JP2986611B2 - Fe-BR bonded magnet - Google Patents
Fe-BR bonded magnetInfo
- Publication number
- JP2986611B2 JP2986611B2 JP4124180A JP12418092A JP2986611B2 JP 2986611 B2 JP2986611 B2 JP 2986611B2 JP 4124180 A JP4124180 A JP 4124180A JP 12418092 A JP12418092 A JP 12418092A JP 2986611 B2 JP2986611 B2 JP 2986611B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- powder
- crystal structure
- type crystal
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 83
- 239000013078 crystal Substances 0.000 claims description 41
- 239000000843 powder Substances 0.000 claims description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 13
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 10
- 239000000470 constituent Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 230000005291 magnetic effect Effects 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 239000006247 magnetic powder Substances 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910001047 Hard ferrite Inorganic materials 0.000 description 6
- 230000005294 ferromagnetic effect Effects 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、モーターやアクチュ
エーターなどに最適なFe-B-R系ボンド磁石に係り、希土
類元素の含有量が少ない特定組成のFe-Co-B-R系あるい
はFe-Co-R-M系合金溶湯を超急冷法にて大部分をアモル
ファス組織となし、体心正方晶Fe3P型結晶構造を有する
鉄を主成分とするホウ化物相の主相とNd2Fe14B型結晶構
造の構成相との微細結晶集合体からなる合金粉末を樹脂
にて結合することにより、ハードフェライト磁石では得
られなかった5kG以上の残留磁束密度Brを有するFe-B-R
系ボンド磁石に関する。BACKGROUND OF THE INVENTION This invention, have to relate to a motor and the optimum Fe-BR based bonded magnet such as actuators, is Fe-Co-BR type having a specific composition containing a small amount of rare earth elements
Is made of an Fe-Co-RM alloy molten alloy by an ultra-quenching method to form an amorphous structure for the most part, and a main phase of a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure and Nd 2. Fe-BR with a residual magnetic flux density Br of 5 kG or more, which was not obtained with hard ferrite magnets, by combining an alloy powder consisting of fine crystal aggregates with constituent phases of Fe 14 B type crystal structure with resin
Related to bonded magnets.
【0002】[0002]
【従来の技術】電装品用モーターやアクチュエーターな
どに使用される永久磁石は主にハードフェライト磁石に
限定されていたが、低温でのiHc低下に伴う低温減
磁、セラミックス材質のために機械的強度が低くて割
れ、欠けが発生し易いこと、複雑な形状が得難いことな
どの問題があった。2. Description of the Related Art Permanent magnets used for motors and actuators for electrical components are mainly limited to hard ferrite magnets. However, there are problems that cracks and chips are apt to occur due to the low shape, and that it is difficult to obtain a complicated shape.
【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。[0003] Today, there is a strong demand for automobiles to improve fuel efficiency by reducing the weight of the vehicles in order to save resources, and it is required to further reduce the size and weight of electrical components for automobiles. Also,
Designs to maximize the performance-to-weight ratio are also being considered for applications such as motors for home appliances other than automotive electrical components, and the current motor structure is optimal for magnet materials with a Br material of about 5 to 7 kG. It has been. That is,
When Br of the magnet material to be used is 8 kG or more, the current motor structure needs to increase the cross-sectional area of the iron plate of the rotor or the stator which becomes the magnetic path, which leads to an increase in weight. If so, the performance to weight ratio can be maximized.
【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。Accordingly, a magnetic material for a small motor is required to have a residual magnetic flux density Br of at least 5 kG in terms of magnetic properties, but cannot be obtained with a conventional hard ferrite magnet. For example, an Nd—Fe—B-based bonded magnet satisfies such magnetic properties, but Nd or the like, which requires a large number of steps and large-scale facilities for metal separation and purification or reduction reaction, is required.
Since it contains 1515 at%, it is significantly more expensive than a hard ferrite magnet, and at present, a magnet material having Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.
【0005】[0005]
【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe77B19(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.、C
8,1988,669〜670頁)された。この磁石材
料はアモルファスリボンを熱処理することにより、Fe
3BとNd2Fe14Bの結晶集合組織を有する準安定構造
であるが、iHcが2〜3kOe程度と高くなく、また
このiHcを得るための熱処理条件が狭く限定され、工
業生産上実用的でない。On the other hand, Nd-Fe-B
In recent years, a magnet material having a main phase of Fe 3 B type compound in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed as a system magnet (R. Cohoenor et al., J. de Phys., C.
8, 1988, 669-670). This magnet material is obtained by heat-treating an amorphous ribbon to obtain Fe.
3 is a metastable structure with a crystal texture of B and Nd 2 Fe 14 B but, iHc is not high as about 2~3KOe, also the heat treatment conditions for obtaining the iHc is narrowly restricted, industrial production practical Not.
【0006】このFe3B型化合物を主相とする磁石材
料に添加元素を加えて多成分化し、性能向上を図った研
究が発表されている。その1つは希土類元素にNdのほ
かにDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn,Magn,M
at.、83(1990)228〜230頁)。Researches have been published to improve the performance by adding an additional element to the magnetic material having the Fe 3 B-type compound as a main phase to make it multi-component. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. In addition to the problem of adding an expensive element, the added rare earth element has a magnetic moment of Nd or Fe. There is a problem that magnetization decreases due to coupling in anti-parallel to the moment (R. Coehorn, J. Magn, Magn, M
at. , 83 (1990) 228-230).
【0007】他の研究(Shen Bao−genら、
J.Magn,Magn,Mat.、89(1991)
335〜340頁)として、 Feの一部をCoにて置
換してキュリー温度を上昇させ、iHcの温度係数を改
善するものがあるが、Coの添加にともないBrを低下
させる問題がある。[0007] Other studies (Shen Bao-gen et al.,
J. See Magn, Magn, Mat. , 89 (1991)
335-340), a part of Fe is replaced with Co to raise the Curie temperature to improve the temperature coefficient of iHc, but there is a problem that Br is reduced with the addition of Co.
【0008】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理してハード磁石材料化できるが、iHcが低く、かつ
前記熱処理条件が狭く、添加元素にて高iHc化を図る
と磁気エネルギー積が低下するなど、安定した工業生産
ができず、ハードフェライト磁石の代替えとして安価に
提供することができない。In any case, Fe 3 B type Nd-Fe-B
The system magnet can be made into a hard magnet material by heat treatment after being made amorphous by a super-quenching method. For example, stable industrial production cannot be performed, and it cannot be provided at a low cost as a substitute for a hard ferrite magnet.
【0009】また、Nd−Fe−B系合金をアモルファ
ス化するためには、超急冷時のロール周速度を著しく速
くする必要があり、製品の回収率や歩留りが低下する問
題があり、さらにFe基合金であることから、保存時の
腐食が進行し易く、長期間の保存により初期の磁気特性
が維持できずに劣化する問題があった。Further, in order to make the Nd-Fe-B-based alloy amorphous, it is necessary to remarkably increase the roll peripheral speed at the time of ultra-quenching, and there is a problem that the product recovery rate and the yield are reduced. Since it is a base alloy, there is a problem that corrosion at the time of storage is apt to progress, and the magnetic properties at the initial stage cannot be maintained due to long-term storage, resulting in deterioration.
【0010】この発明は、Fe3B型Fe−B−R系磁
石(Rは希土類元素)に着目して、iHcと(BH)m
axを向上させ、5kG以上の残留磁束密度Brを有し
安定した工業生産が可能なハードフェライト磁石の代替
えとして安価に提供できるFe3B型B−Fe−R系ボ
ンド磁石を目的としている。The present invention focuses on Fe 3 B type Fe—BR based magnets (R is a rare earth element) and focuses on iHc and (BH) m
It is an object of the present invention to provide an Fe 3 B-type B-Fe-R bonded magnet that can improve the value of ax and has a residual magnetic flux density Br of 5 kG or more and can be provided at low cost as a substitute for a hard ferrite magnet that can be stably manufactured industrially.
【0011】[0011]
【課題を解決するための手段】この発明は、Fe3B型系Fe
-B-R磁石のiHcと(BH)maxを向上させ、安定した工業生産
が可能な製造方法を目的に種々検討した結果、以下の知
見を得て完成したものである。SUMMARY OF THE INVENTION The present invention provides an Fe 3 B type Fe
As a result of various studies for the purpose of improving the iHc and (BH) max of the -BR magnet and enabling stable industrial production, the magnet was completed with the following knowledge.
【0012】希土類元素の含有量が少ない特定組成の合
金溶湯を超急冷法後、熱処理にてFe 3 B相を折出させる際
に、少量の添加Coにより、Fe 3 B相中のFeの一部がCoで置
換されて、その結果、完全にアモルファス相を得なくて
も、Fe 3 Bと同じ結晶構造、すなわち、体心正方晶Fe 3 P型
結晶構造を有する鉄を主成分とするホウ化物相の主相が
折出し、さらに急冷後、適当な熱処理を施すことによ
り、前記ホウ化物相とNd 2 Fe 14 B型結晶構造の化合物相が
同一粉末粒子中に共存し、しかもその平均結晶粒径が10
〜100nmの範囲内のとき、実用的に必要な2kOe以上の固
有保磁力を発揮し、この合金粉末を樹脂にて所要形状に
成型固化することにより、室温付近で準安定な結晶構造
相が分解することなく、永久磁石として利用可能な形態
として提供できる。 When the content of the rare earth element is small,
When the Fe 3 B phase is deposited by heat treatment after ultra-quenching the molten gold
In addition, a part of Fe in the Fe 3 B phase is replaced by Co
In other words, as a result, it is not possible to obtain a completely amorphous phase
Also has the same crystal structure as Fe 3 B, ie, body-centered tetragonal Fe 3 P type
The main phase of the boride phase mainly composed of iron having a crystal structure is
After quenching and quenching, an appropriate heat treatment is applied.
The boride phase and the compound phase having the Nd 2 Fe 14 B type crystal structure
Coexist in the same powder particles and have an average crystal grain size of 10
When it is within the range of ~ 100 nm, the solid
Demonstrate coercive force and make this alloy powder into required shape with resin
Metastable crystal structure around room temperature by molding and solidifying
Form that can be used as a permanent magnet without phase decomposition
Can be provided as
【0013】この発明は、合金粉末の組成式をFe
100-x-y-zCoxByRz (但しRはPrまたはNdの1種または2
種)と表し、組成範囲を限定する記号x、y、zが下記値を
満足し、体心正方晶Fe 3 P型結晶構造を有する鉄を主成分
とするホウ化物相とNd 2 Fe 14 B型結晶構造の構成相とが同
一粉末粒子中に共存し、各構成相の平均結晶粒径が10nm
〜100nmの範囲にあり、平均粒径が3μm〜500μmである
粉末を樹脂にて結合したことを特徴とするFe-B-R系ボン
ド磁石である。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at%According to the present invention, the composition formula of the alloy powder is Fe
100-xyz Co x B y R z (where R is one or two of Pr or Nd
The symbol x, y, z that limits the composition range satisfies the following values, and is composed mainly of iron having a body-centered tetragonal Fe 3 P-type crystal structure.
And the constituent phases of the Nd 2 Fe 14 B type crystal structure are the same.
Coexist in one powder particle, the average crystal grain size of each constituent phase is 10nm
~ 100nm range, average particle size is 3μm ~ 500μm
This is a Fe-BR based bonded magnet characterized by combining powders with a resin . 0.05 ≦ x ≦ 15at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at%
【0014】また、この発明は、合金粉末の組成式をFe
100-x-y-z-w CoxByRzMw (但しRはPrまたはNdの1種また
は2種、MはAl,Si,Cu,Ga,Ag,Auの1種または2種以上)と表
し、組成範囲を限定する記号x、y、z、wが下記値を満足
し、体心正方晶Fe 3 P型結晶構造を有する鉄を主成分とす
るホウ化物相とNd 2 Fe 14 B型結晶構造の構成相とが同一粉
末粒子中に共存し、各構成相の平均結晶粒径が10nm〜10
0nmの範囲にあり、平均粒径が3μm〜500μmである粉末
を樹脂にて結合したことを特徴とするFe-B-R系ボンド磁
石である。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% w≦3at%Further, according to the present invention , the composition formula of the alloy powder is Fe
100-xyz -w Co x B y R z M w (where R is one or two of Pr or Nd, M is one or more of Al, Si, Cu, Ga, Ag, Au) , Symbols x, y, z, w that limit the composition range satisfy the following values
Iron with a body-centered tetragonal Fe 3 P-type crystal structure
Boride phase and constituent phase of Nd 2 Fe 14 B type crystal structure
Powder, and the average crystal grain size of each constituent phase is 10 nm to 10
Powder in the range of 0 nm with an average particle size of 3 μm to 500 μm
Are bonded by a resin . 0.05 ≦ x ≦ 15at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at% w ≦ 3at%
【0015】この発明によるFe-B-R系ボンド磁石を得る
には、以下の製法による。 (1)組成式をFe100-x-y-zCoxByRz (但しRはPrまたはNd
の1種または2種)、あるいは組成式をFe100-x-y-z-w CoxB
yRzMw (但しRはPrまたはNdの1種または2種、MはAl、S
i、Cu、Ga、Ag、Auの1種または2種以上)と表し、組成範
囲を限定する記号x、y、z、wが上述の値を満足する合金
溶湯を超急冷法にて実質的に90%以上をアモルファス組
織となし、 (2)さらに熱処理に際し500℃からの昇温速度を1〜15℃/
分で昇温して550〜700℃で5分〜6時間保持する熱処理を
施し、 (3)Fe3B型化合物を主相とし、Nd2Fe14B型結晶構造を有
する強磁性相を有し、平均結晶粒径が10〜100nmの微細
結晶集合体を得たのち、 (4)これを粉砕して得られた平均粒径が3〜500μmの粉末
を樹脂にて所要形状に成型固化する。To obtain the Fe-BR based bonded magnet according to the present invention, the following production method is used. (1) The composition formula is Fe 100-xyz Co x B y R z (where R is Pr or Nd
1 or 2), or the composition formula is Fe 100-xyz -w Co x B
y R z M w (where R is one or two of Pr or Nd, M is Al, S
i, Cu, Ga, Ag, one or two or more of Au), and the symbols x, y, z, and w that limit the composition range are substantially the same as those of the alloy melt that satisfies the above-described values by the ultra-quenching method. (2) In addition, the rate of temperature increase from 500 ° C to 1-15 ° C /
Heat treatment at 550 to 700 ° C for 5 minutes to 6 hours, and (3) a ferromagnetic phase having a Fe 3 B type compound as a main phase and an Nd 2 Fe 14 B type crystal structure. Then, after obtaining a fine crystal aggregate having an average crystal grain size of 10 to 100 nm, (4) a powder having an average grain size of 3 to 500 μm obtained by pulverizing this is solidified into a required shape with a resin. .
【0016】粉末の構成相の限定理由 この発明によるボンド磁石を構成する合金粉末は、1.
6Tという高い飽和磁化を持つ体心正方晶Fe3P型結
晶構造を有する鉄を主成分とするホウ化物相を主相とす
ることを特徴としている。このホウ化物相はFe3Bま
たはその中のFeの一部がCoで置換されている。この
ホウ化物相は特定の範囲で準安定的に空間群P4/nm
nのNd2Fe14B型結晶構造を有するNd2(Fe,C
o)14B強磁性相と共存できる。これらのホウ化物相と
強磁性相が共存することが高い磁束密度と十分なiHc
を得るためには必須であり、同一組成であっても、例え
ば鋳造法などではその製法に起因して、C16型結晶構
造を有するFe2B相と体心立方晶のα−Fe相とが主
相となると、高い磁化が得られるが、iHcは1kOe
以下に劣化して磁石として使用できなくなるため好まし
くない。Reasons for Limiting Constituent Phase of Powder The alloy powder constituting the bonded magnet according to the present invention comprises:
It is characterized in that the main phase is a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure having a high saturation magnetization of 6T. In this boride phase, Fe 3 B or a part of Fe therein is substituted with Co. This boride phase is metastable in a specific range in the space group P 4 / nm.
Nd 2 ( Fe, C having n-type Nd 2 Fe 14 B-type crystal structure
o) Can coexist with 14B ferromagnetic phase. The coexistence of these boride phase and ferromagnetic phase requires high magnetic flux density and sufficient iHc
For example, in the casting method or the like, the Fe 2 B phase having the C16 type crystal structure and the body-centered cubic α-Fe phase are indispensable for obtaining In the main phase, high magnetization is obtained, but iHc is 1 kOe.
It is not preferable because it deteriorates below and cannot be used as a magnet.
【0017】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では2kOe以
上のiHcが得られず、また5.5at%を超えるとF
e3B相が生成せず、硬磁性を示さない準安定相のR2F
e23B3相が折出しiHcは著しく低下するので好まし
くないため、3〜5.5at%の範囲とする。Reasons for Limiting Composition Rare earth element R can provide high magnetic properties only when it contains one or two of Pr or Nd in a specific amount,
For example, in Ce and La, iHc characteristics of 2 kOe or more cannot be obtained, and middle rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 2 kOe or more cannot be obtained, and if it exceeds 5.5 at%, F
R 2 F, a metastable phase that does not produce e 3 B phase and shows no hard magnetism
Since e 23 B 3 phase folding out iHc is not preferable because it decreases significantly, and the range of 3~5.5at%.
【0018】Bは、16at%未満および22at%を
超えると2kOe以上のiHcが得られないため、16
〜22at%の範囲とする。When B is less than 16 at% and more than 22 at%, iHc of 2 kOe or more cannot be obtained.
2222 at%.
【0019】Coは、iHc及び減磁曲線の角形性の向
上改善に有効であるが、0.05at%未満ではかかる
効果が得られず、15at%を超えるとiHcは著しく
低下し、2kOe以上のiHcが得られないため、0.
05〜15at%の範囲とする。Co is effective for improving and improving the squareness of the iHc and the demagnetization curve. However, if the content is less than 0.05 at%, such an effect cannot be obtained. If it exceeds 15 at%, iHc is remarkably reduced, and 2 kOe or more. Since iHc cannot be obtained, 0.
The range is from 0.5 to 15 at%.
【0020】Al、Si、Cu、Ga、Ag、Auは熱
処理温度範囲を拡大して減磁曲線の角形性を改善し、磁
気特性のBr、(BH)maxを増大させる効果を有す
るが、3at%を超えるとかえって角形性を劣化させ、
(BH)maxも低下するため、3at%以下の範囲と
する。Al, Si, Cu, Ga, Ag and Au have the effect of expanding the heat treatment temperature range, improving the squareness of the demagnetization curve, and increasing the Br and (BH) max of the magnetic characteristics. %, It degrades the squareness,
Since (BH) max also decreases, the range is set to 3 at% or less.
【0021】Feは、上述の元素の含有残余を占める。Fe accounts for the residual content of the above-mentioned elements.
【0022】結晶粒径、粉末粒径の限定理由 この発明のボンド磁石を構成する合金粉末中に共存する
主相の体心正方晶Fe3P型結晶構造を有する鉄を主成分と
するホウ化物相とNd2Fe14B型結晶相は、いずれも強磁性
相であるが、前者相は単独では磁気的に軟質であり、後
者相が共存することがiHcを発現するのに不可欠であ
る。しかし、単に両相が共存するだけでは不十分であ
り、両者の平均結晶粒径が10〜100nmの範囲にないと、
減磁曲線の第2象限の角形性が悪化して、永久磁石とし
ては動作点が十分な磁束を取り出すことができないた
め、平均結晶粒径は10nm〜100nmに限定する。複雑形状
や薄肉形状の磁石が得られるボンド磁石としての特徴を
生かし、高精度の成形を行なうには、粉末の粒径は十分
小さいことが必要であるが、粉末粒径を小さくしすぎる
と比表面積増大に伴い多量の樹脂をバインダーとして使
用する必要があり、充填密度が低下して好ましくないた
め、粉末粒径を3μm〜500μmに限定する。Reasons for Limiting Crystal Particle Size and Powder Particle Size Coexist in the alloy powder constituting the bonded magnet of the present invention.
Both the boride phase mainly composed of iron having the body-centered tetragonal Fe 3 P type crystal structure of the main phase and the Nd 2 Fe 14 B type crystal phase are ferromagnetic phases, but the former phase alone is magnetic. It is indispensable to express iHc that it is soft in nature and the latter phase coexists. However, simply coexisting both phases is not enough, and if the average grain size of both is not in the range of 10 to 100 nm,
Since the squareness of the second quadrant of the demagnetization curve deteriorates and the operating point cannot extract a sufficient magnetic flux as a permanent magnet, the average crystal grain size is limited to 10 nm to 100 nm. Making use of the characteristics of bonded magnets that can produce magnets with complex shapes and thin shapes, high-precision molding requires that the powder particle size be sufficiently small. It is necessary to use a large amount of resin as a binder as the surface area increases, and the packing density decreases, which is not preferable.
【0023】この発明によるボンド磁石は等方性磁石で
あり、以下に示す圧縮成型、射出成型、押し出し成型、
圧延成型、樹脂含浸法など公知のいずれの製造方法であ
ってもよい。圧縮成型の場合は、磁性粉末に熱硬化性樹
脂、カップリング剤、滑剤等を添加混練したのち、圧縮
成型して加熱し樹脂を硬化して得られる。射出成型、押
し出し成型、圧延成型の場合は、磁性粉末に熱可塑性樹
脂、カップリング剤、滑剤等を添加混練したのち、射出
成型、押し出し成型、圧延成型のいずれかの方法にて成
型して得られる。樹脂含浸法においては、磁性粉末を圧
縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を
含浸させ、加熱して樹脂を硬化させて得る。また、磁性
粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑
性樹脂を含浸させて得る。The bonded magnet according to the present invention is an isotropic magnet, and has the following compression molding, injection molding, extrusion molding,
Any known production method such as rolling molding and resin impregnation may be used. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, and then compressing and heating to cure the resin. In the case of injection molding, extrusion molding, and rolling molding, a thermoplastic resin, a coupling agent, a lubricant, etc. are added and kneaded to the magnetic powder, and then molded by any of injection molding, extrusion molding, and rolling molding. Can be In the resin impregnation method, after magnetic powder is compression-molded, heat-treated if necessary, then impregnated with a thermosetting resin, and heated to cure the resin. Further, the magnetic powder is obtained by compression molding, heat-treating as necessary, and then impregnating with a thermoplastic resin.
【0024】この発明において、ボンド磁石中の磁性粉
末の充填率は、前記製法により異なるが、70〜99.
5wt%であり、残部0.5〜30wt%が樹脂その他
である。圧縮成型の場合、磁性粉末の充填率は95〜9
9.5wt%、射出成型の場合、磁性粉末の充填率は9
0〜95wt%、樹脂含浸法の場合、磁性粉末の充填率
は96〜99.5wt%が好ましいIn the present invention, the filling rate of the magnetic powder in the bonded magnet varies depending on the above-mentioned manufacturing method.
5 wt%, and the remaining 0.5 to 30 wt% is resin and others. In the case of compression molding, the filling ratio of the magnetic powder is 95 to 9
9.5 wt%, in the case of injection molding, the filling rate of the magnetic powder is 9
In the case of the resin impregnation method, the filling rate of the magnetic powder is preferably 96 to 99.5 wt%.
【0025】バインダーとして用いる合成樹脂は、熱硬
化性、熱可塑性のいずれの性質を有するものも利用でき
るが、熱的に安定な樹脂が好ましく、例えば、ポリアミ
ド、ポリイミド、フェノール樹脂、弗素樹脂、けい素樹
脂、エポキシ樹脂などを適宜選定できる。As the synthetic resin used as the binder, those having both thermosetting properties and thermoplastic properties can be used, but thermally stable resins are preferable. For example, polyamides, polyimides, phenol resins, fluorine resins, and silicon resins are used. A basic resin, an epoxy resin, or the like can be appropriately selected.
【0026】[0026]
【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe-Co-B-R-M系合金溶湯を超急冷法後、熱処理し
て空間群I4の体心正方晶Fe3P型結晶構造を有する鉄を主
成分とするホウ化物相の主相とNd2Fe14B型結晶相の準安
定混合組織となす際に、特定量のCoを含有するため、準
安定相である空間群I4の体心正方晶Fe3P型結晶構造を有
する鉄を主成分とするホウ化物相が安定化し、完全にア
モルファス組織としなくても、空間群I4の該ホウ化物相
を主相とする平均結晶粒径が10〜100nmの微細結晶集合
体となり、主相の体心正方晶Fe3P型結晶構造を有する鉄
を主成分とするホウ化物相のほか、Nd2Fe14B型結晶構造
を有する強磁性相が共存するボンド磁石用合金粉末が得
られ、樹脂との結合により、iHc≧2kOe、Br≧5kG、(BH)
max≧3MGOeの磁気特性を有するボンド磁石を得ることが
できる。SUMMARY OF THE INVENTION This invention after rapid quenching method Fe-Co-BRM species alloy having a specific composition containing a small amount of rare earth elements, a body-centered tetragonal Fe 3 P type crystalline structure of the space group I 4 was heat-treated When forming a metastable mixed structure of a main phase of a boride phase having iron as a main component and a Nd 2 Fe 14 B type crystal phase, since a specific amount of Co is contained, a space group I 4 which is a metastable phase An iron-based boride phase having a body-centered tetragonal Fe 3 P-type crystal structure is stabilized, and even if it does not have a completely amorphous structure, an average having the boride phase of the space group I 4 as a main phase It becomes a fine crystal aggregate with a crystal grain size of 10 to 100 nm, and in addition to a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure of the main phase, a Nd 2 Fe 14 B type crystal structure An alloy powder for a bonded magnet in which a ferromagnetic phase having coexistence is obtained, and by bonding with a resin, iHc ≧ 2 kOe, Br ≧ 5 kG, (BH)
A bonded magnet having magnetic properties of max ≧ 3MGOe can be obtained.
【0027】[0027]
実施例 表1のNo.1〜11の組成となるように、純度99.
5%以上のFe、Co、B、Nd、Pr、Cu、Ga、
Ag、Au、Al、Siの金属を用いて、総量が30g
rとなるように秤量し、底部に直径0.8mmのオリフ
ィスを有する石英るつぼ内に投入し、圧力56cmHg
のAr雰囲気中で高周波加熱により溶解し、溶解温度を
1400℃にした後、湯面をArガスにより加圧して室
温にてロール周速度20m/秒にて高速回転するCu製
ロールの外周面に0.7mmの高さから溶湯を噴出させ
て、幅2〜3mm、厚み30〜40μmの超急冷薄帯を
作製した。得られた超急冷薄帯をCuKαの特性X線と
薄帯の断面のSEM写真により、大部分(約90vol
%以上)がアモルファスであることを確認した。Example No. 1 in Table 1 Purity 99.
5% or more of Fe, Co, B, Nd, Pr, Cu, Ga,
Using metals of Ag, Au, Al and Si, the total amount is 30 g
r, and put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and a pressure of 56 cmHg.
Melted by high-frequency heating in an Ar atmosphere, and the melting temperature was set to 1400 ° C., and the molten metal surface was pressurized with Ar gas to rotate at room temperature at a peripheral speed of 20 m / sec. The molten metal was blown out from a height of 0.7 mm to produce a super-quenched ribbon having a width of 2 to 3 mm and a thickness of 30 to 40 μm. Most of the obtained ultra-quenched ribbon was characterized by CuKα characteristic X-ray and SEM photograph of the cross section of the ribbon (about 90 vol.).
% Or more) was amorphous.
【0028】この超急冷薄帯をArガス中で500℃ま
で急速加熱した後、500℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持し、そ
の後室温まで冷却して薄帯を取り出した。試料の組織
は、正方晶のFe3B相が主相で、Nd2Fe14B相とα
−Fe相が混在する多相組織であり、平均結晶粒径はい
ずれも0.1μm以下であった。なお、Coはこれらの
各相でFeの一部を置換する。After the ultra-quenched ribbon was rapidly heated to 500 ° C. in Ar gas, the temperature was raised to 500 ° C. or higher at the temperature rising rate shown in Table 1, and kept at the heat treatment temperature shown in Table 1 for 10 minutes. After cooling to room temperature, the ribbon was removed. The structure of the sample was such that the tetragonal Fe 3 B phase was the main phase, and the Nd 2 Fe 14 B phase and α
-Fe phase was mixed, and the average crystal grain size was 0.1 µm or less in each case. Note that Co replaces part of Fe in each of these phases.
【0029】この薄帯を粉砕して、粒径が5〜120μ
mにわたって分布する平均粒径60μmの粉末を得たの
ち、粉末98wt%に対してエポキシ樹脂を2wt%の
割合で混合したのち、6ton/cm2の圧力で圧縮成
型し、150℃で硬化処理してボンド磁石を得た。この
ボンド磁石の密度は5.6gr/cm3であり、磁石特
性を表2に示す。This ribbon is pulverized to a particle size of 5 to 120 μm.
After obtaining a powder having an average particle size of 60 μm distributed over m, an epoxy resin was mixed at a ratio of 2 wt% with respect to 98 wt% of the powder, compression molded at a pressure of 6 ton / cm 2 , and cured at 150 ° C. To obtain a bonded magnet. The density of this bonded magnet was 5.6 gr / cm 3 , and the magnet properties are shown in Table 2.
【0030】比較例 実施例1と同条件で得られた実施例1の組成No.5の
超急冷薄帯をArガス中で500℃まで急速加熱した
後、500℃以上を11℃/分で昇温し、680℃で1
5分間保持する熱処理を施し、冷却後に実施例1と同条
件で試料化(比較例No.12)して磁気特性を測定し
た。測定結果を表2に示す。Comparative Example The composition No. of Example 1 obtained under the same conditions as Example 1 5 was rapidly heated to 500 ° C. in Ar gas, and the temperature was raised from 500 ° C. or higher at 11 ° C./min.
A heat treatment was performed for 5 minutes, and after cooling, a sample was prepared under the same conditions as in Example 1 (Comparative Example No. 12), and the magnetic properties were measured. Table 2 shows the measurement results.
【0031】実施例1と同条件で得られた実施例1の組
成No.2の超急冷薄帯をArガス中で500℃まで急
速加熱した後、比較例No.13は500℃で10分間
保持する熱処理を施し、比較例No.14は500℃以
上を4℃/分で昇温し、750℃で10分間保持する熱
処理を施し、冷却後に実施例1と同条件で試料化して磁
気特性を測定した。測定結果を表2に示す。比較例N
o.13はアモルファス組織、同No.14はFe2B
相とα−Fe相が混在する多相組織であった。The composition No. of Example 1 obtained under the same conditions as Example 1 After rapidly heating the ultra-quenched ribbon of Example 2 to 500 ° C. in Ar gas, Comparative Example No. No. 13 was heat-treated at 500 ° C. for 10 minutes. In No. 14, a heat treatment was performed at 500 ° C. or more at a rate of 4 ° C./min and held at 750 ° C. for 10 minutes. After cooling, a sample was formed under the same conditions as in Example 1 and the magnetic properties were measured. Table 2 shows the measurement results. Comparative Example N
o. No. 13 is an amorphous structure; 14 is Fe 2 B
It had a multiphase structure in which a phase and an α-Fe phase were mixed.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成のFe-Co-B-R系またはFe-Co-B-R-M系合金溶湯
を超急冷後、熱処理し、完全にアモルファス組織としな
くても、体心正方晶Fe3P型結晶構造を有する鉄を主成分
とするホウ化物相を主相とする平均結晶粒径が10〜100n
mの微細結晶集合体となり、該ホウ化物相のほか、Nd2Fe
14B型結晶構造を有する強磁性相が共存するボンド磁石
用合金粉末が得られ、樹脂との結合により、iHc≧2kO
e、Br≧5kG、(BH)max≧3MGOeの磁気特性を有するボンド
磁石を得ることができる。According to the present invention, a Fe-Co-BR-based or Fe-Co-BRM-based alloy melt having a specific composition with a small content of rare earth elements can be ultra-quenched and then heat-treated to obtain a completely amorphous structure. The average crystal grain diameter of the main phase is a boride phase having iron as a main component having a body-centered tetragonal Fe 3 P-type crystal structure and 10 to 100 n
m, and in addition to the boride phase, Nd 2 Fe
14 An alloy powder for a bonded magnet in which a ferromagnetic phase having a B-type crystal structure coexists is obtained, and by bonding with a resin, iHc ≧ 2 kO
e, a bond magnet having magnetic properties of Br ≧ 5 kG and (BH) max ≧ 3MGOe can be obtained.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 1/08 C22C 38/00 303 H01F 1/053 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 1/08 C22C 38/00 303 H01F 1/053
Claims (2)
(但しRはPrまたはNdの1種または2種)と表し、組成範
囲を限定する記号x、y、zが下記値を満足し、体心正方
晶Fe 3 P型結晶構造を有する鉄を主成分とするホウ化物相
とNd 2 Fe 14 B型結晶構造の構成相とが同一粉末粒子中に共
存し、各構成相の平均結晶粒径が10nm〜100nmの範囲に
あり、平均粒径が3μm〜500μmである粉末を樹脂にて結
合したことを特徴とするFe-B-R系ボンド磁石。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at%The method according to claim 1] of the alloy powder composition formula Fe 100-xyz Co x B y R z
(Where R is one or two of Pr or Nd), and the symbols x, y, and z that limit the composition range satisfy the following values, and the body-centered square
Fe-based boride phase with crystalline Fe 3 P-type crystal structure
And the constituent phases of the Nd 2 Fe 14 B type crystal structure in the same powder particle
And the average crystal grain size of each constituent phase is in the range of 10 nm to 100 nm.
Yes, powder with an average particle size of 3 μm to 500 μm
Fe-BR based bonded magnet characterized by being combined . 0.05 ≦ x ≦ 15at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at%
RzMw (但しRはPrまたはNdの1種または2種、MはAl,Si,C
u,Ga,Ag,Auの1種または2種以上)と表し、組成範囲を限
定する記号x、y、z、wが下記値を満足し、体心正方晶Fe
3 P型結晶構造を有する鉄を主成分とするホウ化物相とNd
2 Fe 14 B型結晶構造の構成相とが同一粉末粒子中に共存
し、各構成相の平均結晶粒径が10nm〜100nmの範囲にあ
り、平均粒径が3μm〜500μmである粉末を樹脂にて結合
したことを特徴とするFe-B-R系ボンド磁石。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% w≦3at%2. A method of the alloy powder composition formula Fe 100-xyz -w Co x B y
R z M w (where R is one or two of Pr or Nd, M is Al, Si, C
u, Ga, Ag, one or more of Au), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and the body-centered tetragonal Fe
3 Boride phase mainly composed of iron with P-type crystal structure and Nd
2 Constituent phases of Fe 14 B type crystal structure coexist in the same powder particle
The average crystal grain size of each constituent phase is in the range of 10 nm to 100 nm.
Powder with an average particle size of 3 μm to 500 μm
Fe-BR based bonded magnet is characterized in that the. 0.05 ≦ x ≦ 15at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at% w ≦ 3at%
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4124180A JP2986611B2 (en) | 1992-04-16 | 1992-04-16 | Fe-BR bonded magnet |
CN92114394A CN1053988C (en) | 1991-11-11 | 1992-11-10 | Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods |
DE1992612569 DE69212569T2 (en) | 1991-11-11 | 1992-11-11 | Process for the production of alloy powders of the SE-Fe / Co-B-M type and bonded magnets with this alloy powder |
EP19920310299 EP0542529B1 (en) | 1991-11-11 | 1992-11-11 | Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder |
US08/351,184 US5545266A (en) | 1991-11-11 | 1994-11-30 | Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4124180A JP2986611B2 (en) | 1992-04-16 | 1992-04-16 | Fe-BR bonded magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05299222A JPH05299222A (en) | 1993-11-12 |
JP2986611B2 true JP2986611B2 (en) | 1999-12-06 |
Family
ID=14878960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4124180A Expired - Lifetime JP2986611B2 (en) | 1991-11-11 | 1992-04-16 | Fe-BR bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2986611B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60030912D1 (en) | 1999-06-11 | 2006-11-09 | Seiko Epson Corp | Magnetic powder and isotropic bonded magnet |
JP3593939B2 (en) | 2000-01-07 | 2004-11-24 | セイコーエプソン株式会社 | Magnet powder and isotropic bonded magnet |
JP3593940B2 (en) | 2000-01-07 | 2004-11-24 | セイコーエプソン株式会社 | Magnet powder and isotropic bonded magnet |
-
1992
- 1992-04-16 JP JP4124180A patent/JP2986611B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05299222A (en) | 1993-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4983232A (en) | Anisotropic magnetic powder and magnet thereof and method of producing same | |
KR0149901B1 (en) | Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom | |
JP2727506B2 (en) | Permanent magnet and manufacturing method thereof | |
JPH0348645B2 (en) | ||
JP3411663B2 (en) | Permanent magnet alloy, permanent magnet alloy powder and method for producing the same | |
JP2986611B2 (en) | Fe-BR bonded magnet | |
JP3519443B2 (en) | Permanent magnet alloy powder and method for producing the same | |
JP2925840B2 (en) | Fe-BR bonded magnet | |
JP2966169B2 (en) | Rare earth magnet, alloy powder for rare earth magnet and method for producing the same | |
JP3032385B2 (en) | Fe-BR bonded magnet | |
JP3432858B2 (en) | Method for producing Fe-BR bonded magnet | |
JP3131022B2 (en) | Fe-BR bonded magnet | |
JP3040895B2 (en) | Rare earth bonded magnet and its manufacturing method | |
JP2999649B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JP3710154B2 (en) | Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet | |
JPH0653882B2 (en) | Alloy powder for bonded magnet and manufacturing method thereof | |
JP3547016B2 (en) | Rare earth bonded magnet and method of manufacturing the same | |
JPH0636916A (en) | Fe-b-r base bond magnet | |
JP3131040B2 (en) | Method for producing Fe-BR bonded magnet | |
JPH07176417A (en) | Iron based bonded magnet and its manufacture | |
JP3103219B2 (en) | Magnet roll and its manufacturing method | |
JP3795056B2 (en) | Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet | |
JP3519438B2 (en) | Rare earth magnet alloy powder and its production method | |
JP2966168B2 (en) | Rare earth magnet, alloy powder for rare earth magnet and method for producing the same | |
JPH05299223A (en) | Fe-b-r bonded magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 13 |