JP5064930B2 - Permanent magnet and method for manufacturing permanent magnet - Google Patents

Permanent magnet and method for manufacturing permanent magnet Download PDF

Info

Publication number
JP5064930B2
JP5064930B2 JP2007205234A JP2007205234A JP5064930B2 JP 5064930 B2 JP5064930 B2 JP 5064930B2 JP 2007205234 A JP2007205234 A JP 2007205234A JP 2007205234 A JP2007205234 A JP 2007205234A JP 5064930 B2 JP5064930 B2 JP 5064930B2
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
processing chamber
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007205234A
Other languages
Japanese (ja)
Other versions
JP2009043813A (en
Inventor
浩 永田
久三 中村
丈夫 加藤
篤 中塚
一郎 向江
正美 伊藤
良 吉泉
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007205234A priority Critical patent/JP5064930B2/en
Publication of JP2009043813A publication Critical patent/JP2009043813A/en
Application granted granted Critical
Publication of JP5064930B2 publication Critical patent/JP5064930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、永久磁石及び永久磁石の製造方法に関し、特に、熱間塑性加工を施した作製した異方性リング磁石の結晶粒界相にDyやTbの金属原子を拡散させた高磁気特定の永久磁石及び永久磁石の製造方法に関する。   The present invention relates to a permanent magnet and a method for producing a permanent magnet, and in particular, a high magnetic specificity obtained by diffusing metal atoms of Dy and Tb in a grain boundary phase of an anisotropic ring magnet produced by hot plastic working. The present invention relates to a permanent magnet and a method for manufacturing the permanent magnet.

近年、鉄−ホウ素−希土類系の磁石として、熱間で塑性加工を施すことによって結晶粒を特定の方向に配向させることにより、磁気的に異方性を付与した永久磁石が知られている(特許文献1参照)。この永久磁石は、先ず合金溶湯を急冷することで非晶質または微細結晶質の薄片を得て、微粉砕工程により破砕して微粉末とし、これを冷間や熱間で成形した後、熱間塑性加工したり、あるいは前記合金溶湯を鋳造したのち鋳造体を熱間塑性加工したりすることにより作製される。   In recent years, as an iron-boron-rare earth magnet, a permanent magnet having magnetic anisotropy is known by orienting crystal grains in a specific direction by performing plastic working hot ( Patent Document 1). This permanent magnet is obtained by first quenching the molten alloy to obtain amorphous or fine crystalline flakes and crushing them into a fine powder by a fine pulverization process. It is produced by hot plastic working, or by casting the molten alloy and hot plastic working the cast body.

上記のように永久磁石を製造すると、長尺タイプの異方性リング磁石が作製でき、円周方向の磁気特定を均一にでき(この場合、内外周面単極で着磁することができる)、しかも、内径が相互に異なるリング磁石を作製しても磁気特性に差がつき難いことから、電子機器など種々の製品、ハイブリッドカー用のモーターや発電機への採用も検討されている。   When a permanent magnet is manufactured as described above, a long-type anisotropic ring magnet can be produced, and magnetic identification in the circumferential direction can be made uniform (in this case, it can be magnetized with a single pole on the inner and outer peripheral surfaces). Moreover, even if ring magnets having different inner diameters are produced, it is difficult to make a difference in magnetic characteristics. Therefore, adoption in various products such as electronic devices, motors and generators for hybrid cars is also being studied.

但し、上記熱間塑性加工法による鉄−ホウ素−希土類系の磁石作製の際に、希土類金属の含有量を30重量%未満にすると、磁気特性のうち残留磁束密度が向上するが、保磁力が著しく低下するという問題がある。このことから、鉄−ホウ素−希土類系の磁石合金の成分組成を最適化して、磁束密度及び保磁力を向上させることが試みられている(特許文献1参照)。
特開平11−193449号公報(例えば、請求の範囲の記載、従来の技術の記載参照)
However, when the iron-boron-rare earth magnet is produced by the hot plastic working method, if the rare earth metal content is less than 30% by weight, the residual magnetic flux density is improved among the magnetic properties, but the coercive force is reduced. There is a problem that it drops significantly. For this reason, attempts have been made to improve the magnetic flux density and coercive force by optimizing the component composition of iron-boron-rare earth magnet alloys (see Patent Document 1).
Japanese Patent Application Laid-Open No. 11-193449 (for example, see the description of claims and the description of the prior art)

しかしながら、鉄−ホウ素−希土類系の磁石合金の成分組成を最適化する方法では、磁束密度及び保磁力を一層向上させるには限界があり、現状では、モータ等の用途に使用するには保磁力が足りない。他方で、保磁力をさらに高めれば、永久磁石の厚みの薄くしても強い磁力を持ったものが得られる。従って、この種の永久磁石利用製品自体の小型、軽量化や小電力化を図るためには、上記従来技術と比較してさらに大きな保磁力を有し、高磁気特性の永久磁石の開発が望まれる。   However, in the method of optimizing the composition of the iron-boron-rare earth magnet alloy, there is a limit to further improving the magnetic flux density and the coercive force. Is missing. On the other hand, if the coercive force is further increased, a product having a strong magnetic force can be obtained even if the thickness of the permanent magnet is reduced. Therefore, in order to reduce the size, weight and power consumption of this kind of permanent magnet product itself, it is desirable to develop a permanent magnet having a larger coercive force and higher magnetic characteristics than the above-mentioned conventional technology. It is.

そこで、上記点に鑑み、本発明の第一の目的は、極めて高い保磁力を有し、高磁気特性の永久磁石を提供することにある。また、本発明の第二の目的は、極めて高い保磁力を有し、高磁気特性の永久磁石を、高い生産性でかつ低いコストで作製できる永久磁石の製造方法を提供することにある。   In view of the above, the first object of the present invention is to provide a permanent magnet having an extremely high coercive force and high magnetic properties. A second object of the present invention is to provide a method for producing a permanent magnet that can produce a permanent magnet having an extremely high coercive force and high magnetic properties at high productivity and at low cost.

上記課題を解決するために、請求項1記載の永久磁石の製造方法は、鉄−ホウ素−希土類系の磁石を処理室に配置して加熱すると共に、同一または他の処理室に配置したDy、Tbの少なくとも一方を含有する蒸発材料を加熱して蒸発させ、この蒸発したDy、Tbの金属原子を、磁石表面への供給量を調節して付着させ、この付着した金属原子を、磁石表面に蒸発材料からなる薄膜が形成される前に磁石の結晶粒界相に拡散させる永久磁石の製造方法であって、前記磁石として、熱間塑性加工を施して磁気的に異方性を付与したものを用いたことを特徴とする。   In order to solve the above-mentioned problem, the method of manufacturing a permanent magnet according to claim 1 is characterized in that an iron-boron-rare earth magnet is disposed in a processing chamber and heated, and Dy is disposed in the same or another processing chamber. The evaporation material containing at least one of Tb is heated to evaporate, and the evaporated metal atoms of Dy and Tb are attached by adjusting the supply amount to the magnet surface, and the attached metal atoms are attached to the magnet surface. A method of manufacturing a permanent magnet that diffuses into a grain boundary phase of a magnet before a thin film made of an evaporating material is formed, wherein the magnet is subjected to hot plastic working to provide magnetic anisotropy It is characterized by using.

本発明によれば、蒸発したDyやTbの金属原子が、所定温度まで加熱された磁石表面に供給されて付着する。その際、磁石を最適な拡散速度が得られる温度に加熱すると共に、磁石表面への金属原子の供給量を調節したため、表面に付着した金属原子は、薄膜を形成する前に磁石の結晶粒界相に順次拡散されて行く(即ち、磁石表面へのDyやTb等の金属原子の供給と磁石の結晶粒界相への拡散とが一度の処理で行われる(真空蒸気処理))。このため、永久磁石の表面状態は、上記処理を実施する前の状態と略同一であり、作製した永久磁石表面が劣化する(表面粗さが悪くなる)ことが防止され、また、特に磁石表面に近い粒界内にDyやTbが過剰に拡散することが抑制され、別段の後工程が不要となって高い生産性を達成できる。   According to the present invention, evaporated metal atoms of Dy and Tb are supplied and attached to the magnet surface heated to a predetermined temperature. At that time, the magnet was heated to a temperature at which an optimum diffusion rate was obtained, and the supply amount of metal atoms to the magnet surface was adjusted, so that the metal atoms adhering to the surface were separated from the crystal grain boundaries of the magnet before forming the thin film. The phases are sequentially diffused (that is, the supply of metal atoms such as Dy and Tb to the magnet surface and the diffusion to the crystal grain boundary phase of the magnet are performed in a single process (vacuum vapor process)). For this reason, the surface state of the permanent magnet is substantially the same as the state before the above treatment, and the manufactured permanent magnet surface is prevented from being deteriorated (surface roughness is deteriorated). Dy and Tb are prevented from excessively diffusing in grain boundaries close to, and a separate post-process is not required, thereby achieving high productivity.

また、DyやTbの金属原子を磁石の結晶粒界相に拡散させて均一に行き渡らせることで、結晶粒界相にDy、Tbのリッチ相(Dy、Tbを5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyやTbが拡散し、結晶粒界相に拡散したDyやTbが各結晶粒表面の結晶磁気異方性を高めることで、ニュークリエーション型の保磁力発生機構を強化し、その結果、保磁力を飛躍的に向上させると共に、最大エネルギー積や残留磁束密度が低下することなく、高磁気特性の永久磁石となる。   In addition, Dy and Tb metal atoms are diffused in the grain boundary phase of the magnet and uniformly spread, so that the Dy and Tb rich phases (Dy and Tb are included in the range of 5 to 80% in the grain boundary phase. In addition, Dy and Tb diffuse only in the vicinity of the surface of the crystal grain, and Dy and Tb diffused in the grain boundary phase increase the crystal magnetic anisotropy on the surface of each crystal grain. The coercive force generation mechanism of the mold is strengthened, and as a result, the coercive force is remarkably improved, and a permanent magnet having high magnetic characteristics is obtained without decreasing the maximum energy product and the residual magnetic flux density.

尚、前記熱間塑性加工は熱間押出し成形であり、前記磁石は、熱間押出し成形によってリング状に作製したものであることが好ましい。   The hot plastic working is preferably hot extrusion molding, and the magnet is preferably produced in a ring shape by hot extrusion molding.

上記処理に際しては、前記磁石と蒸発材料とを離間して配置しておけば、蒸発材料を蒸発させるとき、溶けた蒸発材料が直接磁石に付着することが防止できてよい。   In the above processing, if the magnet and the evaporating material are arranged apart from each other, it is possible to prevent the melted evaporating material from directly attaching to the magnet when evaporating the evaporating material.

また、前記処理室内に配置される前記蒸発材料の比表面積を変化させて一定温度下における蒸発量を増減すれば、例えばDy、Tbの磁石表面への供給量を増減する別個の部品を処理室内に設ける等、装置の構成を変えることなく、簡単に磁石表面への供給量の調節ができてよい。   Also, if the specific surface area of the evaporating material disposed in the processing chamber is changed to increase or decrease the evaporation amount at a constant temperature, for example, separate components that increase or decrease the supply amount of Dy and Tb to the magnet surface are added to the processing chamber. It is possible to easily adjust the supply amount to the magnet surface without changing the configuration of the apparatus, such as by providing it on the surface.

DyやTbを結晶粒界相に拡散させる前に磁石表面に吸着した汚れ、ガスや水分を除去するために、前記磁石を収納した処理室の加熱に先立って、処理室内を所定圧力に減圧して保持することが好ましい。   Prior to heating the processing chamber containing the magnet, the processing chamber is depressurized to a predetermined pressure in order to remove dirt, gas, and moisture adsorbed on the magnet surface before diffusing Dy and Tb into the grain boundary phase. It is preferable to hold it.

この場合、表面に吸着した汚れ、ガスや水分の除去を促進するために、前記処理室を所定圧力に減圧した後、処理室内を所定温度に加熱して保持することが好ましい。   In this case, in order to promote the removal of dirt, gas, and moisture adsorbed on the surface, it is preferable that the processing chamber is heated to a predetermined temperature after being reduced to a predetermined pressure.

他方、DyやTbを結晶粒界相に拡散させる前に磁石表面の酸化膜を除去すべく、前記磁石を収納した処理室の加熱に先立って、プラズマによる前記磁石表面のクリーニングを行うことが好ましい。   On the other hand, in order to remove the oxide film on the surface of the magnet before diffusing Dy and Tb into the grain boundary phase, it is preferable to clean the surface of the magnet with plasma prior to heating the processing chamber containing the magnet. .

さらに、上記課題を解決するために、請求項8記載の永久磁石は、熱間塑性加工を施して磁気的に異方性を付与した鉄−ホウ素−希土類系の磁石を有し、この磁石を処理室に配置して加熱すると共に、同一または他の処理室に配置したDy、Tbの少なくとも一方を含有する蒸発材料を加熱して蒸発させ、この蒸発したDy、Tbの金属原子を、磁石表面への供給量を調節して付着させ、この付着した金属原子を、磁石表面に蒸発材料からなる薄膜が形成される前に磁石の結晶粒界相に拡散させてなることを特徴とする。   Furthermore, in order to solve the above-mentioned problem, the permanent magnet according to claim 8 has an iron-boron-rare earth magnet that has been subjected to hot plastic working to provide magnetic anisotropy, and this magnet is Heating and evaporating a vaporizing material containing at least one of Dy and Tb arranged in the same or another processing chamber while heating in the processing chamber, and evaporating the metal atoms of Dy and Tb on the magnet surface It is characterized in that the attached metal atom is diffused into the crystal grain boundary phase of the magnet before the thin film made of the evaporation material is formed on the magnet surface.

以上説明したように、本発明の永久磁石の製造方法は、極めて高い保磁力を有し、高磁気特性の永久磁石を、高い生産性でかつ低いコストで作製できるという効果を奏する。また、本発明の永久磁石は、極めて高い保磁力を有し、高磁気特性であるという効果を奏する。   As described above, the method for producing a permanent magnet according to the present invention has an effect that a permanent magnet having an extremely high coercive force and having high magnetic properties can be produced with high productivity and at low cost. Moreover, the permanent magnet of the present invention has an extremely high coercive force and high magnetic properties.

図1乃至図3を参照して説明すれば、本発明の永久磁石Mは、熱間塑性加工を施すことにより結晶粒を特定の方向に配向させて磁気的に異方性を付与した鉄−ホウ素−希土類系の磁石Sの表面に、Dy、Tbの少なくとも一方を含有する蒸発材料Vを蒸発させて金属原子を付着させ、磁石Sの結晶粒界相に拡散させて均一に行き渡らせる一連の処理(真空蒸気処理)を同時に行って作製される。   Referring to FIGS. 1 to 3, the permanent magnet M of the present invention is an iron that has been magnetically anisotropic by orienting crystal grains in a specific direction by performing hot plastic working. A series of vaporized material V containing at least one of Dy and Tb is vaporized on the surface of the boron-rare earth magnet S to deposit metal atoms and diffused uniformly into the grain boundary phase of the magnet S. It is produced by performing the treatment (vacuum vapor treatment) simultaneously.

鉄−ホウ素−希土類系の磁石としては、例えば、Nd−Fe−B系のラジアル異方性リング磁石(以下、単に「リング磁石」という)が用いられ、公知の方法で次のように作製されている。即ち、Fe、B、Ndを所定の組成比で配合して等方性の急冷Nd−Fe−B系粉末の合金原料を得る。この場合、希土類金属の含有量を30%未満として、高い残留磁束密度が得られるようにすることが好ましい。また、配合の際、Cu、Zr、Dy、AlやGaを少量添加してもよい。次いで、作製した合金原料を、公知の圧縮成形機によって、室温で所定形状に予備成形した後、熱間プレスすることで高密度の等方性磁石を得る。次いで、公知の押出し成形機によって、熱間塑性加工である熱間押出し成形して、ラジアル異方性のリング磁石Sが作製される。   As the iron-boron-rare earth magnet, for example, a Nd—Fe—B radial anisotropy ring magnet (hereinafter simply referred to as “ring magnet”) is used, and is manufactured as follows by a known method. ing. That is, Fe, B, and Nd are blended at a predetermined composition ratio to obtain an alloy raw material of an isotropic quenched Nd—Fe—B-based powder. In this case, it is preferable that the content of rare earth metal is less than 30% so that a high residual magnetic flux density is obtained. Moreover, you may add a small amount of Cu, Zr, Dy, Al, and Ga in the case of a mixing | blending. Next, the produced alloy raw material is preformed into a predetermined shape at room temperature by a known compression molding machine, and then hot pressed to obtain a high-density isotropic magnet. Subsequently, the hot anisotropic extrusion which is a hot plastic working is performed by a known extrusion molding machine, and the radially anisotropic ring magnet S is manufactured.

図2に示すように、上記リング磁石Sに対して上記処理を実施する真空蒸気処理装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段11を介して所定圧力(例えば1×10−5Pa)まで減圧して保持できる真空チャンバ12を有する。真空チャンバ内12には、上面を開口した直方体形状の箱部21と、開口した箱部21の上面に着脱自在な蓋部22とからなる箱体2が設置される。 As shown in FIG. 2, the vacuum vapor processing apparatus 1 that performs the above processing on the ring magnet S has a predetermined pressure (for example, 1 ×) via a vacuum exhausting means 11 such as a turbo molecular pump, a cryopump, or a diffusion pump. The vacuum chamber 12 can be held at a reduced pressure up to 10 −5 Pa). In the vacuum chamber 12, a box body 2 is installed that is composed of a rectangular parallelepiped box portion 21 whose upper surface is opened, and a detachable lid portion 22 on the upper surface of the opened box portion 21.

蓋部22の外周縁部には下方に屈曲させたフランジ22aがその全周に亘って形成され、箱部21の上面に蓋部22を装着すると、フランジ22aが箱部21の外壁に嵌合して(この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ11と隔絶された処理室20が画成される。そして、真空排気手段11を介して真空チャンバ12を所定圧力(例えば、1×10−5Pa)まで減圧すると、処理室20が真空チャンバ12より略半桁高い圧力(例えば、5×10−4Pa)まで減圧されるようになっている。 A flange 22a bent downward is formed on the outer peripheral edge portion of the lid portion 22 over the entire circumference. When the lid portion 22 is mounted on the upper surface of the box portion 21, the flange 22a is fitted to the outer wall of the box portion 21. Thus (in this case, a vacuum seal such as a metal seal is not provided), and the processing chamber 20 isolated from the vacuum chamber 11 is defined. Then, when the vacuum chamber 12 is depressurized to a predetermined pressure (for example, 1 × 10 −5 Pa) through the evacuation unit 11, the processing chamber 20 has a pressure (for example, 5 × 10 −4 ) that is approximately half orders of magnitude higher than the vacuum chamber 12. The pressure is reduced to Pa).

処理室20の容積は、蒸発材料Vの平均自由行程を考慮して蒸気雰囲気中の金属原子が直接または衝突を繰返して複数の方向からリング磁石Sに供給されるように設定されている。また、箱部21及び蓋部22の壁面の肉厚は、後述する加熱手段によって加熱されたとき、熱変形しないように設定され、蒸発材料Vと反応しない材料から構成されている。   The volume of the processing chamber 20 is set so that the metal atoms in the vapor atmosphere are supplied to the ring magnet S from a plurality of directions directly or repeatedly in consideration of the mean free path of the evaporation material V. Moreover, the wall thickness of the box part 21 and the cover part 22 is comprised so that it may set so that it may not thermally deform when heated by the heating means mentioned later, and it does not react with the evaporation material V.

即ち、蒸発材料VがDy、Tbであるとき、一般の真空装置でよく用いられるAlを用いると、蒸気雰囲気中のDy、TbとAlが反応してその表面に反応生成物を形成すると共に、Al原子がDyやTbの蒸気雰囲気中に侵入する虞がある。このため、箱体2を、例えば、Mo、W、V、Taまたはこれらの合金(希土類添加型Mo合金、Ti添加型Mo合金などを含む)やCaO、Y、或いは希土類酸化物から作製するか、またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成している。また、処理室20内で底面から所定の高さ位置には、例えばMo製の複数本の線材(例えばφ0.1〜10mm)を格子状に配置することで載置部21aが形成され、この載置部21aに複数個のリング磁石Sを並べて載置できる。他方、蒸発材料Vは、主相(NdFe14B)の結晶磁気異方性を大きく向上させるDy及びTbまたはDy、Tbの少なくとも一方を含有する合金であり、処理室20の底面、側面または上面等に適宜配置される。 That is, when the evaporation material V is Dy, Tb, if Al 2 O 3 often used in a general vacuum apparatus is used, Dy, Tb and Al 2 O 3 in the vapor atmosphere react to generate a reaction on the surface. As well as forming an object, there is a risk that Al atoms may enter the vapor atmosphere of Dy or Tb. For this reason, the box 2 is made of, for example, Mo, W, V, Ta, or an alloy thereof (including rare earth-added Mo alloy, Ti-added Mo alloy, etc.), CaO, Y 2 O 3 , or rare earth oxide. They are manufactured or formed by depositing these materials as a lining film on the surface of another heat insulating material. In addition, a placement portion 21a is formed at a predetermined height position from the bottom surface in the processing chamber 20 by arranging, for example, a plurality of Mo wires (for example, φ0.1 to 10 mm) in a grid pattern. A plurality of ring magnets S can be placed side by side on the placement portion 21a. On the other hand, the evaporation material V is an alloy containing at least one of Dy and Tb or Dy and Tb that greatly improves the magnetocrystalline anisotropy of the main phase (Nd 2 Fe 14 B). Or it arrange | positions suitably on an upper surface etc.

また、真空チャンバ12には、加熱手段3が設けられている。加熱手段3は、箱体2と同様にDy、Tbの蒸発材料Vと反応しない材料製であり、例えば、箱体2の周囲を囲うように設けられ、内側に反射面を備えたMo製の断熱材と、その内側に配置され、Mo製のフィラメントを有する電気加熱ヒータとから構成される。そして、減圧下で箱体2を加熱手段3で加熱し、箱体2を介して間接的に処理室20内を加熱することで、処理室20内を略均等に加熱できる。   The vacuum chamber 12 is provided with heating means 3. The heating means 3 is made of a material that does not react with the evaporation material V of Dy and Tb, similar to the box 2, and is, for example, made of Mo that is provided so as to surround the box 2 and has a reflective surface on the inside. It is comprised from a heat insulating material and the electric heater which is arrange | positioned inside and has a filament made from Mo. Then, the inside of the processing chamber 20 can be heated substantially uniformly by heating the box 2 with the heating means 3 under reduced pressure and indirectly heating the inside of the processing chamber 20 via the box 2.

次に、上記真空蒸気処理装置1を用いたリング状の永久磁石Mの製造について説明する。先ず、箱部21の載置部21aに上記方法で作製したリング磁石Sを載置すると共に、箱部21の底面に蒸発材料VであるDyを設置する(これにより、処理室20内でリング磁石Sと蒸発材料Vが離間して配置される)。そして、箱部21の開口した上面に蓋部22を装着した後、真空チャンバ12内で加熱手段3によって周囲を囲まれる所定位置に箱体2を設置する(図2参照)。そして、真空排気手段11を介して真空チャンバ12を所定圧力(例えば、1×10−4Pa)に達するまで真空排気して減圧し、(処理室20は略半桁高い圧力まで真空排気される)、真空チャンバ12が所定圧力に達すると、加熱手段3を作動させて処理室20を加熱する。 Next, manufacture of the ring-shaped permanent magnet M using the said vacuum vapor processing apparatus 1 is demonstrated. First, the ring magnet S produced by the above method is placed on the placement portion 21 a of the box portion 21, and Dy that is the evaporation material V is placed on the bottom surface of the box portion 21 (thereby, a ring is formed in the processing chamber 20. The magnet S and the evaporation material V are arranged apart from each other). And after attaching the cover part 22 to the upper surface which the box part 21 opened, the box 2 is installed in the predetermined position enclosed by the heating means 3 in the vacuum chamber 12 (refer FIG. 2). Then, the vacuum chamber 12 is evacuated and depressurized until it reaches a predetermined pressure (for example, 1 × 10 −4 Pa) through the vacuum evacuation unit 11 (the processing chamber 20 is evacuated to a pressure approximately half digit higher). ) When the vacuum chamber 12 reaches a predetermined pressure, the heating means 3 is operated to heat the processing chamber 20.

減圧下で処理室20内の温度が所定温度に達すると、処理室20の底面に設置したDyが、処理室20と略同温まで加熱されて蒸発を開始し、処理室20内にDy蒸気雰囲気が形成される。Dyが蒸発を開始した場合、リング磁石SとDyとを離間して配置したため、溶けたDyは、表面Ndリッチ相が溶けたリング磁石Sに直接付着することはない。そして、Dy蒸気雰囲気中のDy原子が、直接または衝突を繰返して複数の方向から、Dyと略同温まで加熱されたリング磁石S表面に向かって供給されて付着し、この付着したDyがリング磁石Sの結晶粒界相に拡散されて永久磁石Mが得られる。   When the temperature in the processing chamber 20 reaches a predetermined temperature under reduced pressure, Dy installed on the bottom surface of the processing chamber 20 is heated to substantially the same temperature as the processing chamber 20 and starts to evaporate. An atmosphere is formed. When Dy starts to evaporate, the ring magnets S and Dy are arranged apart from each other, so that the melted Dy does not directly adhere to the ring magnet S in which the surface Nd-rich phase is melted. Then, Dy atoms in the Dy vapor atmosphere are directly or repeatedly collided and supplied from a plurality of directions toward the surface of the ring magnet S heated to substantially the same temperature as Dy, and the attached Dy is attached to the ring. The permanent magnet M is obtained by diffusing into the crystal grain boundary phase of the magnet S.

ところで、リング磁石Sの表面にDy層(薄膜)L1が形成されるように、Dy蒸気雰囲気中のDy原子がリング磁石Sの表面に供給されると、リング磁石S表面で付着して堆積したDyが再結晶したとき、永久磁石M表面を著しく劣化させ(表面粗さが悪くなる)、また、処理中に略同温まで加熱されているリング磁石S表面に付着して堆積したDyが溶解してリング磁石S表面に近い領域R1における粒界内に過剰に拡散し、磁気特性を効果的に向上または回復させることができない。   By the way, when the Dy atoms in the Dy vapor atmosphere are supplied to the surface of the ring magnet S so that the Dy layer (thin film) L1 is formed on the surface of the ring magnet S, they are deposited and deposited on the surface of the ring magnet S. When Dy is recrystallized, the surface of the permanent magnet M is remarkably deteriorated (surface roughness is deteriorated), and the Dy deposited and deposited on the surface of the ring magnet S heated to substantially the same temperature during processing is dissolved. As a result, it excessively diffuses in the grain boundary in the region R1 close to the surface of the ring magnet S, and the magnetic characteristics cannot be effectively improved or recovered.

つまり、リング磁石S表面にDyの薄膜が一度形成されると、薄膜に隣接したリング磁石表面Sの平均組成はDyリッチ組成となり、Dyリッチ組成になると、液相温度が下がり、リング磁石S表面が溶けるようになる(即ち、主相が溶けて液相の量が増加する)。その結果、リング磁石S表面付近が溶けて崩れ、凹凸が増加することとなる。その上、Dyが多量の液相と共に結晶粒内に過剰に侵入し、磁気特性を示す最大エネルギー積及び残留磁束密度がさらに低下する。   That is, once a Dy thin film is formed on the surface of the ring magnet S, the average composition of the ring magnet surface S adjacent to the thin film becomes a Dy rich composition. (Ie, the main phase dissolves and the amount of liquid phase increases). As a result, the vicinity of the surface of the ring magnet S melts and collapses, and the unevenness increases. In addition, Dy excessively penetrates into the crystal grains together with a large amount of liquid phase, and the maximum energy product and the residual magnetic flux density showing the magnetic characteristics are further lowered.

本実施の形態では、リング磁石Sの1〜10重量%の割合で、単位体積当たりの表面積(比表面積)が小さいバルク状(略球状)のDyを処理室20の底面に配置し、一定温度下における蒸発量を減少させるようにした。それに加えて、蒸発材料VがDyであるとき、加熱手段3を制御して処理室20内の温度を800℃〜1050℃、好ましくは900℃〜1000℃の範囲に設定することとした(例えば、処理室内温度が900℃〜1000℃のとき、Dyの飽和蒸気圧は約1×10−2〜1×10−1Paとなる)。 In the present embodiment, bulky (substantially spherical) Dy having a small surface area (specific surface area) per unit volume at a ratio of 1 to 10% by weight of the ring magnet S is disposed on the bottom surface of the processing chamber 20, and is kept at a constant temperature. The amount of evaporation underneath was reduced. In addition, when the evaporation material V is Dy, the heating means 3 is controlled so that the temperature in the processing chamber 20 is set to a range of 800 ° C. to 1050 ° C., preferably 900 ° C. to 1000 ° C. (for example, When the processing chamber temperature is 900 ° C. to 1000 ° C., the saturated vapor pressure of Dy is about 1 × 10 −2 to 1 × 10 −1 Pa).

処理室20内の温度(ひいては、リング磁石Sの加熱温度)が800℃より低いと、リング磁石S表面に付着したDy原子の結晶粒界層への拡散速度が遅くなり、リング磁石S表面に薄膜が形成される前にリング磁石Sの結晶粒界相に拡散させて均一に行き渡らせることができない。他方、1050℃を超えた温度では、Dyの蒸気圧が高くなって蒸気雰囲気中のDy原子がリング磁石S表面に過剰に供給される。また、Dyが結晶粒内に拡散する虞があり、Dyが結晶粒内に拡散すると、結晶粒内の磁化を大きく下げるため、最大エネルギー積及び残留磁束密度がさらに低下することになる。   If the temperature in the processing chamber 20 (and hence the heating temperature of the ring magnet S) is lower than 800 ° C., the diffusion rate of Dy atoms adhering to the surface of the ring magnet S to the crystal grain boundary layer becomes slow, and the surface of the ring magnet S Before the thin film is formed, it cannot be diffused into the crystal grain boundary phase of the ring magnet S and distributed uniformly. On the other hand, at a temperature exceeding 1050 ° C., the vapor pressure of Dy increases, and Dy atoms in the vapor atmosphere are excessively supplied to the surface of the ring magnet S. Further, there is a possibility that Dy diffuses into the crystal grains, and when Dy diffuses into the crystal grains, the magnetization in the crystal grains is greatly reduced, so that the maximum energy product and the residual magnetic flux density are further lowered.

リング磁石S表面にDyの薄膜が形成される前にDyをその結晶粒界相に拡散させるために、処理室20の載置部21aに設置したリング磁石Sの表面積の総和に対する処理室20の底面に設置したバルク状のDyの表面積の総和の比率が、1×10−4〜2×10の範囲になるように設定する。1×10−4〜2×10の範囲以外の比率では、リング磁石S表面にDyやTbの薄膜が形成される場合があり、また、高い磁気特性の永久磁石が得られない。この場合、上記比率が1×10−3から1×10の範囲が好ましく、また、上記比率が1×10−2から1×10の範囲がより好ましい。 In order to diffuse Dy into the grain boundary phase before the Dy thin film is formed on the surface of the ring magnet S, the processing chamber 20 has a total surface area of the ring magnet S installed on the mounting portion 21a of the processing chamber 20. The ratio of the total surface area of bulk Dy installed on the bottom is set to be in the range of 1 × 10 −4 to 2 × 10 3 . If the ratio is outside the range of 1 × 10 −4 to 2 × 10 3 , a thin film of Dy or Tb may be formed on the surface of the ring magnet S, and a permanent magnet with high magnetic properties cannot be obtained. In this case, the ratio is preferably in the range of 1 × 10 −3 to 1 × 10 3 , and the ratio is more preferably in the range of 1 × 10 −2 to 1 × 10 2 .

これにより、蒸気圧を低くすると共にDyの蒸発量を減少させることで、リング磁石SへのDy原子の供給量が抑制されることと、リング磁石Sを所定温度範囲で加熱することで拡散速度が早くなることとが相俟って、リング磁石S表面に付着したDy原子を、リング磁石S表面で堆積してDy層(薄膜)を形成する前にその結晶粒界相に効率よく拡散させて均一に行き渡らせることができる(図3参照)。その結果、永久磁石M表面が劣化することが防止され、また、リング磁石S表面に近い領域の粒界内にDyが過剰に拡散することが抑制され、結晶粒界相にDyリッチ相(Dyを5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyが拡散することで、磁化および保磁力が効果的に向上し、その上、仕上げ加工が不要な生産性に優れた永久磁石Mが得られる。   Thus, the vapor pressure is lowered and the amount of Dy evaporated is reduced, so that the amount of Dy atoms supplied to the ring magnet S is suppressed, and the diffusion rate is increased by heating the ring magnet S in a predetermined temperature range. Coupled with the fact that the Dy atoms adhering to the surface of the ring magnet S are efficiently diffused into the grain boundary phase before being deposited on the surface of the ring magnet S and forming a Dy layer (thin film). Can be distributed evenly (see FIG. 3). As a result, it is possible to prevent the surface of the permanent magnet M from being deteriorated, to suppress excessive diffusion of Dy into the grain boundary in the region close to the surface of the ring magnet S, and to form a Dy rich phase (Dy) in the grain boundary phase. In addition, Dy diffuses only in the vicinity of the surface of the crystal grains, so that the magnetization and coercive force are effectively improved, and no finishing process is required. A permanent magnet M excellent in productivity can be obtained.

最後に、上記処理を所定時間(例えば、1〜72時間)だけ実施した後、加熱手段3の作動を停止させると共に、図示しないガス導入手段を介して処理室20内に10kPaのArガスを導入し、蒸発材料Vの蒸発を停止させ、処理室20内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段3を再度作動させ、処理室20内の温度を450℃〜650℃の範囲に設定し、一層保磁力を向上または回復させるために、永久磁石の歪を除去する熱処理を施す。最後に、略室温まで急冷し、箱体2を取り出す。   Finally, after performing the above process for a predetermined time (for example, 1 to 72 hours), the operation of the heating unit 3 is stopped, and Ar gas of 10 kPa is introduced into the processing chamber 20 through a gas introduction unit (not shown). Then, the evaporation of the evaporation material V is stopped, and the temperature in the processing chamber 20 is once lowered to, for example, 500 ° C. Subsequently, the heating means 3 is operated again, the temperature in the processing chamber 20 is set in a range of 450 ° C. to 650 ° C., and heat treatment for removing the distortion of the permanent magnet is performed in order to further improve or recover the coercive force. Finally, it is rapidly cooled to about room temperature and the box 2 is taken out.

尚、本実施の形態では、蒸発材料VとしてDyを用いるものを例として説明したが、拡散速度を早くできるリング磁石Sの加熱温度範囲(900℃〜1000℃の範囲)で、蒸気圧が低いTbを用いることができ、またはDy、Tbの合金を用いてもよい。また、一定温度下における蒸発量を減少させるために比表面積が小さいバルク状の蒸発材料Vを用いることとしたが、これに限定されるものではなく、例えば、箱部21内に断面凹状の受皿を設置し、受皿内に顆粒状またはバルク状の蒸発材料Vを収納することで比表面積を減少させるようにしてもよく、さらに、受皿に蒸発材料Vを収納した後、複数の開口を設けた蓋(図示せず)を装着するようにしてもよい。   In the present embodiment, the example in which Dy is used as the evaporation material V has been described as an example. However, the vapor pressure is low in the heating temperature range (range of 900 ° C. to 1000 ° C.) of the ring magnet S that can increase the diffusion rate. Tb can be used, or an alloy of Dy and Tb may be used. Further, in order to reduce the amount of evaporation at a constant temperature, the bulk evaporating material V having a small specific surface area is used. However, the present invention is not limited to this. And the specific surface area may be reduced by storing the granular or bulk evaporation material V in the saucer. Further, after the evaporation material V is accommodated in the saucer, a plurality of openings are provided. A lid (not shown) may be attached.

また、本実施の形態では、処理室20内にリング磁石Sと蒸発材料Vとを配置したものについて説明したが、リング磁石Sと蒸発材料Vとを異なる温度で加熱できるように、例えば、真空チャンバ12内に、処理室20とは別個に蒸発室(他の処理室:図示せず)を設けると共に蒸発室を加熱する他の加熱手段を設け、蒸発室で蒸発材料Vを蒸発させた後、処理室20と蒸発室とを連通する連通路を介して、処理室20内のリング磁石Sに、蒸気雰囲気中の金属原子が供給されるようにしてもよい。   In the present embodiment, the ring magnet S and the evaporation material V are arranged in the processing chamber 20. However, for example, a vacuum is used so that the ring magnet S and the evaporation material V can be heated at different temperatures. In the chamber 12, an evaporation chamber (another processing chamber: not shown) is provided separately from the processing chamber 20, and other heating means for heating the evaporation chamber is provided, and the evaporation material V is evaporated in the evaporation chamber. The metal atoms in the vapor atmosphere may be supplied to the ring magnet S in the processing chamber 20 via a communication path that connects the processing chamber 20 and the evaporation chamber.

この場合、蒸発材料VがDyである場合、蒸発室を700℃〜1050℃(700℃〜1050℃のとき、Dyの飽和蒸気圧は約1×10−4〜1×10−1Paになる)の範囲で加熱すればよい。700℃より低い温度では、結晶粒界相にDyが拡散されて均一に行き渡るように、リング磁石S表面にDyを供給できる蒸気圧に達しない。他方、蒸発材料VがTbである場合、蒸発室を900℃〜1150℃の範囲で加熱すればよい。900℃より低い温度では、リング磁石S表面にTb原子を供給できる蒸気圧に達しない。他方、1150℃を超えた温度では、Tbが結晶粒内に拡散してしまい、最大エネルギー積及び残留磁束密度を低下させる。 In this case, when the evaporation material V is Dy, the saturation vapor pressure of Dy is about 1 × 10 −4 to 1 × 10 −1 Pa when the evaporation chamber is 700 ° C. to 1050 ° C. (when 700 ° C. to 1050 ° C. ) May be heated within the range. At a temperature lower than 700 ° C., the vapor pressure at which Dy can be supplied to the surface of the ring magnet S is not reached so that Dy diffuses in the grain boundary phase and spreads uniformly. On the other hand, when the evaporation material V is Tb, the evaporation chamber may be heated in the range of 900 ° C to 1150 ° C. At a temperature lower than 900 ° C., the vapor pressure that can supply Tb atoms to the surface of the ring magnet S is not reached. On the other hand, at a temperature exceeding 1150 ° C., Tb diffuses into the crystal grains, thereby reducing the maximum energy product and the residual magnetic flux density.

また、DyやTbを結晶粒界相に拡散させる前にリング磁石S表面に吸着した汚れ、ガスや水分を除去するために、真空排気手段11を介して真空チャンバ12を所定圧力(例えば、1×10−5Pa)まで減圧し、処理室20が真空チャンバ12より略半桁高い圧力(例えば、5×10−4Pa)まで減圧した後、所定時間保持するようにしてもよい。その際、加熱手段3を作動させて処理室20内を例えば100℃に加熱し、所定時間保持するようにしてもよい。 Further, in order to remove dirt, gas and moisture adsorbed on the surface of the ring magnet S before diffusing Dy and Tb into the grain boundary phase, the vacuum chamber 12 is set to a predetermined pressure (for example, 1) through the vacuum exhaust means 11. The pressure may be reduced to × 10 −5 Pa), and the processing chamber 20 may be held for a predetermined time after being reduced to a pressure (for example, 5 × 10 −4 Pa) approximately half an order higher than the vacuum chamber 12. At that time, the heating means 3 may be operated to heat the inside of the processing chamber 20 to, for example, 100 ° C. and hold it for a predetermined time.

他方、真空チャンバ12内で、ArまたはHeプラズマを発生させる公知構造のプラズマ発生装置(図示せず)を設け、真空チャンバ12内での処理に先だってプラズマによるリング磁石S表面のクリーニングの前処理が行われるようにしてもよい。同一の処理室20内にリング磁石Sと蒸発材料Vとを配置する場合、公知の搬送ロボットを真空チャンバ12内に設置し、真空チャンバ12内で蓋部22をクリーニング終了後に装着するようにすればよい。   On the other hand, a plasma generating device (not shown) having a known structure for generating Ar or He plasma is provided in the vacuum chamber 12, and a pretreatment for cleaning the surface of the ring magnet S by plasma is performed prior to the processing in the vacuum chamber 12. It may be performed. When the ring magnet S and the evaporation material V are arranged in the same processing chamber 20, a known transfer robot is installed in the vacuum chamber 12, and the lid portion 22 is installed in the vacuum chamber 12 after cleaning is completed. That's fine.

また、本実施の形態では、箱部21の上面に蓋部22を装着して箱体2を構成するものについて説明したが、真空チャンバ12と隔絶されかつ真空チャンバ12を減圧するのに伴って処理室20が減圧されるものであれば、これに限定されるものではなく、例えば、箱部21にリング磁石Sを収納した後、その上面開口を例えばMo製の薄で覆うようにしてもよい。他方、例えば、真空チャンバ12内で処理室20を密閉できるようにし、真空チャンバ12とは独立して所定圧力に保持できるように構成してもよい。   Further, in the present embodiment, the description has been given of the case in which the lid portion 22 is mounted on the upper surface of the box portion 21 to constitute the box body 2. However, the vacuum chamber 12 is isolated from the vacuum chamber 12 and the vacuum chamber 12 is decompressed. For example, after the ring magnet S is stored in the box portion 21, the upper surface opening may be covered with a thin film made of, for example, Mo, as long as the processing chamber 20 is decompressed. Good. On the other hand, for example, the processing chamber 20 may be sealed in the vacuum chamber 12 and may be configured to be maintained at a predetermined pressure independently of the vacuum chamber 12.

実施例1では、リング磁石として、組成が28Nd−0.5Ce−6Co−0.6Ga−0.9Bの急冷粉末を熱間プレスした後、800℃で熱間押出し成形して、外形20mm、内径6mm及び長さ10mmに加工したものを用いた。そして、リング磁石表面を、硝酸を用いてケミカルエッチングして前処理を行った。   In Example 1, as a ring magnet, a quenched powder having a composition of 28Nd-0.5Ce-6Co-0.6Ga-0.9B was hot pressed and then hot extruded at 800 ° C. to give an outer diameter of 20 mm and an inner diameter of 20 mm. What was processed into 6 mm and length 10 mm was used. The ring magnet surface was pretreated by chemical etching using nitric acid.

次に、上記真空蒸気処理装置1を用い、上記真空蒸気処理によって永久磁石Mを得た。この場合、Mo製の箱体2内で載置部21a上に60個の磁石Sを等間隔で配置することとした。また、蒸発材料として純度99.9%のバルク状のDy(約φ1mm)またはTb(約φ1mm)を用い、 gの総量で処理室20の底面に配置した。次いで、真空排気手段を作動させて真空チャンバを1×10−4Paまで一旦減圧する(処理室内の圧力は5×10−3Pa)と共に、加熱手段3による処理室20の加熱温度を、蒸発材料がDyのとき875℃、蒸発材料がTbのとき975℃に設定した。そして、処理室20の温度が蒸発材料に応じた各温度に達した後、この状態で4時間または10時間、上記真空蒸気処理を行った。
(比較例1)
Next, the permanent magnet M was obtained by the said vacuum vapor processing using the said vacuum vapor processing apparatus 1. FIG. In this case, 60 magnets S are arranged at equal intervals on the placement portion 21a in the Mo box 2. Further, bulk Dy (about φ1 mm) or Tb (about φ1 mm) having a purity of 99.9% was used as the evaporation material, and the total amount of g was arranged on the bottom surface of the processing chamber 20. Next, the vacuum evacuation unit is operated to temporarily depressurize the vacuum chamber to 1 × 10 −4 Pa (the pressure in the processing chamber is 5 × 10 −3 Pa), and the heating temperature of the processing chamber 20 by the heating unit 3 is evaporated. It was set to 875 ° C. when the material was Dy and 975 ° C. when the evaporation material was Tb. And after the temperature of the process chamber 20 reached each temperature according to evaporation material, the said vacuum vapor process was performed in this state for 4 hours or 10 hours.
(Comparative Example 1)

比較例1では、Nd−Fe−B系の焼結磁石を用いた。この場合、焼結磁石としては、組成が28Nd−0.5Ce−6Co−0.6Ga−0.9B−bal.Feのものを用い、40×10×2mmの直方体形状に加工した。この場合、Fe、Nd、B、Co、Cel及びGaを上記組成比で配合して、ストリップキャスト法で約0.5mmの合金を作製し、公知の水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕して合金原料粉末を得た。次いで、この合金原料粉末を、公知の一軸加圧式の圧縮成形機のキャビティに充填し、磁界中で所定形状に成形した後、この成形体を公知の焼結炉内に収納して焼結させ、歪除去の焼鈍しを実施して上記焼結磁石を得た。次いで、焼結磁石表面を、硝酸を用いてケミカルエッチングして前処理を行った後、上記真空蒸気処理装置1を用い、実施例1と同条件で真空蒸気処理を施した。   In Comparative Example 1, an Nd—Fe—B based sintered magnet was used. In this case, the sintered magnet has a composition of 28Nd-0.5Ce-6Co-0.6Ga-0.9B-bal. Using a thing of Fe, it processed into a rectangular parallelepiped shape of 40 × 10 × 2 mm. In this case, Fe, Nd, B, Co, Cel, and Ga are blended in the above composition ratio to produce an alloy of about 0.5 mm by the strip cast method, and once coarsely pulverized by a known hydrogen pulverization process, An alloy raw material powder was obtained by pulverization by a jet mill pulverization process. Next, this alloy raw material powder is filled into a cavity of a known uniaxial pressurizing compression molding machine, molded into a predetermined shape in a magnetic field, and then the compact is stored in a known sintering furnace and sintered. Then, annealing for strain removal was performed to obtain the sintered magnet. Next, the sintered magnet surface was subjected to chemical etching using nitric acid and pretreated, and then subjected to vacuum vapor treatment using the vacuum vapor treatment apparatus 1 under the same conditions as in Example 1.

図5は、蒸発材料VとしてDyを用い、上記条件で永久磁石Mを得たときの磁気特性の平均値を、真空蒸気処理前の磁気特性の平均値と共に示す表である。これによれば、真空蒸気処理を施すと、最大エネルギー積及び残留磁束密度を低下させることなく、約20k0eを超える値まで保磁力を向上でき、高磁気特性の永久磁石が得られることが判る。   FIG. 5 is a table showing the average value of the magnetic characteristics when the permanent magnet M is obtained under the above conditions using Dy as the evaporation material V, together with the average value of the magnetic characteristics before the vacuum vapor treatment. According to this, it can be seen that when the vacuum steam treatment is performed, the coercive force can be improved to a value exceeding about 20 k0e without lowering the maximum energy product and the residual magnetic flux density, and a permanent magnet having high magnetic properties can be obtained.

図4は、蒸発材料VとしてDyを用い、上記条件で永久磁石Mを得たときの磁気特性の平均値を、真空蒸気処理前の磁気特性の平均値と共に示す表である。これによれば、真空蒸気処理を施すと、最大エネルギー積及び残留磁束密度を低下させることなく、約20k0eまで保磁力を向上でき、高磁気特性の永久磁石が得られることが判る。   FIG. 4 is a table showing the average value of the magnetic characteristics when the permanent magnet M is obtained under the above conditions using Dy as the evaporation material V, together with the average value of the magnetic characteristics before the vacuum vapor treatment. According to this, it can be seen that when the vacuum steam treatment is performed, the coercive force can be improved to about 20 k0e without lowering the maximum energy product and the residual magnetic flux density, and a permanent magnet having high magnetic properties can be obtained.

尚、焼結磁石では、真空蒸気処理時間を長くすれば、保磁力を向上させることができるが、熱間塑性加工を施したリング磁石では、圧力を加えて塑性変形させるために歪があることで結晶粒界相にDyが拡散し易くなることから、短時間で保磁力を向上できることができ、高い生産性を達成できることが判る。   In the case of sintered magnets, the coercive force can be improved by increasing the vacuum vapor treatment time. However, ring magnets that have been subjected to hot plastic working have strain due to plastic deformation caused by pressure. Thus, Dy is easily diffused into the grain boundary phase, so that the coercive force can be improved in a short time, and high productivity can be achieved.

図5は、蒸発材料VとしてTbを用い、上記条件で永久磁石Mを得たときの磁気特性の平均値を、真空蒸気処理前の磁気特性の平均値と共に示す表である。これによれば、真空蒸気処理を施すと、最大エネルギー積及び残留磁束密度を低下させることなく、約22k0eまで保磁力を向上でき、高磁気特性の永久磁石が得られることが判る。   FIG. 5 is a table showing the average value of the magnetic characteristics when the permanent magnet M is obtained under the above conditions using Tb as the evaporation material V, together with the average value of the magnetic characteristics before the vacuum vapor treatment. According to this, it can be seen that when the vacuum steam treatment is performed, the coercive force can be improved to about 22 k0e without lowering the maximum energy product and the residual magnetic flux density, and a permanent magnet having high magnetic properties can be obtained.

異方性リング磁石の製造工程を説明する図。The figure explaining the manufacturing process of an anisotropic ring magnet. 本発明の処理を実施する真空処理装置を概略的に示す図。The figure which shows schematically the vacuum processing apparatus which implements the process of this invention. 永久磁石表面への真空蒸気処理を模式的に説明する図。The figure which illustrates typically the vacuum steam process to the permanent magnet surface. 蒸発材料をDyとして、実施例1で作製した永久磁石の磁気特性を示す表。The table | surface which shows the magnetic characteristic of the permanent magnet produced in Example 1 by making evaporation material into Dy. 蒸発材料をTbとして、実施例1で作製した永久磁石の磁気特性を示す表。The table | surface which shows the magnetic characteristic of the permanent magnet produced in Example 1 by making evaporation material Tb.

符号の説明Explanation of symbols

1 真空蒸気処理装置
12 真空チャンバ
20 処理室
21 箱体
22 蓋体
3 加熱手段
S リング磁石
M 永久磁石
V 蒸発材料
DESCRIPTION OF SYMBOLS 1 Vacuum vapor processing apparatus 12 Vacuum chamber 20 Processing chamber 21 Box 22 Lid 3 Heating means S Ring magnet M Permanent magnet V Evaporating material

Claims (4)

鉄−ホウ素−希土類系の磁石を処理室に配置して800℃〜1050℃の範囲の温度に加熱すると共に、同一または他の処理室に配置したDy、Tbの少なくとも一方を含有する蒸発材料を700℃〜1150℃の範囲の温度に加熱して蒸発させ、この蒸発したDy、Tbの金属原子を、磁石表面への供給量を調節して付着させ、この付着した金属原子を、磁石表面に蒸発材料からなる薄膜が形成されないように磁石の結晶粒界相に拡散させる永久磁石の製造方法であって、前記磁石として、熱間塑性加工を施して磁気的に異方性を付与したものを用いたことを特徴とする永久磁石の製造方法。An iron-boron-rare earth magnet is placed in a processing chamber and heated to a temperature in the range of 800 ° C. to 1050 ° C. , and an evaporating material containing at least one of Dy and Tb is placed in the same or another processing chamber. It is evaporated by heating to a temperature in the range of 700 ° C. to 1150 ° C. , and the evaporated metal atoms of Dy and Tb are attached by adjusting the supply amount to the magnet surface, and the attached metal atoms are attached to the magnet surface. A method of manufacturing a permanent magnet that diffuses into a grain boundary phase of a magnet so that a thin film made of an evaporation material is not formed, the magnet being subjected to hot plastic working and magnetically anisotropic A method for producing a permanent magnet, characterized by being used. 前記熱間塑性加工は熱間押出し成形であり、前記磁石は、熱間押出し成形によってリング状に作製したものであることを特徴とする請求項1記載の永久磁石の製造方法。  2. The method of manufacturing a permanent magnet according to claim 1, wherein the hot plastic working is hot extrusion molding, and the magnet is manufactured in a ring shape by hot extrusion molding. 前記磁石と蒸発材料とを離間して配置したことを特徴とする請求項1または請求項2記載の永久磁石の製造方法。  The method of manufacturing a permanent magnet according to claim 1, wherein the magnet and the evaporation material are arranged apart from each other. 前記処理室内に配置される前記蒸発材料の比表面積を変化させて一定温度下における蒸発量を増減し、前記供給量を調節することを特徴とする請求項1乃至請求項3のいずれかに記載の永久磁石の製造方法。  4. The supply amount is adjusted by changing the specific surface area of the evaporating material disposed in the processing chamber to increase or decrease the evaporation amount at a constant temperature. Of manufacturing permanent magnets.
JP2007205234A 2007-08-07 2007-08-07 Permanent magnet and method for manufacturing permanent magnet Active JP5064930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205234A JP5064930B2 (en) 2007-08-07 2007-08-07 Permanent magnet and method for manufacturing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205234A JP5064930B2 (en) 2007-08-07 2007-08-07 Permanent magnet and method for manufacturing permanent magnet

Publications (2)

Publication Number Publication Date
JP2009043813A JP2009043813A (en) 2009-02-26
JP5064930B2 true JP5064930B2 (en) 2012-10-31

Family

ID=40444262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205234A Active JP5064930B2 (en) 2007-08-07 2007-08-07 Permanent magnet and method for manufacturing permanent magnet

Country Status (1)

Country Link
JP (1) JP5064930B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053105B2 (en) * 2008-01-18 2012-10-17 株式会社アルバック Permanent magnet and method for manufacturing permanent magnet
JP2011035001A (en) * 2009-07-29 2011-02-17 Ulvac Japan Ltd Method for manufacturing permanent magnet
CN102640238B (en) * 2009-12-09 2015-01-21 爱知制钢株式会社 Rare earth anisotropic magnet and process for production thereof
JP5790617B2 (en) 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
CN105518809B (en) 2013-06-05 2018-11-20 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
JP6003920B2 (en) 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method
CN113620701B (en) * 2021-09-29 2023-04-18 海安南京大学高新技术研究院 Preparation method of superfine-crystal high-temperature-resistant high-frequency manganese-zinc ferrite

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086414A (en) * 2001-09-12 2003-03-20 Daido Steel Co Ltd Low-loss rare-earth magnet and manufacturing method therefor
JP2004022762A (en) * 2002-06-14 2004-01-22 Seiko Epson Corp Permanent magnet and method of manufacturing the same
JP3960966B2 (en) * 2003-12-10 2007-08-15 独立行政法人科学技術振興機構 Method for producing heat-resistant rare earth magnet
JP2005187874A (en) * 2003-12-25 2005-07-14 Seiko Epson Corp Vapor deposition apparatus, vapor deposition method, organic electroluminescence device and electronic equipment
TWI302712B (en) * 2004-12-16 2008-11-01 Japan Science & Tech Agency Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same
CN102242342B (en) * 2005-03-18 2014-10-01 株式会社爱发科 Coating method and apparatus, a permanent magnet, and manufacturing method thereof
US20090020193A1 (en) * 2005-04-15 2009-01-22 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
JP4001296B2 (en) * 2005-08-25 2007-10-31 トッキ株式会社 Method and apparatus for vacuum deposition of organic materials

Also Published As

Publication number Publication date
JP2009043813A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5090359B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5356026B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5247717B2 (en) Method for manufacturing permanent magnet and permanent magnet
JP5275043B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2011035001A (en) Method for manufacturing permanent magnet
JP2007329250A (en) Permanent magnet, and manufacturing method of permanent magnet
JP5277179B2 (en) Method for manufacturing permanent magnet and permanent magnet
JP5049722B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2007305878A (en) Permanent magnet and manufacturing method therefor
JP2009200179A (en) Manufacturing method of sintered compact
JP4860493B2 (en) Permanent magnet manufacturing method and permanent magnet manufacturing apparatus
JP5053105B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5328369B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009200180A (en) Manufacturing method of permanent magnet
JP4922704B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JP4860491B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2010129665A (en) Method of manufacturing permanent magnet
JP2010245392A (en) Sintered magnet for neodymium iron boron base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250