (about 90 vol% or more) by characteristic X-rays of CuKα and SEM photographs of cross sections of the ribbons.

【0026】この超急冷薄帯をArガス中で500℃まで急
速加熱した後、500℃以上を表1に示す昇温速度で昇温
し、表1に示す熱処理温度で10分間保持し、その後室温
まで冷却して薄帯を取り出した。試料の組織は、体心
方晶結晶組織の鉄を主成分とするホウ化物相が主相で、
Nd2Fe14B相とα-Fe相が混在する多相組織であり、平均
結晶粒径はいずれも0.1μm以下であった。なお、Coはこ
れらの各相でFeの一部を置換する。
After the ultra-quenched ribbon was rapidly heated to 500 ° C. in Ar gas, the temperature was raised to 500 ° C. or more at the temperature rising rate shown in Table 1, and kept at the heat treatment temperature shown in Table 1 for 10 minutes. After cooling to room temperature, the ribbon was removed. Tissue samples, boride phase composed mainly of iron having a body-centered positive <br/>-cubic crystal structure in the main phase,
It had a multiphase structure in which Nd 2 Fe 14 B phase and α-Fe phase were mixed, and the average crystal grain size was 0.1 μm or less in each case. Note that Co replaces a part of Fe in each of these phases.

【0027】この薄帯を粉砕して、粒径が5〜120μmに
わたって分布する平均粒径60μmの粉末を得たのち、粉
末98wt%に対してエポキシ樹脂を2wt%の割合で混合した
のち、6ton/cm2の圧力で圧縮成型し、150℃で硬化処理
してボンド磁石を得た。このボンド磁石の密度は5.6gr/
cm3であり、磁石特性を表2に示す。
This ribbon was pulverized to obtain a powder having an average particle diameter of 60 μm distributed over a particle size of 5 to 120 μm. Then, 98% by weight of the powder was mixed with 2% by weight of an epoxy resin, and then 6 tons. It was compression molded at a pressure of / cm 2 and cured at 150 ° C. to obtain a bonded magnet. The density of this bonded magnet is 5.6gr /
cm 3 and the magnet properties are shown in Table 2.

【0028】比較例 表1のNo7〜9の組成となるように純度99.5%以上のFe、N
i、B、Nd、Gaを用いて、実施例1と同一条件で、超急冷
薄帯を作製した。得られた超急冷薄帯をArガス中で500
℃まで急速加熱した後、500℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持する熱処
理を施し、冷却後に実施例1と同条件で試料化して磁気
特性を測定した。測定結果を表2に示す。
Comparative Example Fe and N having a purity of 99.5% or more so as to have the compositions of Nos. 7 to 9 in Table 1.
Using i, B, Nd, and Ga, a super-quenched ribbon was produced under the same conditions as in Example 1. The obtained super-quenched ribbon is placed in Ar gas for 500
After rapidly heating to 500 ° C, the temperature was raised to 500 ° C or higher at the temperature raising rate shown in Table 1, subjected to a heat treatment for 10 minutes at the heat treatment temperature shown in Table 1, cooled, and then sampled under the same conditions as in Example 1. The magnetic properties were measured. Table 2 shows the measurement results.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】この発明は、希土類元素のR(RはNd、Pr
の1種または2種)の1部をDyにて置換した特定組成のFe-N
i-B-(R,Dy)-M系合金溶湯を超急冷後、熱処理し、完全に
アモルファス組織としなくても、体心正方晶結晶構造を
有する鉄を主成分とするホウ化物相を主相とする平均結
晶粒径が5nm〜100nmの微細結晶集合体となり、該ホウ化
物相のほか、Nd2Fe14B型結晶構造を有する強磁性相が共
存するボンド磁石用合金粉末が得られ、樹脂との結合に
より、iHc≧4kOe、Br≧5kG、(BH)max≧3MGOeの磁気特性
を有するボンド磁石を得ることができる。
According to the present invention, R (R is Nd, Pr)
One or two types) Fe-N of a specific composition in which a part of
iB- (R, Dy) after rapid quenching the -M species alloy, heat treatment, even without completely amorphous structure, the main phase of boride phase composed mainly of iron having a body-centered tetragonal Akirayui crystal structure An average crystal grain size of 5 nm to 100 nm becomes a fine crystal aggregate, in addition to the boride phase, an alloy powder for a bonded magnet in which a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure is obtained, and a resin is obtained. By bonding, a bonded magnet having magnetic characteristics of iHc ≧ 4 kOe, Br ≧ 5 kG, and (BH) max ≧ 3MGOe can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 B22F 1/00 B22F 3/00 C22C 38/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/08 B22F 1/00 B22F 3/00 C22C 38/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合金粉末の組成式をFe100-x-y-zNixBy(R
1-aDya)zMw (但しRはPrまたはNdの1種または2種、MはA
l、Si、Cu、Ga、Ag、Auの1種または2種以上)と表し、組
成範囲を限定する記号x、y、z、a、wが下記値を満足
し、体心正方晶結晶構造を有する鉄を主成分とするホウ
化物相とNd2Fe14B型結晶構造の構成相とが同一粉末粒子
中に共存し、各構成相の平均結晶粒径が5nm〜100nmの範
囲にあり、平均粒径が3μm〜500μmである粉末を樹脂に
て結合したことを特徴とするFe-B-R系ボンド磁石。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.9 0.1≦w≦3at%
The method according to claim 1] of the alloy powder composition formula Fe 100-xyz Ni x B y (R
1-a Dy a ) z M w (where R is one or two of Pr or Nd, M is A
l, Si, Cu, Ga, Ag, expressed as one or more Au), symbol x to limit the composition range, y, z, a, w satisfies the following values, body-centered tetragonal Akirayui crystal and the configuration phases of boride phase and Nd 2 Fe 14 B crystal structure composed mainly of iron coexist in the same powder particle having a structure, average grain size of each component phase is in the range of 5nm~100nm A Fe-BR-based bonded magnet, wherein powder having an average particle diameter of 3 μm to 500 μm is bonded with a resin. 0.01 ≦ x ≦ 2at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at% 0.02 ≦ a ≦ 0.9 0.1 ≦ w ≦ 3at%
JP04130141A 1992-04-22 1992-04-22 Fe-BR bonded magnet Expired - Fee Related JP3131022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04130141A JP3131022B2 (en) 1992-04-22 1992-04-22 Fe-BR bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04130141A JP3131022B2 (en) 1992-04-22 1992-04-22 Fe-BR bonded magnet

Publications (2)

Publication Number Publication Date
JPH05299225A JPH05299225A (en) 1993-11-12
JP3131022B2 true JP3131022B2 (en) 2001-01-31

Family

ID=15026951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04130141A Expired - Fee Related JP3131022B2 (en) 1992-04-22 1992-04-22 Fe-BR bonded magnet

Country Status (1)

Country Link
JP (1) JP3131022B2 (en)

Also Published As

Publication number Publication date
JPH05299225A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
KR0149901B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
EP0542529A1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2986611B2 (en) Fe-BR bonded magnet
JP3131022B2 (en) Fe-BR bonded magnet
JP2925840B2 (en) Fe-BR bonded magnet
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP3032385B2 (en) Fe-BR bonded magnet
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3131040B2 (en) Method for producing Fe-BR bonded magnet
JP3103219B2 (en) Magnet roll and its manufacturing method
JPH0636916A (en) Fe-b-r base bond magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JPH05299223A (en) Fe-b-r bonded magnet
JP3623583B2 (en) Anisotropic bonded magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees