JP2007329250A - Permanent magnet, and manufacturing method of permanent magnet - Google Patents

Permanent magnet, and manufacturing method of permanent magnet Download PDF

Info

Publication number
JP2007329250A
JP2007329250A JP2006158500A JP2006158500A JP2007329250A JP 2007329250 A JP2007329250 A JP 2007329250A JP 2006158500 A JP2006158500 A JP 2006158500A JP 2006158500 A JP2006158500 A JP 2006158500A JP 2007329250 A JP2007329250 A JP 2007329250A
Authority
JP
Japan
Prior art keywords
sintered magnet
permanent magnet
processing chamber
temperature
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158500A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagata
浩 永田
Yoshinori Aragaki
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006158500A priority Critical patent/JP2007329250A/en
Publication of JP2007329250A publication Critical patent/JP2007329250A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet which is manufactured through such a manner that films of Dy and Tb are formed on the surface of a rare earth-iron-boron-based sintered magnet prescribed in shape, and that Dy and Tb are diffused into a crystalline grain boundary phase and has a coercive force much higher than usual. <P>SOLUTION: The manufacturing method of a permanent magnet comprises a film forming process of forming, at least, either a Dy film or a Tb film on the surface of a rare earth-iron-boron-based sintered magnet prescribed in shape; a high-temperature thermal treatment process of forming a diffusion layer which is prescribed in film thickness and contains, at least, either Dy or Tb by subjecting the sintered magnet to a thermal treatment carried out in a high-temperature range on the surface of the sintered magnet, and diffusing, at least, either Dy or Tb into the crystalline grain boundary phase of the sintered magnet; and a low-temperature thermal treatment process of subjecting the sintered magnet to a thermal treatment carried out in a low-temperature range, so as to remove a distortion from the sintered magnet. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、永久磁石及び永久磁石の製造方法に関し、特に、鉄−ホウ素−希土類系の焼結磁石の表面に、Dy、Tbの少なくとも一方をからなる金属膜を形成し、所定温度下で熱処理を施してDy、Tbの少なくとも一方を焼結磁石の結晶粒界相に拡散させてなる永久磁石及び永久磁石の製造方法に関する。   The present invention relates to a permanent magnet and a method for producing a permanent magnet, and in particular, a metal film composed of at least one of Dy and Tb is formed on the surface of an iron-boron-rare earth sintered magnet and heat-treated at a predetermined temperature. The present invention relates to a permanent magnet in which at least one of Dy and Tb is diffused into a grain boundary phase of a sintered magnet, and a method for manufacturing the permanent magnet.

Nd−Fe−B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、近年では、ハイブリッドカー用のモーターや発電機への採用も進んでいる。他方で、Nd−Fe−B系の焼結磁石は、そのキュリー温度が約300℃と低いことから、採用する製品によっては所定温度を超えて昇温する場合があり、所定温度を超えて昇温すると、熱により減磁するという問題が生じる。   Nd-Fe-B based sintered magnets (so-called neodymium magnets) can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied. At the same time, it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), so it is used in various products such as electronic equipment. In recent years, it has been increasingly used in motors and generators for hybrid cars. Yes. On the other hand, the Nd—Fe—B based sintered magnet has a Curie temperature as low as about 300 ° C., so depending on the product used, the temperature may rise above a predetermined temperature. When heated, there arises a problem of demagnetization due to heat.

このため、Nd−Fe−B系の焼結磁石を得る際に、Ndより大きい4f電子の磁気異方性を有し、Ndと同じく負のスティーブンス因子を持つことで、主相の結晶磁気異方性を大きく向上させるDyやTbを添加することが考えられるものの、Dy、Tbは主相結晶格子中でNdと逆向きのスピン配列をするフェリ磁性構造を取ることから磁界強度、ひいては、磁気特性を示す最大エネルギー積が大きく低下するという問題がある。   For this reason, when obtaining a sintered magnet of Nd—Fe—B system, it has a magnetic anisotropy of 4f electrons larger than Nd and has a negative Stevens factor similar to Nd, so that the crystalline magnetism of the main phase Although it is conceivable to add Dy or Tb that greatly improves the anisotropy, Dy and Tb have a ferrimagnetic structure in which the spin arrangement is opposite to Nd in the main phase crystal lattice, so that the magnetic field strength, There is a problem that the maximum energy product exhibiting magnetic characteristics is greatly reduced.

このような問題を解決するため、Nd−Fe−B系の焼結磁石の表面全体に亘って、DyやTbを所定膜厚(磁石の体積に依存して3μm以上の膜厚で形成される)で成膜し、次いで、所定温度下で熱処理を施して、表面に成膜されたDyやTbを磁石の結晶粒界相に拡散させて均一に行き渡らせることが提案されている(非特許文献1参照)。
Improvement of coercivity on thin Nd2Fe14B sintered permanent magnets(薄型Nd2Fe14B系焼結磁石における保磁力の向上)/ 朴起兌、東北大学 博士論文 平成12年3月23日)
In order to solve such a problem, Dy and Tb are formed with a predetermined film thickness (a film thickness of 3 μm or more depending on the volume of the magnet) over the entire surface of the Nd—Fe—B sintered magnet. ), And then heat treatment at a predetermined temperature to diffuse the Dy and Tb formed on the surface to the grain boundary phase of the magnet so that they are uniformly distributed (non-patent) Reference 1).
Improvement of coercivity on thin Nd2Fe14B sintered permanent magnets / Park Ki, Tohoku University Doctoral Dissertation March 23, 2000)

上記方法で製作した永久磁石は、結晶粒界相に拡散したDyやTbが、各結晶粒表面の結晶磁気異方性を高めることで、ニュークリエーション型の保磁力発生機構を強化し、その結果、保磁力を飛躍的に向上させると共に、最大エネルギー積がほとんど損なわれないという利点がある(例えば残留磁束密度:14.5kG(1.45T)、最大エネルギー積:50MGOe(400Kj/m)で、保磁力23KOe(3MA/m)の性能の磁石ができることが非特許文献1に報告されている)。 In the permanent magnet manufactured by the above method, Dy and Tb diffused into the grain boundary phase enhances the crystal magnetic anisotropy of each crystal grain surface, thereby strengthening the mechanism of generating a new coercive force. In addition to dramatically improving the coercive force, the maximum energy product is hardly impaired (for example, residual magnetic flux density: 14.5 kG (1.45 T), maximum energy product: 50 MGOe (400 Kj / m 3 )). Non-patent document 1 reports that a magnet having a coercive force of 23 KOe (3 MA / m) can be produced.

ところで、例えば保磁力をさらに高めれば、永久磁石の厚みの薄くしても強い磁力を持ったものが得られる。従って、この種の永久磁石利用製品自体の小型、軽量化や小電力化を図るためには、上記従来技術と比較してさらに大きな保磁力を有し、高磁気特性の永久磁石の開発が望まれる。また、資源的に乏しく、安定供給が望めないDyやTbを用いるため、焼結磁石の表面へのDyやTbの成膜や結晶粒界相への拡散を効率よく行って生産性を向上させる必要がある。   By the way, if the coercive force is further increased, for example, a permanent magnet having a strong magnetic force can be obtained even if the thickness of the permanent magnet is reduced. Therefore, in order to reduce the size, weight and power consumption of this kind of permanent magnet product itself, it is desirable to develop a permanent magnet having a larger coercive force and higher magnetic characteristics than the above-mentioned conventional technology. It is. In addition, since Dy and Tb, which are scarce in resources and cannot be stably supplied, are used, the film formation of Dy and Tb on the surface of the sintered magnet and the diffusion to the grain boundary phase are efficiently performed to improve productivity. There is a need.

そこで、上記点に鑑み、本発明の第一の目的は、極めて高い保磁力を有し、高磁気特性の永久磁石を提供することにある。また、本発明の第二の目的は、極めて高い保磁力を有し、高磁気特性の永久磁石を、高い生産性でかつ低いコストで作製できる永久磁石の製造方法を提供することにある。   In view of the above, the first object of the present invention is to provide a permanent magnet having an extremely high coercive force and high magnetic properties. A second object of the present invention is to provide a method for producing a permanent magnet that can produce a permanent magnet having an extremely high coercive force and high magnetic properties at high productivity and at low cost.

上記課題を解決するために、請求項1記載の永久磁石の製造方法は、所定形状を有する鉄−ホウ素−希土類系の焼結磁石の表面に、Dy、Tbの少なくとも一方を成膜する成膜工程と、高温領域で熱処理を施して焼結磁石表面にDy、Tbの少なくとも一方を含む所定膜厚の拡散層を形成すると共に、この焼結磁石の結晶粒界相にDy、Tbの少なくとも一方を拡散させる高温熱処理工程と、低温領域で熱処理を施して焼結磁石の歪を除去する低温熱処理工程とを含むことを特徴とする。   In order to solve the above-mentioned problem, the method of manufacturing a permanent magnet according to claim 1 is a film forming method in which at least one of Dy and Tb is formed on the surface of an iron-boron-rare earth sintered magnet having a predetermined shape. Forming a diffusion layer having a predetermined film thickness including at least one of Dy and Tb on the surface of the sintered magnet by performing a heat treatment in a high temperature region, and at least one of Dy and Tb in the grain boundary phase of the sintered magnet And a low temperature heat treatment step for removing the distortion of the sintered magnet by performing a heat treatment in a low temperature region.

請求項1記載の発明によれば、高温領域で熱処理を施すことで、焼結磁石表面に成膜したDy、Tbの少なくとも一方を、焼結磁石表面だけでなく、結晶粒界の略全域に拡散させることができ、その後に低温領域で歪を除去することで、上記従来技術の永久磁石と比較して高い保磁力を有し、高磁気特性の永久磁石が得られる。この場合、Ndと比較して極めて高い耐食性、耐候性を有するDyやTbが少なくとも焼結磁石Sの表面に存在することで、Dyが保護膜としての役割も果たし、付加的な保護膜なしに強い耐食性の有する永久磁石となるため、付加的な表面処理工程を省けることで、生産性がさらに向上し、低コスト化が可能になる。   According to the first aspect of the present invention, at least one of Dy and Tb formed on the surface of the sintered magnet is applied not only to the surface of the sintered magnet but also to substantially the entire region of the grain boundary by performing heat treatment in a high temperature region. A permanent magnet having high coercive force and high magnetic properties can be obtained by removing the strain in a low temperature region and then having a higher coercive force than that of the above-described conventional permanent magnet. In this case, Dy and Tb having extremely high corrosion resistance and weather resistance compared with Nd are present at least on the surface of the sintered magnet S, so that Dy also serves as a protective film, and there is no additional protective film. Since it becomes a permanent magnet having strong corrosion resistance, productivity can be further improved and cost can be reduced by omitting an additional surface treatment step.

前記高温熱処理工程を実施した後、0.5〜10℃/minの冷却速度で低温領域まで冷却する徐冷処理工程をさらに含むとすれば、高温領域での熱処理の冷却速度を遅くすることで、永久磁石自体が焼き鈍しされて内部の歪が減少し、一層保磁力を向上させることができる。   After further performing the high temperature heat treatment step, if it further includes a slow cooling treatment step of cooling to a low temperature region at a cooling rate of 0.5 to 10 ° C./min, the cooling rate of the heat treatment in the high temperature region can be reduced. In addition, the permanent magnet itself is annealed to reduce the internal strain, and the coercive force can be further improved.

また、前記徐冷処理工程を実施した後、低温領域より低い温度まで冷却する急冷処理工程をさらに含むとすれば、徐冷処理工程前に永久磁石が焼き入れされることで、その後の徐冷処理工程前における焼き鈍しの効果が十分に発揮され、より一層保磁力を向上させることができる。   In addition, if it further includes a rapid cooling treatment step of cooling to a temperature lower than the low temperature region after the slow cooling treatment step, the permanent magnet is quenched before the slow cooling treatment step, The effect of annealing before the treatment step is sufficiently exhibited, and the coercive force can be further improved.

前記高温領域が750〜1050℃の範囲であり、前記低温領域が400〜650℃の範囲とすればよい。高温領域において750℃より低い温度では、Dy、Tbの少なくとも一方が結晶粒界まで拡散せず、磁石の欠陥歪が回復しない。また、1050℃を超えた温度では、Dy、Tbの少なくとも一方が結晶粒の中にも拡散するため、永久磁石の磁気特性が低下する。他方、低温領域において400℃より低い温度または750℃を超えた温度では、磁石の欠陥歪が回復しない。   The high temperature region may be in the range of 750 to 1050 ° C, and the low temperature region may be in the range of 400 to 650 ° C. At a temperature lower than 750 ° C. in the high temperature region, at least one of Dy and Tb does not diffuse to the crystal grain boundary, and the defect strain of the magnet does not recover. Further, at a temperature exceeding 1050 ° C., at least one of Dy and Tb diffuses into the crystal grains, so that the magnetic characteristics of the permanent magnet deteriorate. On the other hand, at a temperature lower than 400 ° C. or a temperature exceeding 750 ° C. in the low temperature region, the defect strain of the magnet is not recovered.

前記成膜工程は、処理室を加熱し、この処理室内に予め配置したDy、Tbの少なくとも一方を蒸発させて金属蒸気雰囲気を処理室内に形成する第一工程と、処理室内の温度より低く保持した前記焼結磁石をこの処理室に搬入し、処理室内と焼結磁石との間の温度差によって焼結磁石の表面にDy、Tbの少なくとも一方を選択的に付着堆積させる第二工程とを含むものとすれば、焼結磁石の表面にDyやTbを所定膜厚で高速に成膜できることで生産性がさらに向上し、資源的に乏しく、安定供給が望めないDyやTbの収率を高くできることから、さらなる低コスト化が図れる。   The film forming step includes a first step of heating the processing chamber and evaporating at least one of Dy and Tb disposed in advance in the processing chamber to form a metal vapor atmosphere in the processing chamber, and the temperature is kept lower than the temperature in the processing chamber. A second step of bringing the sintered magnet into the processing chamber and selectively depositing and depositing at least one of Dy and Tb on the surface of the sintered magnet due to a temperature difference between the processing chamber and the sintered magnet. If it is included, Dy and Tb can be deposited on the surface of the sintered magnet at a high speed with a predetermined film thickness, thereby further improving productivity, reducing resources, and increasing the yield of Dy and Tb that cannot be expected to provide a stable supply. Since it can be increased, further cost reduction can be achieved.

また、請求項6記載の永久磁石は、所定形状を有する鉄−ホウ素−希土類系の焼結磁石を有し、その表面にDy、Tbの少なくとも一方を成膜した後、高温領域で熱処理を施して焼結磁石の表面にDy、Tbの少なくとも一方を含む所定膜厚の拡散層を形成すると共に、焼結磁石の略中央部の結晶粒界までDy、Tbの少なくとも一方を拡散させた後、低温領域で歪を除去してなることを特徴とする。   The permanent magnet according to claim 6 has an iron-boron-rare earth sintered magnet having a predetermined shape, and after heat-treating at least one of Dy and Tb on the surface, heat treatment is performed in a high temperature region. And forming a diffusion layer having a predetermined film thickness including at least one of Dy and Tb on the surface of the sintered magnet, and diffusing at least one of Dy and Tb to a crystal grain boundary at a substantially central portion of the sintered magnet. The strain is removed in a low temperature region.

前記焼結磁石が、1μm〜5μmまたは7μm〜20μmの範囲の平均結晶粒径を有すことが好ましい。平均結晶粒径を7μm以上とすると、磁界形成時の回転力が大きくなり、配向度が良く、その上、拡散工程を実施する場合に、結晶粒界相の表面積が小さくなることで、Dy、Tbの少なくとも一方を短時間で効率よく拡散できる。その結果、非常に高い保持力を有する永久磁石が得られると共に、拡散工程の処理時間が短くなって生産性を向上できる。尚、平均結晶粒径が25μmを超えると、結晶粒界に異なる結晶方位を含んだ粒子の割合が極端に多くなって配向度が悪くなり、その結果、永久磁石の最大エネルギー積、残留磁束密度、保持力がそれぞれ低下する。   The sintered magnet preferably has an average crystal grain size in the range of 1 μm to 5 μm or 7 μm to 20 μm. When the average crystal grain size is 7 μm or more, the rotational force at the time of magnetic field formation is increased, the degree of orientation is good, and further, when the diffusion step is performed, the surface area of the crystal grain boundary phase is reduced, so that Dy, At least one of Tb can be efficiently diffused in a short time. As a result, a permanent magnet having a very high holding force can be obtained, and the processing time of the diffusion process can be shortened to improve productivity. When the average crystal grain size exceeds 25 μm, the ratio of grains containing different crystal orientations at the grain boundaries becomes extremely large and the degree of orientation deteriorates. As a result, the maximum energy product of the permanent magnet, the residual magnetic flux density The holding power is reduced.

他方、平均結晶粒径を5μm未満とすると、単磁区結晶粒の割合が多くなり、その結果、非常に高い保持力を有する永久磁石が得られる。平均結晶粒径が1μmより小さくなると、結晶粒界が細かく複雑になることから拡散工程を実施するのに必要な時間が極端に長くなり、生産性が悪い。   On the other hand, when the average crystal grain size is less than 5 μm, the proportion of single domain crystal grains increases, and as a result, a permanent magnet having a very high holding force can be obtained. When the average crystal grain size is smaller than 1 μm, the grain boundary becomes fine and complicated, so that the time required for carrying out the diffusion process becomes extremely long and the productivity is poor.

以上説明したように、本発明の永久磁石は、極めて高い保磁力を有し、高磁気特性であり、また、本発明の永久磁石の製造方法では、極めて高い保磁力を有し、高磁気特性の永久磁石を、高い生産性でかつ低いコストで作製できるという効果を奏する。   As described above, the permanent magnet of the present invention has extremely high coercive force and high magnetic characteristics, and the method for producing a permanent magnet of the present invention has extremely high coercive force and high magnetic characteristics. The permanent magnet can be produced with high productivity and at low cost.

図1及び図2を参照して説明すれば、本発明の永久磁石Mは、所定形状の鉄−ホウ素−希土類系の焼結磁石Sの表面の表面に、Dy、Tbの少なくとも一方を成膜する成膜工程と、所定温度下で熱処理を施して表面に形成したDy、Tbの少なくとも一方を焼結磁石Sの結晶粒界相に拡散させる拡散工程とを実施して作製される(図1参照)。   Referring to FIGS. 1 and 2, the permanent magnet M of the present invention forms at least one of Dy and Tb on the surface of the iron-boron-rare earth sintered magnet S having a predetermined shape. And a diffusion step of diffusing at least one of Dy and Tb formed on the surface by heat treatment at a predetermined temperature into the grain boundary phase of the sintered magnet S (FIG. 1). reference).

鉄−ホウ素−希土類系の焼結磁石Sは、次のように作製されている。即ち、Fe、B、Ndを所定の組成比で配合して、公知のストリップキャスト法により0.05mm〜0.5mmの合金を先ず作製する。配合の際、Cu、Zr、DyやGaを少量添加してもよい。次いで、作製した合金を、公知の水素粉砕工程により一旦粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕する。   The iron-boron-rare earth sintered magnet S is produced as follows. That is, Fe, B, and Nd are blended at a predetermined composition ratio, and an alloy of 0.05 mm to 0.5 mm is first manufactured by a known strip casting method. A small amount of Cu, Zr, Dy or Ga may be added during blending. Next, the produced alloy is once pulverized by a known hydrogen pulverization step, and then finely pulverized by a jet mill pulverization step.

次いで、公知の方法で、磁界配向して金型で直方体など所定形状に成形した後、所定の条件過下で焼結させて上記焼結磁石を得る(図1(a)参照)。焼結磁石の作製の各工程において条件をそれぞれ最適化し、焼結磁石の平均結晶粒径が1μm〜5μmの範囲、または7μm〜20μmの範囲となるようにした。   Next, the magnetic field is oriented by a known method and formed into a predetermined shape such as a rectangular parallelepiped with a mold, and thereafter sintered under predetermined conditions to obtain the sintered magnet (see FIG. 1A). Conditions were optimized in each step of manufacturing the sintered magnet so that the average crystal grain size of the sintered magnet was in the range of 1 μm to 5 μm, or in the range of 7 μm to 20 μm.

平均結晶粒径を7μm以上とすると、磁界形成時の回転力が大きくなり、配向度が良く、その上、拡散工程を実施する場合に、結晶粒界相の表面積が小さくなることで、Dy、Tbの少なくとも一方を短時間で効率よく拡散できる。その結果、非常に高い保持力を有する永久磁石が得られると共に、拡散工程の処理時間が短くなって生産性を向上できる。尚、平均結晶粒径が25μmを超えると、結晶粒界に異なる結晶方位を含んだ粒子の割合が極端に多くなって配向度が悪くなり、その結果、永久磁石の最大エネルギー積、残留磁束密度、保持力がそれぞれ低下する。   When the average crystal grain size is 7 μm or more, the rotational force at the time of magnetic field formation is increased, the degree of orientation is good, and further, when the diffusion step is performed, the surface area of the crystal grain boundary phase is reduced, so that Dy, At least one of Tb can be efficiently diffused in a short time. As a result, a permanent magnet having a very high holding force can be obtained, and the processing time of the diffusion process can be shortened to improve productivity. When the average crystal grain size exceeds 25 μm, the ratio of grains containing different crystal orientations at the grain boundaries becomes extremely large and the degree of orientation deteriorates. As a result, the maximum energy product of the permanent magnet, the residual magnetic flux density The holding power is reduced.

他方、平均結晶粒径を5μm未満とすると、単磁区結晶粒の割合が多くなり、その結果、非常に高い保持力を有する永久磁石が得られる。平均結晶粒径が1μmより小さくなると、結晶粒界が細かく複雑になることから拡散工程を実施するのに必要な時間が極端に長くなり、生産性が悪い。   On the other hand, when the average crystal grain size is less than 5 μm, the proportion of single domain crystal grains increases, and as a result, a permanent magnet having a very high holding force can be obtained. When the average crystal grain size is smaller than 1 μm, the grain boundary becomes fine and complicated, so that the time required for carrying out the diffusion process becomes extremely long and the productivity is poor.

図2に示すように、成膜工程を実施する成膜装置1は、公知の構造を有し、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段11を介して所定の真空度に保持できる円筒形状の真空チャンバ12内を有する。真空チャンバ12の下側略中央部には蒸発源13が設けられている。蒸発源13は、公知の構造を有する抵抗加熱式のものであり、顆粒状のDy、Tbの収納を可能とするるつぼ13aを有する。そして、るつぼ13aに電流を流すことで抵抗熱を発生させ、その熱でDy、Tbを加熱して蒸発させる。   As shown in FIG. 2, a film forming apparatus 1 for performing a film forming process has a known structure and is maintained at a predetermined degree of vacuum through a vacuum exhausting means 11 such as a turbo molecular pump, a cryopump, or a diffusion pump. A cylindrical vacuum chamber 12 is formed. An evaporation source 13 is provided at a substantially lower central portion of the vacuum chamber 12. The evaporation source 13 is a resistance heating type having a known structure, and has a crucible 13a that can store granular Dy and Tb. Then, resistance current is generated by passing a current through the crucible 13a, and Dy and Tb are heated and evaporated by the heat.

他方、図示しない電子銃をるつぼの近傍に配置し、加速・集束した電子線をあて、電子線の持つエネルギーを用いてDy、Tbを加熱して蒸発させるようにしてもよい。るつぼ13aに設置するDy、Tbの粒径は、10〜1000μmの範囲することが望ましい。10μm以下では、発火性を有するDy、Tbの粒の取扱いが困難であり、他方で、1000μmを超えると、蒸発に時間を要する。   On the other hand, an electron gun (not shown) may be disposed in the vicinity of the crucible, and an accelerated and focused electron beam may be applied to heat and evaporate Dy and Tb using the energy of the electron beam. The particle diameters of Dy and Tb installed in the crucible 13a are preferably in the range of 10 to 1000 μm. When the particle size is 10 μm or less, it is difficult to handle ignitable Dy and Tb grains. On the other hand, when the particle size exceeds 1000 μm, it takes time to evaporate.

蒸発源13に対向させて真空チャンバ11の上部には基板ホルダ14が設けられ、基板ホルダ14によって、焼結磁石Sのうち表面積の大きな面が蒸発源13と対向するように複数個の焼結磁石Sが保持できるようになっている。るつぼ13a及び基板ホルダ14は、成膜すべき金属蒸発材料Vと反応しない材料、例えば、Mo、W、V、Taまたはこれらの合金やCaO、Y、或いは希土類酸化物から、またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成されている。 A substrate holder 14 is provided in the upper part of the vacuum chamber 11 so as to face the evaporation source 13, and a plurality of sintered magnets S are sintered by the substrate holder 14 so that a surface having a large surface area faces the evaporation source 13. The magnet S can be held. The crucible 13a and the substrate holder 14 are made of a material that does not react with the metal evaporation material V to be deposited, for example, Mo, W, V, Ta or an alloy thereof, CaO, Y 2 O 3 , or a rare earth oxide, or these The material is formed as a lining film on the surface of another heat insulating material.

尚、真空チャンバ12内にArまたはHeプラズマを発生させる公知構造のプラズマ発生装置(図示せず)を設け、真空チャンバ12内での成膜に先だってプラズマによる焼結磁石S表面のクリーニングを行うようにしてもよい。   In addition, a plasma generator (not shown) having a known structure for generating Ar or He plasma is provided in the vacuum chamber 12 so that the surface of the sintered magnet S is cleaned by plasma prior to film formation in the vacuum chamber 12. It may be.

上記成膜装置1によって焼結磁石S表面にDyやTbを成膜する場合、基板ホルダ14に上記のように作製した焼結磁石Sをセットすると共に、るつぼ13aにDyやTbを配置する。次いで、真空チャンバ12を所定の圧力(例えば、10×10−6Pa)まで真空排気した後、蒸発源13を作動させてDy、Tbを蒸発させ、焼結磁石S表面に付着、堆積させる(図1(b)参照)。 When forming the film of Dy or Tb on the surface of the sintered magnet S by the film forming apparatus 1, the sintered magnet S produced as described above is set on the substrate holder 14, and Dy or Tb is arranged in the crucible 13 a. Next, after evacuating the vacuum chamber 12 to a predetermined pressure (for example, 10 × 10 −6 Pa), the evaporation source 13 is operated to evaporate Dy and Tb, and adhere and deposit on the surface of the sintered magnet S ( (Refer FIG.1 (b)).

成膜工程におけるDyやTbの膜厚は、後述する拡散工程における熱処理時間や焼結磁石Sの体積などを考慮して膜厚が決定される(例えば、2〜20μm)。この場合、焼結磁石Sの全面に亘ってDyやTbを成膜する必要はなく、表面の少なくとも一部にDyやTbを成膜させておけば、焼結磁石の平均結晶粒径を1μm〜5μmの範囲または7μm〜20μmの範囲としたため、次の拡散工程において結晶粒界相にDyやTbを拡散させると、高性能な永久磁石Mが得られる。但し、焼結磁石の体積に対し、DyやTbを成膜した表面積が少ない場合、拡散工程での熱処理時間が長くなるため、生産性を考慮すると、焼結磁石の全表面積の少なくとも80%にDy、Tbを成膜することが好ましい。   The film thickness of Dy and Tb in the film forming process is determined in consideration of the heat treatment time in the diffusion process described later, the volume of the sintered magnet S, and the like (for example, 2 to 20 μm). In this case, it is not necessary to form Dy or Tb over the entire surface of the sintered magnet S. If Dy or Tb is formed on at least a part of the surface, the average crystal grain size of the sintered magnet is 1 μm. Since the range of ˜5 μm or the range of 7 μm to 20 μm is used, when Dy or Tb is diffused into the grain boundary phase in the next diffusion step, a high-performance permanent magnet M is obtained. However, if the surface area on which the Dy or Tb film is formed is small with respect to the volume of the sintered magnet, the heat treatment time in the diffusion process becomes longer. Therefore, considering productivity, at least 80% of the total surface area of the sintered magnet Dy and Tb are preferably formed.

他方、拡散工程を実施する熱処理装置は、表面にDy、Tbが成膜された焼結磁石Sを所定温度下で加熱できるものであればよく、例えば、真空排気手段が接続された真空チャンバを有し、真空チャンバ内には、焼結磁石Sをその全体に亘って所定温度まで均一に昇温させて保持できるように複数本の電気加熱ヒータを設けられている。   On the other hand, the heat treatment apparatus for carrying out the diffusion process may be any heat treatment apparatus that can heat the sintered magnet S with Dy and Tb formed on the surface at a predetermined temperature. In the vacuum chamber, a plurality of electric heaters are provided so that the sintered magnet S can be uniformly heated up to a predetermined temperature and held throughout.

上記熱処理装置によって、表面にDyやTbが成膜された焼結磁石Sを拡散処理する場合、極めて高い保磁力を有し、高磁気特性の永久磁石が得られるようにする必要がある。本実施の形態では、真空排気手段を介して処理室の圧力が所定値(例えば、10×10−5Pa)に到達するまで真空排気した拡散工程を二段階に分けて実施することとした。この場合、先ず、高温領域で熱処理を施して焼結磁石S表面にDy、Tbの少なくとも一方を含む所定膜厚の拡散層を形成すると共にこの焼結磁石の結晶粒界相にDy、Tbの少なくとも一方を拡散させる高温熱処理工程を実施し、引き続き、低温領域で熱処理を施して焼結磁石の歪を除去する低温熱処理工程を実施する。 When the sintered magnet S whose surface is formed with Dy or Tb is diffused by the heat treatment apparatus, it is necessary to obtain a permanent magnet having an extremely high coercive force and high magnetic properties. In the present embodiment, the diffusion process of evacuation is performed in two stages until the pressure in the processing chamber reaches a predetermined value (for example, 10 × 10 −5 Pa) through the evacuation means. In this case, first, a heat treatment is performed in a high temperature region to form a diffusion layer having a predetermined thickness including at least one of Dy and Tb on the surface of the sintered magnet S, and Dy and Tb of the sintered magnet are formed in the grain boundary phase of the sintered magnet. A high-temperature heat treatment process for diffusing at least one of them is performed, and subsequently, a low-temperature heat treatment process for performing heat treatment in a low-temperature region to remove the distortion of the sintered magnet is performed.

また、永久磁石内部の歪が減少するように、高温熱処理工程を実施した後、0.5〜10℃/minの冷却速度で低温領域まで冷却する徐冷処理工程を実施している。この場合、0.5℃/minより冷却速度が遅いと、生産時間が延び、コスト高を招く。また、10℃/minを超えた冷却速度では、磁石に歪が生成され、永久磁石の磁気特性が低下する。これにより、高温領域での熱処理の冷却速度を遅くすることで、焼結磁石が焼き鈍しされることで永久磁石M内部の歪が減少し、一層保磁力を向上させることができる。   Moreover, after implementing a high temperature heat treatment process so that the distortion | strain inside a permanent magnet may reduce, the slow cooling process process which cools to a low temperature area | region at the cooling rate of 0.5-10 degreeC / min is implemented. In this case, if the cooling rate is slower than 0.5 ° C./min, the production time is extended and the cost is increased. Further, at a cooling rate exceeding 10 ° C./min, distortion is generated in the magnet, and the magnetic properties of the permanent magnet are deteriorated. Thereby, by slowing down the cooling rate of the heat treatment in the high temperature region, the sintered magnet is annealed, so that the distortion inside the permanent magnet M is reduced and the coercive force can be further improved.

さらに、徐冷処理工程を実施した後、電気加熱ヒータの作動を停止し、真空チャンバ内を大気開放することで、低温領域より低い温度まで冷却する急冷処理工程を実施すれば、徐冷処理工程前に焼結磁石が焼き入れされることで、その後の徐冷処理工程前における焼き鈍しの効果が十分に発揮され、より一層保磁力を向上させることができる。   Furthermore, after the slow cooling process is performed, the operation of the electric heater is stopped and the vacuum chamber is opened to the atmosphere so that the rapid cooling process for cooling to a temperature lower than the low temperature region is performed. By sintering the sintered magnet before, the effect of annealing before the subsequent annealing process is sufficiently exhibited, and the coercive force can be further improved.

尚、前記高温領域が750〜1050℃の範囲であり、前記低温領域が400〜650℃の範囲とすればよい。高温領域において750℃より低い温度では、Dy、Tbの少なくとも一方が結晶粒界まで拡散せず、磁石の欠陥歪が回復しない。また、1050℃を超えた温度では、Dy、Tbの少なくとも一方が結晶粒の中にも拡散するため、永久磁石の磁気特性が低下する。他方、低温領域において400℃より低い温度または750℃を超えた温度では、磁石の欠陥歪が回復しない。   The high temperature region may be in the range of 750 to 1050 ° C, and the low temperature region may be in the range of 400 to 650 ° C. At a temperature lower than 750 ° C. in the high temperature region, at least one of Dy and Tb does not diffuse to the crystal grain boundary, and the defect strain of the magnet does not recover. Further, at a temperature exceeding 1050 ° C., at least one of Dy and Tb diffuses into the crystal grains, so that the magnetic characteristics of the permanent magnet deteriorate. On the other hand, at a temperature lower than 400 ° C. or a temperature exceeding 750 ° C. in the low temperature region, the defect strain of the magnet is not recovered.

これにより、焼結磁石Sの表面の少なくとも一部にDyやTbの拡散層が形成され、結晶粒界の略全域に拡散させた永久磁石が得られる(図1(c)参照)。この場合、従来のネオジム磁石は錆びやすいことから、Coを添加したり、エポキシ樹脂やPPS樹脂などの樹脂塗装やニッケルメッキ等の表面処理を施して保護膜を形成しているが、Ndと比較して極めて高い耐食性、耐候性を有するDyやTbが少なくとも焼結磁石Sの表面に存在することで、Dyが保護膜としての役割も果たし、Coの添加や付加的な保護膜なしに強い耐食性の有する永久磁石となる。また、付加的な表面処理工程を省け、高価なCoを用いないことで、生産性がさらに向上し、低コスト化が可能になる。   Thereby, a diffusion layer of Dy or Tb is formed on at least a part of the surface of the sintered magnet S, and a permanent magnet diffused substantially over the entire crystal grain boundary is obtained (see FIG. 1C). In this case, since conventional neodymium magnets are easily rusted, a protective film is formed by adding surface treatment such as adding Co or resin coating such as epoxy resin or PPS resin or nickel plating, but compared with Nd Dy and Tb having extremely high corrosion resistance and weather resistance are present at least on the surface of the sintered magnet S, so that Dy also plays a role as a protective film, and has strong corrosion resistance without the addition of Co or an additional protective film. It becomes the permanent magnet which has. Further, by omitting an additional surface treatment step and not using expensive Co, productivity can be further improved and costs can be reduced.

焼結磁石Sの表面、結晶粒界には、Dyリッチ相(Dyを5〜80%の範囲で含む相)を有することが好ましい。これによれば、従来のネオジム磁石は、主相、Ndリッチ相、Bリッチ相の3相から構成されるが、耐食性、耐候性が弱い結晶粒界のNdリッチ相に、Dyリッチ相が存在することで、焼結磁石Sの表面にDyリッチ相が存在することと相俟って、極めて強い耐食性、耐候性を有する永久磁石となる。   It is preferable that the surface of the sintered magnet S and the crystal grain boundary have a Dy rich phase (a phase containing Dy in a range of 5 to 80%). According to this, a conventional neodymium magnet is composed of three phases of a main phase, an Nd-rich phase, and a B-rich phase, but there is a Dy-rich phase in the Nd-rich phase at the grain boundary where the corrosion resistance and weather resistance are weak. Thus, combined with the presence of the Dy-rich phase on the surface of the sintered magnet S, a permanent magnet having extremely strong corrosion resistance and weather resistance is obtained.

より好ましくは、焼結磁石Sの表面がDyリッチ相で覆われ、結晶粒界に、Dyリッチ相を1〜50%の範囲で含むものがよい。尚、結晶粒界に、Dyリッチ相が50%の範囲を超えて含まれていると、磁気特性を示す最大エネルギー積、残留磁束密度及び保磁力が著しく低下する。   More preferably, the surface of the sintered magnet S is covered with the Dy-rich phase, and the Dy-rich phase is included in the range of 1 to 50% at the crystal grain boundary. When the Dy rich phase is included in the crystal grain boundary beyond the range of 50%, the maximum energy product, the residual magnetic flux density, and the coercive force showing magnetic characteristics are remarkably lowered.

尚、本実施の形態では、成膜工程として、蒸着法による成膜装置1を用いるものについて説明したが、資源的に乏しく、安定供給が望めないDyやTbの収率を高めると共に、成膜時間を短縮して生産性を向上させるように、成膜工程として、次の成膜装置10を利用してもよい。   In the present embodiment, the film forming process using the film forming apparatus 1 by the vapor deposition method has been described. However, the yield of Dy and Tb, which are scarce in resources and cannot be stably supplied, is increased, and the film forming process is performed. In order to shorten the time and improve productivity, the following film forming apparatus 10 may be used as the film forming process.

図3及び図4を参照して説明すれば、成膜装置10は、鉄−ホウ素−希土類系の焼結磁石Sの表面に選択的にDyやTbを高速で成膜させるのに適したものであり、処理室2と準備室3とを上下方向で連結して構成される。上側に位置する処理室2は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段10aを介して所定の真空度(例えば、10×10−6Pa)に保持できる円筒形状の真空チャンバ10b内に配置されている。 Referring to FIGS. 3 and 4, the film forming apparatus 10 is suitable for selectively depositing Dy and Tb on the surface of the iron-boron-rare earth sintered magnet S at high speed. The processing chamber 2 and the preparation chamber 3 are connected in the vertical direction. The processing chamber 2 located on the upper side is a cylindrical vacuum chamber 10b that can be maintained at a predetermined degree of vacuum (for example, 10 × 10 −6 Pa) through a vacuum exhaust means 10a such as a turbo molecular pump, a cryopump, or a diffusion pump. Is placed inside.

処理室2は、下面が開口するように円筒形状に加工した均熱板21で画成され、下面の開口を介して準備室3に連通している。真空チャンバ10bには、均熱板21の開口した下面を除くその周囲を囲うように、カーボンから構成される断熱材22が設けられている。均熱板21と断熱材22との間の空間には、例えばWを用いた複数本の電気加熱ヒータ23が設けられ、加熱手段を構成する。これにより、真空中で断熱材22によって囲われた均熱板21を加熱手段23で加熱し、この均熱板21を介して間接的に処理室2内を加熱することで、処理室2内を略均等に加熱できる。   The processing chamber 2 is defined by a soaking plate 21 processed into a cylindrical shape so that the lower surface is opened, and communicates with the preparation chamber 3 through the opening on the lower surface. The vacuum chamber 10b is provided with a heat insulating material 22 made of carbon so as to surround the periphery of the soaking plate 21 except for the opened lower surface. In the space between the soaking plate 21 and the heat insulating material 22, for example, a plurality of electric heaters 23 using W are provided to constitute a heating means. Thereby, the soaking plate 21 surrounded by the heat insulating material 22 in the vacuum is heated by the heating means 23, and the inside of the processing chamber 2 is indirectly heated through the soaking plate 21. Can be heated substantially evenly.

処理室2内には、金属蒸発材料である顆粒状のDyやTbが配置される断面凹状の受け皿24が設けられている。受け皿24は、後述する搬送手段によって処理室2内に移動されてくる焼結磁石Sの周囲を囲ってDyやTbが配置できるように環状に形成され、均熱板21の内側の壁面に取付けられている。尚、受け皿24は、環状に形成される必要はなく、周方向に等間隔で配置されていればよい。   In the processing chamber 2, a tray 24 having a concave section in which granular Dy and Tb, which are metal evaporation materials, are disposed is provided. The saucer 24 is formed in an annular shape so that Dy and Tb can be arranged around the sintered magnet S moved into the processing chamber 2 by a conveying means described later, and is attached to the inner wall surface of the heat equalizing plate 21. It has been. Note that the trays 24 do not have to be formed in an annular shape, and may be arranged at equal intervals in the circumferential direction.

処理室2の下側には、第1空間4が形成され、この第1空間4には、遮蔽手段5が設けられる。遮蔽手段5は、弁本体51とこの弁本体51を駆動させるエアーシリンダなどの駆動手段52とから構成され、駆動手段52によって、弁本体51が処理室2と準備室3とを連通した開位置と(図1に示す状態)、弁本体51が第1空間4を画成する天板41に形成した開口の周縁部に当接して処理室2を密閉する閉位置との間で移動自在となる。弁本体51には、図示していない第2の加熱手段が設けられている。   A first space 4 is formed below the processing chamber 2, and a shielding unit 5 is provided in the first space 4. The shielding means 5 is composed of a valve main body 51 and a driving means 52 such as an air cylinder for driving the valve main body 51. The driving means 52 allows the valve main body 51 to communicate with the processing chamber 2 and the preparation chamber 3. (The state shown in FIG. 1), the valve body 51 is movable between a closed position where the valve body 51 contacts the peripheral edge of the opening formed in the top plate 41 defining the first space 4 and seals the processing chamber 2. Become. The valve body 51 is provided with a second heating means (not shown).

第1空間4の下側には第2空間3aが設けられ、この第2空間3aを画成する側壁30にはゲートバルブ(図示せず)が設けられ、このゲートバルブを開閉して焼結磁石Sの搬入、搬出が行われる。焼結磁石Sは保持手段6で保持される。保持手段6は、同一円周上に所定の間隔を置いて垂直方向に設けた三本の支柱61と、この支柱61の下端から上方にそれぞれ所定の間隔を置いてかつ各支柱61で支持させて水平に設けた2個の載置台62とから構成される。各支柱61は、熱伝導が小さくなるように支柱61の径を小さく構成している。これは後述する押圧部材74からの熱が支柱61を通って焼結磁石Sに伝達し難くするためである。   A second space 3a is provided below the first space 4, and a gate valve (not shown) is provided on a side wall 30 defining the second space 3a. The gate valve is opened and closed to be sintered. The magnet S is carried in and out. The sintered magnet S is held by the holding means 6. The holding means 6 is supported by three struts 61 at predetermined intervals upward from the lower ends of the three struts 61 provided in the vertical direction at predetermined intervals on the same circumference. And two mounting tables 62 provided horizontally. Each strut 61 is configured so that the diameter of the strut 61 is small so that the heat conduction is small. This is to make it difficult for heat from the pressing member 74 described later to be transmitted to the sintered magnet S through the support 61.

尚、載置台62上に載置される焼結磁石Sの載置台62側の面にも成膜できるように、載置台62は、φ0.1〜10mmの線材を格子状に配置して形成するのがよい。また、載置台62相互間の間隔は、焼結磁石Sの高さなどを考慮して設定される。保持手段6は、第2空間3aに設けられ、中央に後述する支持台の挿通が可能な開口63aを形成した円板63上に設置され、この円板63は、処理室2内に設けたリング状の支持部材64上に載置されている。   In addition, the mounting table 62 is formed by arranging wires of φ0.1 to 10 mm in a lattice shape so that the film can be formed on the surface of the sintered magnet S mounted on the mounting table 62 on the mounting table 62 side. It is good to do. Further, the interval between the mounting tables 62 is set in consideration of the height of the sintered magnet S and the like. The holding means 6 is provided on the disc 63 provided in the second space 3a and formed in the center with an opening 63a through which a support base, which will be described later, can be inserted. The disc 63 is provided in the processing chamber 2. It is placed on a ring-shaped support member 64.

尚、上記同様、一般の真空装置でよく用いられるAlを用いると、蒸気雰囲気中のDyとAlが反応してその表面に反応生成物を形成すると共に、Al原子がDy蒸気雰囲気中に侵入する虞があるため、処理室2を画成する均熱板21、焼結磁石Sが保持する保持手段6及び搬送手段7の支持台73を、成膜すべき金属蒸発材料と反応しない材料、例えば、Mo、W、V、Taまたはこれらの合金やCaO、Y、或いは希土類酸化物から製作するか、またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成している。 As described above, when Al 2 O 3 often used in a general vacuum apparatus is used, Dy and Al 2 O 3 in the vapor atmosphere react to form a reaction product on the surface, and Al atoms are converted into Dy. Since there is a risk of entering the vapor atmosphere, the heat equalizing plate 21 that defines the processing chamber 2, the holding means 6 that the sintered magnet S holds, and the support base 73 of the conveying means 7 are metal evaporation materials to be formed into a film. Made of a material that does not react with, for example, Mo, W, V, Ta, or alloys thereof, CaO, Y 2 O 3 , or rare earth oxides, or these materials are lined on the surface of other insulating materials As shown in FIG.

第2空間3aの下側には、第3空間3bが形成され、第2空間3a及び3bが準備室3
を構成する。準備室3には、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段31が接続され、この真空排気手段31によって、準備室3と、第1空間4を介して連通した処理室2内を所定の真空度に保持できる。準備室3の底部には、エアーシリンダなどの駆動手段71が設けられ、準備室3内に突出させた軸部72の先端には円形の支持台73が取付けられ、駆動手段71と支持台73とが搬送手段7を構成し、支持台73が、準備室3内の所定位置(下降位置)と処理室2内の所定位置(上昇位置)と間で昇降自在となる。
A third space 3b is formed below the second space 3a, and the second spaces 3a and 3b are provided in the preparation chamber 3.
Configure. A vacuum evacuation unit 31 such as a turbo molecular pump, a cryopump, or a diffusion pump is connected to the preparation chamber 3, and the inside of the processing chamber 2 communicated with the preparation chamber 3 via the first space 4 by the vacuum evacuation unit 31. Can be maintained at a predetermined degree of vacuum. Driving means 71 such as an air cylinder is provided at the bottom of the preparation chamber 3, and a circular support base 73 is attached to the tip of the shaft portion 72 protruding into the preparation chamber 3. Constitutes the transfer means 7, and the support base 73 can be raised and lowered between a predetermined position (lowering position) in the preparation chamber 3 and a predetermined position (upward position) in the processing chamber 2.

軸部72には、支持台73の下側に位置して断面逆T字形状の押圧部材74が取付けられ、押圧部材74は、搬送手段7を上昇位置に移動させたときに、円板63を上方に向かって持ち上げ、円板63の外周縁部に設けたメタルシールなどのシール材(図示せず)を天板41に形成した開口の周縁部に押圧して処理室2を密閉する役割を果たす。押圧部材74には、図示しない第3の加熱手段が設けられている。   A pressing member 74 having an inverted T-shaped cross section is attached to the shaft portion 72 below the support base 73, and the pressing member 74 is a disk 63 when the transport means 7 is moved to the raised position. A role of sealing the processing chamber 2 by lifting the substrate upward and pressing a sealing material (not shown) such as a metal seal provided on the outer peripheral edge of the disc 63 against the peripheral edge of the opening formed in the top plate 41. Fulfill. The pressing member 74 is provided with third heating means (not shown).

準備室3を構成する第2空間3aには、高周波電源に接続されたコイル(図示せず)と、不活性ガスを導入するガス導入手段32とを有するプラズマ発生手段が設けられている。不活性ガスとしては、He、Arなどの希ガスである。そして、準備室3内でプラズマを発生させて、処理室2内での成膜に先だってプラズマによる焼結磁石S表面のクリーニングの前処理が行われる。この場合、準備室3に、例えばWを用いた電気加熱ヒータ(図示せず)を設け、熱処理による焼結磁石S表面のクリーニングの前処理と共に、成膜が終了した焼結磁石Sに対し、真空雰囲気中で熱処理を施することができるように構成してもよい。   The second space 3a constituting the preparation chamber 3 is provided with a plasma generating means having a coil (not shown) connected to a high frequency power source and a gas introducing means 32 for introducing an inert gas. The inert gas is a rare gas such as He or Ar. Then, plasma is generated in the preparatory chamber 3, and a pretreatment for cleaning the surface of the sintered magnet S by plasma is performed prior to film formation in the processing chamber 2. In this case, the preparatory chamber 3 is provided with an electric heater (not shown) using, for example, W, and the pretreatment for cleaning the surface of the sintered magnet S by heat treatment is performed on the sintered magnet S after film formation is completed. You may comprise so that heat processing can be performed in a vacuum atmosphere.

次に、上記成膜装置10を用いた永久磁石の製造について説明する。先ず、上記同様に鉄−ホウ素−希土類系の焼結磁石Sを得る。次いで、焼結磁石Sを保持手段6の載置台61上に設置する。この場合、その磁化容易方向が、載置台73に平行となるように載置するとよい。次いで、処理室3内の受け皿24に、粒径が10〜1000μmの範囲であるDyを設置する。Dyの収率を高めるべく、受け皿24に設置するDyの総量は、焼結磁石Sが所定温度(焼結磁石の結晶粒のみならず結晶粒界相にもDy、Tbが拡散する温度)に達するまで処理室2内でDy蒸気雰囲気を継続させるのに必要なものとする。   Next, production of a permanent magnet using the film forming apparatus 10 will be described. First, an iron-boron-rare earth sintered magnet S is obtained as described above. Next, the sintered magnet S is placed on the mounting table 61 of the holding means 6. In this case, it is good to mount so that the magnetization easy direction may become parallel to the mounting base 73. Next, Dy having a particle size in the range of 10 to 1000 μm is installed in the tray 24 in the processing chamber 3. In order to increase the yield of Dy, the total amount of Dy installed in the tray 24 is set so that the sintered magnet S has a predetermined temperature (the temperature at which Dy and Tb diffuse not only in the crystal grains of the sintered magnet but also in the grain boundary phase). It is necessary to continue the Dy vapor atmosphere in the processing chamber 2 until it reaches.

次いで、側壁30に設けたゲートバルブを開けて、焼結磁石が設置された保持手段6を第2空間3aに搬入して円板63a上に設置した後、ゲートバルブを閉めて各真空排気手段10a、31をそれぞれ作動させ、真空チャンバ10b内を真空排気すると共に、準備室3及び第1空間4を介して処理室2とが所定圧力(例えば、10×10−6Pa)に到達するまで真空排気する。この場合、遮蔽手段5は開位置にある。 Next, the gate valve provided on the side wall 30 is opened, and the holding means 6 on which the sintered magnet is installed is loaded into the second space 3a and installed on the disc 63a, and then the gate valve is closed and each evacuation means is closed. 10a and 31 are operated to evacuate the vacuum chamber 10b, and until the processing chamber 2 reaches a predetermined pressure (for example, 10 × 10 −6 Pa) through the preparation chamber 3 and the first space 4. Evacuate. In this case, the shielding means 5 is in the open position.

次いで、処理室2及び準備室3の圧力が所定値に達すると、駆動手段52によって遮蔽手段5を閉位置に移動して、弁本体51によって処理室2を密閉し、加熱手段23及び遮蔽手段5における弁本体51の第2の加熱手段を作動させて処理室2内の温度が所定温度に達するまで加熱する。この場合、処理室内の温度を1000℃〜1700℃の範囲に設定するのがよい。1000℃より低い温度では、焼結磁石S表面に高速でDyを成膜できる蒸気圧まで達しない。他方、1700℃を超えた温度では、焼結磁石Sの成膜時間が短くなりすぎ均一に成膜できない虞がある。処理室2の温度は、1200℃〜1500℃の範囲であることが好ましく、より好ましくは、1200℃〜1400℃の範囲である。これらの温度範囲では所望の膜厚を高速で形成することができる。   Next, when the pressure in the processing chamber 2 and the preparation chamber 3 reaches a predetermined value, the shielding unit 5 is moved to the closed position by the driving unit 52, the processing chamber 2 is sealed by the valve body 51, and the heating unit 23 and the shielding unit are sealed. 5, the second heating means of the valve main body 51 is operated to heat the temperature in the processing chamber 2 until it reaches a predetermined temperature. In this case, the temperature in the processing chamber is preferably set in a range of 1000 ° C. to 1700 ° C. At a temperature lower than 1000 ° C., the vapor pressure at which Dy can be formed at high speed on the surface of the sintered magnet S is not reached. On the other hand, if the temperature exceeds 1700 ° C., the film formation time of the sintered magnet S may be too short to form a film uniformly. The temperature of the processing chamber 2 is preferably in the range of 1200 ° C to 1500 ° C, more preferably in the range of 1200 ° C to 1400 ° C. In these temperature ranges, a desired film thickness can be formed at high speed.

そして、例えば1300℃で10Paの蒸気圧を持つDy蒸気雰囲気を処理室2内に形成する。尚、10Paでは、処理室2内に対流が生じることから、後述するように、常温の焼結磁石Sを処理室内に搬入したときその全表面に亘って成膜される。   Then, for example, a Dy vapor atmosphere having a vapor pressure of 10 Pa at 1300 ° C. is formed in the processing chamber 2. At 10 Pa, since convection occurs in the processing chamber 2, as described later, when the room-temperature sintered magnet S is carried into the processing chamber, a film is formed over the entire surface.

他方で、Dy蒸気雰囲気を処理室2内に形成する間、準備室3では、例えば焼結磁石S表面の酸化膜を除去するため、表面クリーニングの前処理が行われる。この場合、準備室3の圧力が所定値(例えば、10×10−1Pa)に達するまでガス導入手段32を介して、不活性ガス、例えばArを準備室3に導入し、高周波電源を作動させて準備室3内でプラズマを発生させてプラズマによる焼結磁石表面のクリーニングを行えばよい。クリーニングの前処理が終了したとき、焼結磁石は、室温〜200℃の温度となる。 On the other hand, while the Dy vapor atmosphere is formed in the processing chamber 2, in the preparation chamber 3, for example, a pretreatment for surface cleaning is performed in order to remove an oxide film on the surface of the sintered magnet S. In this case, an inert gas, for example, Ar is introduced into the preparation chamber 3 through the gas introduction means 32 until the pressure in the preparation chamber 3 reaches a predetermined value (for example, 10 × 10 −1 Pa), and the high-frequency power supply is activated. Then, plasma may be generated in the preparation chamber 3 to clean the surface of the sintered magnet with plasma. When the cleaning pretreatment is completed, the sintered magnet is brought to a temperature of room temperature to 200 ° C.

次いで、処理室2内でのDy蒸気雰囲気の形成及び準備室3内での焼結磁石S表面のクリーニングが終了すると、一旦、処理室2との間で2桁以上の圧力差が生じるように、準備室3の圧力が所定値(例えば、1000Pa)に達するまでガス導入手段32を介して不活性ガス、例えばArを準備室3に導入する。準備室3の圧力が所定値に達すると、遮蔽手段5を開位置に移動させて処理室2及び準備室3を連通させる。この場合、処理室2と準備室3とに圧力差をつけているので、準備室3から処理室2にArが入り込んで処理室2の圧力が高くなることで、一旦蒸発が停止するが(加熱手段23の作動は停止しない)、処理室2内で蒸発させたDyが準備室3側に入り込むことが防止される。   Next, when the formation of the Dy vapor atmosphere in the processing chamber 2 and the cleaning of the surface of the sintered magnet S in the preparation chamber 3 are finished, a pressure difference of two digits or more is once generated between the processing chamber 2 and the processing chamber 2. The inert gas such as Ar is introduced into the preparation chamber 3 through the gas introduction means 32 until the pressure in the preparation chamber 3 reaches a predetermined value (for example, 1000 Pa). When the pressure in the preparation chamber 3 reaches a predetermined value, the shielding means 5 is moved to the open position to cause the processing chamber 2 and the preparation chamber 3 to communicate with each other. In this case, since a pressure difference is created between the processing chamber 2 and the preparation chamber 3, evaporation enters the processing chamber 2 from the preparation chamber 3 and the pressure in the processing chamber 2 increases, so that evaporation temporarily stops ( The operation of the heating means 23 is not stopped), and Dy evaporated in the processing chamber 2 is prevented from entering the preparation chamber 3 side.

次いで、真空排気手段31を介して処理室2及び準備室3の圧力が再度所定値(例えば、10×10−2Pa)に達するまで真空排気すると、Dyが再蒸発する。そして、搬送手段7の駆動手段71を作動させて焼結磁石Sを保持した保持手段6を処理室2内に搬送する。この場合、処理室2は、円板63の外周縁部に設けたメタルシールなどのシール材が天板41に形成した開口の周縁部に当接することで密閉される。 Next, when evacuation is performed until the pressure in the processing chamber 2 and the preparation chamber 3 again reaches a predetermined value (for example, 10 × 10 −2 Pa) through the evacuation unit 31, Dy re-evaporates. Then, the driving means 71 of the conveying means 7 is operated to convey the holding means 6 holding the sintered magnet S into the processing chamber 2. In this case, the processing chamber 2 is sealed by a sealing material such as a metal seal provided on the outer peripheral edge of the disc 63 coming into contact with the peripheral edge of the opening formed in the top plate 41.

次いで、加熱されている処理室2が再度密閉されると、例えば1300℃で10PaのDy飽和蒸気雰囲気が処理室2内に形成され、この状態で所定時間保持する。この場合、処理室3内の温度より低い焼結磁石Sを高温の処理室2内に搬入しているため、処理室2内と焼結磁石Sとの間の温度差によって焼結磁石S表面に蒸気中のDyが選択的に付着して堆積する(成膜工程)。これにより、焼結磁石S表面にのみDyが高速で成膜される(図3(b)参照)。この際、支持台73の押圧部材74は、図示していない第3の加熱手段によって均熱板21と略同温に加熱されているので、押圧部材74に蒸気中のDyが付着することはない。   Next, when the heated processing chamber 2 is sealed again, for example, a Dy saturated vapor atmosphere of 10 Pa at 1300 ° C. is formed in the processing chamber 2 and held in this state for a predetermined time. In this case, since the sintered magnet S having a temperature lower than that in the processing chamber 3 is carried into the high-temperature processing chamber 2, the surface of the sintered magnet S is caused by a temperature difference between the processing chamber 2 and the sintered magnet S. Dy in the vapor selectively adheres and deposits on the film (film formation step). Thereby, Dy is formed at high speed only on the surface of the sintered magnet S (see FIG. 3B). At this time, the pressing member 74 of the support base 73 is heated to substantially the same temperature as the soaking plate 21 by a third heating means (not shown), so that Dy in the vapor adheres to the pressing member 74. Absent.

常温の焼結磁石Sを高温に加熱された処理室2内に搬入したとき、焼結磁石S自体も輻射熱により加熱されることから、飽和蒸気雰囲気が形成された処理室2内での保持時間は、焼結磁石Sが900℃になるまでの時間であって、焼結磁石Sの表面に必要量(「必要量」とは、結晶粒界相のみにDyが拡散して焼結磁石の磁気特性が向上する量である。)のDyが成膜されるまでの時間とする。焼結磁石Sが900℃を超える温度に達すると、Dyが焼結磁石Sのグレイン(主相である結晶粒)内に進入し、結局、永久磁石を得る際にDyを添加したものと同じなり、磁界強度、ひいては、磁気特性を示す最大エネルギー積:が大きく低下する虞がある。   When the normal temperature sintered magnet S is carried into the processing chamber 2 heated to a high temperature, the sintered magnet S itself is also heated by the radiant heat, so that the holding time in the processing chamber 2 in which the saturated vapor atmosphere is formed. Is the time until the sintered magnet S reaches 900 ° C., and the required amount (“required amount” on the surface of the sintered magnet S means that Dy diffuses only in the grain boundary phase and the sintered magnet S This is the amount until the magnetic properties are improved. When the sintered magnet S reaches a temperature exceeding 900 ° C., Dy enters the grains (the main phase crystal grains) of the sintered magnet S, and in the end, it is the same as when Dy is added when obtaining a permanent magnet. Therefore, there is a possibility that the magnetic field strength, and hence the maximum energy product indicating magnetic characteristics, may be greatly reduced.

ところで、焼結磁石Sが加熱されて熱膨張した場合、焼結磁石Sの熱膨張がキュリー温度(約300℃)以下でインバー合金的な異常を示し、焼結磁石Sの表面に付着堆積した膜の剥離が起こり易くなる。このため、保持時間は、焼結磁石Sの最高温度が250℃以下、または450℃以上になるまでの時間とすることが好ましい。250℃以下の温度では、熱膨張異常による歪が少なくなることで、焼結磁石Sの表面に成膜したDyの剥離が起こり難くなる。他方、450℃以上の温度では、焼結磁石Sの一部が溶けることで、焼結磁石Sと焼結磁石Sの表面に付着堆積したDyとの間の密着性が向上し、磁焼結石Sの表面に成膜したしたDyの剥離が起こり難くなる。   By the way, when the sintered magnet S is heated and thermally expanded, the thermal expansion of the sintered magnet S exhibits an Invar alloy abnormality at a Curie temperature (about 300 ° C.) or lower and adheres to the surface of the sintered magnet S. The film peels easily. For this reason, it is preferable that the holding time is a time until the maximum temperature of the sintered magnet S reaches 250 ° C. or lower or 450 ° C. or higher. At a temperature of 250 ° C. or lower, the strain due to abnormal thermal expansion is reduced, so that the Dy film formed on the surface of the sintered magnet S does not easily peel off. On the other hand, when the sintered magnet S is partially melted at a temperature of 450 ° C. or higher, the adhesion between the sintered magnet S and the Dy deposited and deposited on the surface of the sintered magnet S is improved. Peeling of Dy formed on the surface of S is difficult to occur.

他方で、準備室3には、この準備室3の圧力が所定値(例えば、1000Pa)に達するまでガス導入手段32を介してArなどの不活性ガスが導入される。焼結磁石Sが処理室2内に搬送されてから所定時間が経過すると、駆動手段71によって、支持台73を処理室2内の上昇位置から準備室3内の下降位置に移動させ、遮蔽手段5を開位置から閉位置に移動させる。この際、遮蔽手段5の弁本体51は図示していない第2の加熱手段によって均熱板21と略同温に加熱されているので、弁本体51に蒸気中のDyが付着することはない。また、準備室3から処理室2にArが入り込むことで蒸発が停止する。そして、このAr雰囲気中でDyが成膜された焼結磁石を冷却する。   On the other hand, an inert gas such as Ar is introduced into the preparation chamber 3 through the gas introduction means 32 until the pressure in the preparation chamber 3 reaches a predetermined value (for example, 1000 Pa). When a predetermined time elapses after the sintered magnet S is conveyed into the processing chamber 2, the driving means 71 moves the support base 73 from the rising position in the processing chamber 2 to the lowering position in the preparation chamber 3, thereby shielding the means. 5 is moved from the open position to the closed position. At this time, the valve body 51 of the shielding means 5 is heated to substantially the same temperature as the soaking plate 21 by a second heating means (not shown), so that Dy in the vapor does not adhere to the valve body 51. . Also, evaporation stops when Ar enters the processing chamber 2 from the preparation chamber 3. Then, the sintered magnet on which Dy is formed in this Ar atmosphere is cooled.

次いで、真空排気手段31を介して処理室2と隔絶された準備室3の圧力が所定値(10×10−3Pa)に到達するまで真空排気し、準備室3に設けた加熱手段を作動して、上記のように、拡散工程として2段階に分けてDyが成膜された焼結磁石Sに対し熱処理を施す。最後に、所定時間冷却した後、側壁30のゲートバルブを開けて保持手段6を取り出す。 Subsequently, the vacuum chamber is evacuated until the pressure in the preparation chamber 3 isolated from the processing chamber 2 reaches a predetermined value (10 × 10 −3 Pa) via the vacuum pumping means 31, and the heating unit provided in the preparation chamber 3 is operated. Then, as described above, heat treatment is performed on the sintered magnet S on which Dy is formed in two stages as the diffusion process. Finally, after cooling for a predetermined time, the gate valve on the side wall 30 is opened and the holding means 6 is taken out.

これにより、焼結磁石Sの表面全体に亘ってDyを成膜し、熱処理を施して、焼結磁石Sの表面の少なくとも一部にDyやTbの拡散層が形成され、、結晶粒界の略全域に拡散させた永久磁石が得られる。この場合、付加的な表面処理工程を省けることと、磁石の表面にDyを所定膜厚で高速に成膜できることと相俟って生産性がさらに向上し、DyやTbの収率が高くできることからさらなる低コスト化が可能になる。   Thereby, Dy is formed over the entire surface of the sintered magnet S, heat treatment is performed, and a diffusion layer of Dy and Tb is formed on at least a part of the surface of the sintered magnet S. A permanent magnet diffused over substantially the entire area can be obtained. In this case, the productivity can be further improved and the yield of Dy and Tb can be increased in combination with the fact that an additional surface treatment step can be omitted and that Dy can be formed on the surface of the magnet at a predetermined film speed. Therefore, further cost reduction becomes possible.

鉄−ホウ素−希土類系の焼結磁石として、組成が28Nd−2V−0.9B−bal.Feのものを用い、10×20×40mmの直方体形状に加工した。この場合、Fe、B、Nd、Vを上記組成比で配合して、公知のストリップキャスト法により0.05mm〜0.5mmの合金を作製し、公知の水素粉砕工程により一旦粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕する。次いで、磁界配向して金型で所定形状に成形した後、所定の条件過下で焼結させて焼結磁石Sを得た。焼成磁石Sの表面を20μm以下の表面荒さを有するように仕上加工した後、アセトンを用いて洗浄した。   As an iron-boron-rare earth sintered magnet, the composition is 28 Nd-2V-0.9B-bal. Using a thing of Fe, it processed into a rectangular parallelepiped shape of 10 × 20 × 40 mm. In this case, Fe, B, Nd, V are blended in the above composition ratio, an alloy of 0.05 mm to 0.5 mm is produced by a known strip casting method, and once pulverized by a known hydrogen pulverization step, Fine pulverization by jet mill pulverization process. Next, after magnetic field orientation and molding into a predetermined shape with a mold, sintering was performed under predetermined conditions to obtain a sintered magnet S. The surface of the fired magnet S was finished so as to have a surface roughness of 20 μm or less, and then washed with acetone.

次に、上記成膜装置1を用いて焼成磁石S表面にDyを成膜した。純度99.9%のDyを用い、Dyをるつぼ13aに配置すると共に、基板ホルダ14に、70個の焼結磁石Sを、表面積が最も大きい一面がるつぼ13aに対向するように配置した。   Next, Dy was formed on the surface of the sintered magnet S using the film forming apparatus 1. Using Dy having a purity of 99.9%, Dy was placed in the crucible 13a, and 70 sintered magnets S were placed on the substrate holder 14 such that one surface having the largest surface area was opposed to the crucible 13a.

次いで、真空チャンバ12内の圧力を一旦10×10−6Paまで真空排気した後、蒸発源13を構成する電子銃を作動させてDyを加熱し、5分間EB蒸着法により成膜処理し、焼結磁石表面に平均5μmの膜厚のDy膜を得た。次いで、一旦、真空チャンバ12を大気開放して焼結磁石を取出し、再度、表面積が最も大きい他面がるつぼ13aに対向するように配置し、上記と同条件で成膜し、焼結磁石の全表面積の少なくとも87%にDyの薄膜を形成した。 Next, after the pressure in the vacuum chamber 12 is once evacuated to 10 × 10 −6 Pa, the electron gun constituting the evaporation source 13 is operated to heat Dy, and the film is formed by EB vapor deposition for 5 minutes. A Dy film having an average thickness of 5 μm was obtained on the surface of the sintered magnet. Next, the vacuum chamber 12 is once opened to the atmosphere and the sintered magnet is taken out. The sintered magnet is again placed so that the other surface having the largest surface area faces the crucible 13a. A thin film of Dy was formed on at least 87% of the total surface area.

次いで、表面積が最も大きい二面にDyが成膜された焼結磁石Sを熱処理装置に配置し、拡散工程を実施した。拡散工程の条件として、真空チャンバ内の圧力を10×10−3Paに設定し、所定の時間、高温熱処理工程(最大96時間)と低温熱処理工程(30分間)とを順次実施した。 Subsequently, the sintered magnet S in which Dy was formed on two surfaces having the largest surface area was placed in a heat treatment apparatus, and a diffusion process was performed. As conditions for the diffusion process, the pressure in the vacuum chamber was set to 10 × 10 −3 Pa, and a high-temperature heat treatment process (maximum 96 hours) and a low-temperature heat treatment process (30 minutes) were sequentially performed for a predetermined time.

図5は、上記条件下で、高温熱処理工程の温度を700〜1080℃の範囲、低温熱処理工程の温度を400〜650℃の範囲、徐冷処理工程を0〜50℃/minの範囲で変化させると共に、急冷処理工程を実施するかまたは実施せずに得た永久磁石の磁気特性の平均値及び永久磁石Mの表面からの高濃度拡散層の深さ(mm)を示す表である。   FIG. 5 shows that, under the above conditions, the temperature of the high temperature heat treatment step is changed in the range of 700 to 1080 ° C., the temperature of the low temperature heat treatment step is changed in the range of 400 to 650 ° C., and the annealing treatment step is changed in the range of 0 to 50 ° C./min. 11 is a table showing the average value of the magnetic properties of the permanent magnets obtained with or without the rapid cooling treatment step and the depth (mm) of the high-concentration diffusion layer from the surface of the permanent magnet M.

これによれば、高温熱処理工程の温度を750〜1050℃の範囲では、最大エネルギー積が53MGOeで、残留磁束密度が14.8以上で、保磁力が19.0KOeの高磁気特性を有する永久磁石が得られたことが判る。但し、低温熱処理工程を実施しない場合には、16KOe程度の保磁力しか得られず、他方で、高温熱処理工程に加えて400〜650℃の範囲内で低温熱処理工程を実施すると、19KOe以上の高い保磁力が得られていることが判る。また、10℃/minを超えた早い速度で徐冷処理工程を実施した場合もまた15KOe程度の保磁力しか得られなかった。さらに、同条件下では、急冷処理工程を実施した永久磁石の方が保磁力が高くなることが判る。   According to this, when the temperature of the high-temperature heat treatment step is in the range of 750 to 1050 ° C., the permanent magnet having a high magnetic characteristic with a maximum energy product of 53 MGOe, a residual magnetic flux density of 14.8 or more, and a coercive force of 19.0 KOe. It can be seen that However, when the low temperature heat treatment step is not performed, only a coercive force of about 16 KOe can be obtained. On the other hand, when the low temperature heat treatment step is performed within the range of 400 to 650 ° C. in addition to the high temperature heat treatment step, the coercive force is higher than 19 KOe. It can be seen that the coercive force is obtained. In addition, when the annealing process was performed at a high speed exceeding 10 ° C./min, only a coercive force of about 15 KOe was obtained. Furthermore, it can be seen that the coercive force is higher in the permanent magnet subjected to the rapid cooling treatment step under the same conditions.

鉄−ホウ素−希土類系の焼結磁石として、上記実施例1と同じものを用いた。次に、上記成膜装置10を用いて焼成磁石S表面にDyを成膜した。純度99.9%のDyを用い、受け皿24に配置すると共に、各載置台62上に、70個の焼結磁石Sを半径方向線に沿って相互に対向させて配置した。   The same iron-boron-rare earth sintered magnet as in Example 1 was used. Next, Dy was formed on the surface of the sintered magnet S using the film forming apparatus 10. Dy having a purity of 99.9% was used and placed on the tray 24, and 70 sintered magnets S were placed on each mounting table 62 so as to face each other along a radial line.

また、Dyの成膜に先立って、準備室3にArを導入して、圧力を10×10−1Pa、高周波電圧を800Vに設定して、60秒間プラズマ処理による焼結磁石表面のクリーニングを行った。この場合、クリーニング後の焼成磁石の温度は、60℃であった。 Prior to the film formation of Dy, Ar is introduced into the preparation chamber 3, the pressure is set to 10 × 10 −1 Pa, the high frequency voltage is set to 800 V, and the surface of the sintered magnet is cleaned by plasma treatment for 60 seconds. went. In this case, the temperature of the fired magnet after cleaning was 60 ° C.

他方、遮蔽手段5の閉位置で処理室2を密閉し、処理室2内を1300℃に加熱し、Dyを蒸発させて処理室2を金属蒸気で満たすこととした。また、金属蒸気雰囲気内に焼成磁石Sを搬入する際の処理室2及び準備室3の圧力を10×10−2Paに設定し、また、焼成磁石Sを処理室2に搬送した後の保持時間を5分に設定し、平均10μmの膜厚のDy膜が蒸着されるようにした。さらに、準備室3内での熱処理の条件として、準備室3の圧力を10×10−3Paに設定し、所定の時間、高温熱処理工程(最大96時間)と低温熱処理工程(30分間)とを順次実施した。 On the other hand, the processing chamber 2 is sealed at the closed position of the shielding means 5, the inside of the processing chamber 2 is heated to 1300 ° C., Dy is evaporated, and the processing chamber 2 is filled with metal vapor. Further, the pressure in the processing chamber 2 and the preparation chamber 3 when the sintered magnet S is carried into the metal vapor atmosphere is set to 10 × 10 −2 Pa, and the sintered magnet S is held after being transferred to the processing chamber 2. The time was set to 5 minutes, and an average Dy film having a thickness of 10 μm was deposited. Furthermore, as the conditions for the heat treatment in the preparation chamber 3, the pressure in the preparation chamber 3 is set to 10 × 10 −3 Pa, and a predetermined time, a high temperature heat treatment step (maximum 96 hours) and a low temperature heat treatment step (30 minutes), Were carried out sequentially.

図6は、上記条件下で、高温熱処理工程の温度を700〜1080℃の範囲、低温熱処理工程の温度を450〜650℃の範囲、徐冷処理工程を0.1〜100℃/minの範囲で変化させると共に、急冷処理工程を実施するかまたは実施せずに得た永久磁石の磁気特性の平均値及び永久磁石Mの表面からの高濃度拡散層の深さ(mm)を示す表である。   FIG. 6 shows that the temperature of the high temperature heat treatment step is in the range of 700 to 1080 ° C., the temperature of the low temperature heat treatment step is in the range of 450 to 650 ° C., and the slow cooling treatment step is in the range of 0.1 to 100 ° C./min. 4 is a table showing the average value of the magnetic characteristics of the permanent magnet obtained with or without performing the quenching process and the depth (mm) of the high-concentration diffusion layer from the surface of the permanent magnet M. .

これによれば、高温熱処理工程の温度を750〜1050℃の範囲では、最大エネルギー積が53MGOeで、残留磁束密度が14.8以上で、保磁力が19.5KOeの高磁気特性を有する永久磁石が得られたことが判る。但し、低温熱処理工程を実施しない場合には、13KOe程度の保磁力しか得られず、他方で、高温熱処理工程に加えて400〜650℃の範囲内で低温熱処理工程を実施すると、19.5KOe以上の高い保磁力が得られていることが判る。また、10℃/minを超えた早い速度で徐冷処理工程を実施した場合もまた15KOe程度の保磁力しか得られなかった。さらに、同条件下では、急冷処理工程を実施した永久磁石の方が保磁力が高くなることが判る。   According to this, when the temperature of the high-temperature heat treatment process is in the range of 750 to 1050 ° C., the permanent magnet having a high magnetic property with a maximum energy product of 53 MGOe, a residual magnetic flux density of 14.8 or more, and a coercive force of 19.5 KOe. It can be seen that However, when the low temperature heat treatment step is not performed, only a coercive force of about 13 KOe can be obtained. On the other hand, when the low temperature heat treatment step is performed in the range of 400 to 650 ° C. in addition to the high temperature heat treatment step, 19.5 KOe or more. It can be seen that a high coercive force is obtained. In addition, when the annealing process was performed at a high speed exceeding 10 ° C./min, only a coercive force of about 15 KOe was obtained. Furthermore, it can be seen that the coercive force is higher in the permanent magnet subjected to the rapid cooling treatment step under the same conditions.

(a)乃至(c)は、本発明の永久磁石の製造手順を説明する図。(A) thru | or (c) is a figure explaining the manufacturing procedure of the permanent magnet of this invention. 本発明の成膜装置の構成を概略的に説明する図。1 is a diagram schematically illustrating a configuration of a film forming apparatus of the present invention. 他の実施形態に係る成膜装置の構成を概略的に説明する図。The figure which illustrates schematically the structure of the film-forming apparatus which concerns on other embodiment. 図3に示す成膜装置の処理室内での焼結磁石の保持を説明する図。The figure explaining holding | maintenance of the sintered magnet in the process chamber of the film-forming apparatus shown in FIG. 実施例1で作製した永久磁石の磁気特性の平均値を示す表。2 is a table showing average values of magnetic characteristics of permanent magnets manufactured in Example 1; 実施例2で作製した永久磁石の磁気特性の平均値を示す表。6 is a table showing average values of magnetic characteristics of permanent magnets manufactured in Example 2.

符号の説明Explanation of symbols

1 成膜装置
12 真空チャンバ
13 蒸発源
14 ホルダ
S 焼結磁石
M 永久磁石
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 12 Vacuum chamber 13 Evaporation source 14 Holder S Sintered magnet M Permanent magnet

Claims (7)

所定形状を有する鉄−ホウ素−希土類系の焼結磁石の表面に、Dy、Tbの少なくとも一方を成膜する成膜工程と、高温領域で熱処理を施して焼結磁石表面にDy、Tbの少なくとも一方を含む所定膜厚の拡散層を形成すると共に、この焼結磁石の結晶粒界相にDy、Tbの少なくとも一方を拡散させる高温熱処理工程と、低温領域で熱処理を施して焼結磁石の歪を除去する低温熱処理工程とを含むことを特徴とする永久磁石の製造方法。 A film forming process for forming at least one of Dy and Tb on the surface of an iron-boron-rare earth sintered magnet having a predetermined shape, and a heat treatment in a high temperature region to form at least Dy and Tb on the sintered magnet surface. A diffusion layer having a predetermined thickness including one is formed, and a high-temperature heat treatment step for diffusing at least one of Dy and Tb into the grain boundary phase of the sintered magnet, and a heat treatment in a low-temperature region to cause distortion of the sintered magnet And a low-temperature heat treatment step of removing the permanent magnet. 前記高温熱処理工程を実施した後、0.5〜10℃/minの冷却速度で低温領域まで冷却する徐冷処理工程をさらに含むことを特徴とする請求項1記載の永久磁石の製造方法。 The method of manufacturing a permanent magnet according to claim 1, further comprising a slow cooling treatment step of cooling to a low temperature region at a cooling rate of 0.5 to 10 ° C./min after performing the high temperature heat treatment step. 前記徐冷処理工程を実施した後、低温領域より低い温度まで冷却する急冷処理工程をさらに含むことを特徴とする請求項2記載の永久磁石の製造方法。 The method of manufacturing a permanent magnet according to claim 2, further comprising a rapid cooling treatment step of cooling to a temperature lower than a low temperature region after performing the slow cooling treatment step. 前記高温領域が750〜1050℃の範囲であり、前記低温領域が400〜650℃の範囲であることを特徴とする請求項1乃至請求項3のいずれかに記載の永久磁石の製造方法。 The said high temperature area | region is the range of 750-1050 degreeC, and the said low temperature area | region is the range of 400-650 degreeC, The manufacturing method of the permanent magnet in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 前記成膜工程は、処理室を加熱し、この処理室内に予め配置したDy、Tbの少なくとも一方を蒸発させて金属蒸気雰囲気を処理室内に形成する第一工程と、処理室内の温度より低く保持した前記焼結磁石をこの処理室に搬入し、処理室内と焼結磁石との間の温度差によって焼結磁石の表面にDy、Tbの少なくとも一方を選択的に付着堆積させる第二工程とを含むことを特徴とする請求項1乃至請求項4のいずれかに記載の永久磁石の製造方法。 The film forming step includes a first step of heating the processing chamber and evaporating at least one of Dy and Tb disposed in advance in the processing chamber to form a metal vapor atmosphere in the processing chamber, and the temperature is kept lower than the temperature in the processing chamber. A second step of bringing the sintered magnet into the processing chamber and selectively depositing and depositing at least one of Dy and Tb on the surface of the sintered magnet due to a temperature difference between the processing chamber and the sintered magnet. The manufacturing method of the permanent magnet in any one of Claim 1 thru | or 4 characterized by the above-mentioned. 所定形状を有する鉄−ホウ素−希土類系の焼結磁石を有し、その表面にDy、Tbの少なくとも一方を成膜した後、高温領域で熱処理を施して焼結磁石の表面にDy、Tbの少なくとも一方を含む所定膜厚の拡散層を形成すると共に、焼結磁石の略中央部の結晶粒界までDy、Tbの少なくとも一方を拡散させた後、低温領域で歪を除去してなることを特徴とする永久磁石。 It has an iron-boron-rare earth sintered magnet having a predetermined shape, and after depositing at least one of Dy and Tb on its surface, it is subjected to heat treatment in a high temperature region to form Dy and Tb on the surface of the sintered magnet. A diffusion layer having a predetermined film thickness including at least one is formed, and at least one of Dy and Tb is diffused to the crystal grain boundary in the substantially central portion of the sintered magnet, and then strain is removed in a low temperature region. A featured permanent magnet. 前記焼結磁石が、1μm〜5μmまたは7μm〜20μmの範囲の平均結晶粒径を有することを特徴とする請求項6記載の永久磁石。
The permanent magnet according to claim 6, wherein the sintered magnet has an average crystal grain size in the range of 1 μm to 5 μm or 7 μm to 20 μm.
JP2006158500A 2006-06-07 2006-06-07 Permanent magnet, and manufacturing method of permanent magnet Pending JP2007329250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158500A JP2007329250A (en) 2006-06-07 2006-06-07 Permanent magnet, and manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158500A JP2007329250A (en) 2006-06-07 2006-06-07 Permanent magnet, and manufacturing method of permanent magnet

Publications (1)

Publication Number Publication Date
JP2007329250A true JP2007329250A (en) 2007-12-20

Family

ID=38929527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158500A Pending JP2007329250A (en) 2006-06-07 2006-06-07 Permanent magnet, and manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP2007329250A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071904A (en) * 2006-09-13 2008-03-27 Ulvac Japan Ltd Permanent magnet and manufacturing method of permanent magnet
JP2009170796A (en) * 2008-01-18 2009-07-30 Ulvac Japan Ltd Permanent magnet, and manufacturing method of permanent magnet
WO2009104640A1 (en) * 2008-02-20 2009-08-27 株式会社アルバック Method for the production of permanent magnets and a permanent magnet
JP2009200180A (en) * 2008-02-20 2009-09-03 Ulvac Japan Ltd Manufacturing method of permanent magnet
JP2009254092A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Rotor for permanent magnet rotating machine
WO2011004894A1 (en) * 2009-07-10 2011-01-13 インターメタリックス株式会社 Ndfeb sintered magnet, and process for production thereof
WO2011122638A1 (en) * 2010-03-30 2011-10-06 Tdk株式会社 Sintered magnet, motor, automobile, and method for producing sintered magnet
JP2011211071A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
JP2011211069A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
WO2012043061A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for producing r-t-b sintered magnet
WO2013146073A1 (en) * 2012-03-30 2013-10-03 日立金属株式会社 Process for producing sintered r-t-b magnet
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
CN103366943A (en) * 2013-07-17 2013-10-23 宁波韵升股份有限公司 Method for improving performance of sintered NdFeB magnetic sheet
JP2016082176A (en) * 2014-10-21 2016-05-16 日産自動車株式会社 Method for producing high coercive force magnet
WO2016121790A1 (en) * 2015-01-27 2016-08-04 日立金属株式会社 Method for producing r-t-b sintered magnet
JP2020170745A (en) * 2019-04-01 2020-10-15 Tdk株式会社 Magnet structure, method of manufacturing magnet structure, and motor
CN113620701A (en) * 2021-09-29 2021-11-09 海安南京大学高新技术研究院 Preparation method of superfine-crystal high-temperature-resistant high-frequency manganese-zinc ferrite
CN114717511A (en) * 2022-03-30 2022-07-08 北矿磁材(阜阳)有限公司 Preparation method of Al film on surface of sintered neodymium-iron-boron magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274048A (en) * 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof
JPH01111801A (en) * 1987-10-23 1989-04-28 Shin Etsu Chem Co Ltd Oxidation resistant rare earth alloy powder
JPH01117303A (en) * 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd Permanent magnet
JPH0529121A (en) * 1991-07-19 1993-02-05 Hitachi Metals Ltd Permanent magnet
JP2004111481A (en) * 2002-09-13 2004-04-08 Sumitomo Special Metals Co Ltd Rare earth sintered magnet and its manufacturing method
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method
JP2006118055A (en) * 1999-05-14 2006-05-11 Neomax Co Ltd Surface treatment apparatus and surface treated rare earth based permanent magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274048A (en) * 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof
JPH01111801A (en) * 1987-10-23 1989-04-28 Shin Etsu Chem Co Ltd Oxidation resistant rare earth alloy powder
JPH01117303A (en) * 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd Permanent magnet
JPH0529121A (en) * 1991-07-19 1993-02-05 Hitachi Metals Ltd Permanent magnet
JP2006118055A (en) * 1999-05-14 2006-05-11 Neomax Co Ltd Surface treatment apparatus and surface treated rare earth based permanent magnet
JP2004111481A (en) * 2002-09-13 2004-04-08 Sumitomo Special Metals Co Ltd Rare earth sintered magnet and its manufacturing method
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071904A (en) * 2006-09-13 2008-03-27 Ulvac Japan Ltd Permanent magnet and manufacturing method of permanent magnet
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
US10854380B2 (en) 2008-01-11 2020-12-01 Daido Steel Co., Ltd. NdFeB sintered magnet and method for producing the same
JP2009170796A (en) * 2008-01-18 2009-07-30 Ulvac Japan Ltd Permanent magnet, and manufacturing method of permanent magnet
WO2009104640A1 (en) * 2008-02-20 2009-08-27 株式会社アルバック Method for the production of permanent magnets and a permanent magnet
JP2009200180A (en) * 2008-02-20 2009-09-03 Ulvac Japan Ltd Manufacturing method of permanent magnet
JP5277179B2 (en) * 2008-02-20 2013-08-28 株式会社アルバック Method for manufacturing permanent magnet and permanent magnet
JP2009254092A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Rotor for permanent magnet rotating machine
EP2453448A1 (en) * 2009-07-10 2012-05-16 Intermetallics Co., Ltd. Ndfeb sintered magnet, and process for production thereof
CN106098281A (en) * 2009-07-10 2016-11-09 因太金属株式会社 NdFeB sintered magnet
JP5687621B2 (en) * 2009-07-10 2015-03-18 インターメタリックス株式会社 NdFeB sintered magnet and manufacturing method thereof
EP2453448A4 (en) * 2009-07-10 2014-08-06 Intermetallics Co Ltd Ndfeb sintered magnet, and process for production thereof
CN102483979B (en) * 2009-07-10 2016-06-08 因太金属株式会社 The manufacture method of NdFeB sintered magnet
CN102483979A (en) * 2009-07-10 2012-05-30 因太金属株式会社 Ndfeb sintered magnet, and process for production thereof
JPWO2011004894A1 (en) * 2009-07-10 2012-12-20 インターメタリックス株式会社 NdFeB sintered magnet and manufacturing method thereof
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
WO2011004894A1 (en) * 2009-07-10 2011-01-13 インターメタリックス株式会社 Ndfeb sintered magnet, and process for production thereof
WO2011122638A1 (en) * 2010-03-30 2011-10-06 Tdk株式会社 Sintered magnet, motor, automobile, and method for producing sintered magnet
JP2011211069A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
US9548157B2 (en) 2010-03-30 2017-01-17 Tdk Corporation Sintered magnet, motor, automobile, and method for producing sintered magnet
CN102473498A (en) * 2010-03-30 2012-05-23 Tdk株式会社 Sintered magnet, motor, automobile, and method for producing sintered magnet
JP2011211071A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
WO2012043061A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for producing r-t-b sintered magnet
JP2012094813A (en) * 2010-09-30 2012-05-17 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet
US9721724B2 (en) 2010-09-30 2017-08-01 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
CN103140902A (en) * 2010-09-30 2013-06-05 日立金属株式会社 Method for producing r-t-b sintered magnet
US20130181039A1 (en) * 2010-09-30 2013-07-18 Hitachi Metals, Ltd. Method for producing r-t-b sintered magnet
WO2013146073A1 (en) * 2012-03-30 2013-10-03 日立金属株式会社 Process for producing sintered r-t-b magnet
JPWO2013146073A1 (en) * 2012-03-30 2015-12-10 日立金属株式会社 Method for producing RTB-based sintered magnet
CN104040655A (en) * 2012-03-30 2014-09-10 日立金属株式会社 Process for producing sintered R-T-B magnet
US20140329007A1 (en) * 2012-03-30 2014-11-06 Hitachi Metals, Ltd. Process for producing sintered r-t-b magnet
CN103366943A (en) * 2013-07-17 2013-10-23 宁波韵升股份有限公司 Method for improving performance of sintered NdFeB magnetic sheet
JP2016082176A (en) * 2014-10-21 2016-05-16 日産自動車株式会社 Method for producing high coercive force magnet
WO2016121790A1 (en) * 2015-01-27 2016-08-04 日立金属株式会社 Method for producing r-t-b sintered magnet
JPWO2016121790A1 (en) * 2015-01-27 2017-11-02 日立金属株式会社 Method for producing RTB-based sintered magnet
JP2020170745A (en) * 2019-04-01 2020-10-15 Tdk株式会社 Magnet structure, method of manufacturing magnet structure, and motor
CN113620701A (en) * 2021-09-29 2021-11-09 海安南京大学高新技术研究院 Preparation method of superfine-crystal high-temperature-resistant high-frequency manganese-zinc ferrite
CN114717511A (en) * 2022-03-30 2022-07-08 北矿磁材(阜阳)有限公司 Preparation method of Al film on surface of sintered neodymium-iron-boron magnet
CN114717511B (en) * 2022-03-30 2023-08-04 北矿磁材(阜阳)有限公司 Preparation method of Al film on surface of sintered NdFeB magnet

Similar Documents

Publication Publication Date Title
JP5433732B2 (en) Deposition equipment
JP2007329250A (en) Permanent magnet, and manufacturing method of permanent magnet
JP5090359B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5247717B2 (en) Method for manufacturing permanent magnet and permanent magnet
JP5356026B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2007305878A (en) Permanent magnet and manufacturing method therefor
JP5117220B2 (en) Method for manufacturing permanent magnet
JP5277179B2 (en) Method for manufacturing permanent magnet and permanent magnet
JP5275043B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2011035001A (en) Method for manufacturing permanent magnet
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4922704B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5117219B2 (en) Method for manufacturing permanent magnet
JP5053105B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2010129665A (en) Method of manufacturing permanent magnet
JP2009130279A (en) Method of manufacturing permanent magnet
JP4860491B2 (en) Permanent magnet and method for manufacturing permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426