JP5049722B2 - Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method - Google Patents

Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method Download PDF

Info

Publication number
JP5049722B2
JP5049722B2 JP2007255163A JP2007255163A JP5049722B2 JP 5049722 B2 JP5049722 B2 JP 5049722B2 JP 2007255163 A JP2007255163 A JP 2007255163A JP 2007255163 A JP2007255163 A JP 2007255163A JP 5049722 B2 JP5049722 B2 JP 5049722B2
Authority
JP
Japan
Prior art keywords
sintered body
sintered
magnet
manufacturing
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007255163A
Other languages
Japanese (ja)
Other versions
JP2009088191A (en
Inventor
浩 永田
洋一 広瀬
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007255163A priority Critical patent/JP5049722B2/en
Publication of JP2009088191A publication Critical patent/JP2009088191A/en
Application granted granted Critical
Publication of JP5049722B2 publication Critical patent/JP5049722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、焼結体の製造方法に関し、より詳しくは、ネオジウム鉄ボロン系(Nd−Fe−B系)の焼結磁石から希土類元素を優先的に蒸発させる処理(真空蒸発処理)と、主相の結晶磁気異方性を大きく向上させるジスプロシウム(Dy)やテルビウム(Tb)をその結晶粒界相に拡散させる処理(真空蒸気処理)とを同時に行うことで超高性能磁石を作製するための焼結体の製造方法に関する。   The present invention relates to a method for manufacturing a sintered body, and more specifically, a process (vacuum evaporation process) of preferentially evaporating rare earth elements from a neodymium iron boron-based (Nd-Fe-B-based) sintered magnet, For producing ultra-high performance magnets by simultaneously carrying out the treatment (vacuum vapor treatment) for diffusing dysprosium (Dy) and terbium (Tb) into the grain boundary phase, which greatly improves the magnetocrystalline anisotropy of the phase. The present invention relates to a method for manufacturing a sintered body.

Nd−Fe−B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。   Nd-Fe-B based sintered magnets (so-called neodymium magnets) can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied. In addition, since it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and is also used in motors and generators for hybrid cars. is increasing.

Nd−Fe−B系の磁石は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合し、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得る。次いで、得られた合金原料粉末を磁界中で配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。そして、この成形体を所定の条件下で焼結させて焼結磁石が作製される(特許文献1参照)。
特開2004−6761号公報
Nd-Fe-B magnets are mainly produced by powder metallurgy. In this method, Nd, Fe, and B are first blended at a predetermined composition ratio, and melted and cast to produce an alloy raw material. For example, it is roughly pulverized by, for example, a hydrogen pulverization process, and then finely pulverized by, for example, a jet mill pulverization process to obtain alloy raw material powder. Next, the obtained alloy raw material powder is oriented in a magnetic field (magnetic field orientation), and compression molded in a state where a magnetic field is applied to obtain a compact. And this sintered compact is sintered on predetermined conditions, and a sintered magnet is produced (refer patent document 1).
JP 2004-6761 A

ところで、Nd−Fe−B系の焼結磁石の磁性を担うR14B相(主相成分)は、平衡状態では液相から直接生成せず、先ず初相としてγ鉄が生成し、液相とその鉄との反応(包晶反応)で生成する(γ鉄は温度低下と共にα鉄に変態する)。この場合、例えば、凝固冷却速度の速い急冷法であるストリップキャスティング法(SC法)により合金原料を溶解、鋳造したとしても、Ndの含有量を28.5%以下にすれば、α鉄の生成の抑制が難しく、合金中にデンドライト状に生成することが知られている。 By the way, the R 2 T 14 B phase (main phase component) responsible for the magnetism of the Nd—Fe—B based sintered magnet is not directly generated from the liquid phase in an equilibrium state, and firstly γ iron is generated as an initial phase. It is formed by the reaction between the liquid phase and its iron (peritectic reaction) (γ iron transforms into α iron with decreasing temperature). In this case, for example, even if the alloy raw material is melted and cast by the strip casting method (SC method), which is a rapid cooling method with a rapid solidification cooling rate, if the Nd content is 28.5% or less, the production of α iron It is known that it is difficult to suppress, and it is formed in a dendrite form in the alloy.

α鉄が合金中にデンドライト状に生成し、立体的に繋がっていると、その後の粉砕工程での合金の粉砕性を著しく害する。つまり、粉砕性が悪いと、水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕しようとしても、高磁気特性の焼結磁石を作製することに適した粒形の揃った微細な粉末粒子の粉末を得ることが困難となる。その上、ジェットミル中に粗大粒(デンドライト状に生成したα鉄に起因する)が残留したり、バッグフィルターで回収される微粉の量が増えることによって組成ずれが起こり易く、品質管理が困難であるという問題がある。   If alpha iron is formed in a dendritic form in the alloy and is three-dimensionally connected, the pulverizability of the alloy in the subsequent pulverization step is significantly impaired. In other words, if the grindability is poor, the particles are once coarsely pulverized by the hydrogen pulverization process, and then the particle shapes suitable for producing sintered magnets with high magnetic properties are prepared even if the pulverization is attempted by the jet mill pulverization process. It is difficult to obtain fine powder particles. In addition, coarse grains (due to α-iron produced in a dendritic form) remain in the jet mill, and composition deviation tends to occur due to an increase in the amount of fine powder collected by the bag filter, making quality control difficult. There is a problem that there is.

他方で、Ndの含有量を28.5%より多くすれば、α鉄が生成しないインゴットの製造が可能であるものの、Rリッチ相が増えて、磁性を担うR14B相の体積比が減少するため、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)の大きな高性能磁石の製造が難しくなるといった問題が生じる。 On the other hand, if the Nd content is more than 28.5%, it is possible to produce an ingot that does not produce α iron, but the R-rich phase increases and the volume ratio of the R 2 T 14 B phase that plays a role in magnetism. Therefore, there arises a problem that it becomes difficult to manufacture a high-performance magnet having a maximum energy product ((BH) max) and a large residual magnetic flux density (Br) exhibiting magnetic characteristics.

また、この種の磁石においては、保磁力(kOe)をさらに高めれば、磁石自体の厚みの薄くしても強い磁力を持ったものが得られるので、この種の磁石利用製品自体の小型、軽量化や小電力化を図ることができる。このことから、従来技術のものと比較して一層高い保磁力を有する超高性能磁石の開発も望まれている。   In addition, in this type of magnet, if the coercive force (kOe) is further increased, a magnet having a strong magnetic force can be obtained even if the thickness of the magnet itself is reduced. And lower power consumption. For this reason, development of an ultra-high performance magnet having a higher coercive force than that of the prior art is also desired.

そこで、本発明の目的は、上記点に鑑み、例えば永久磁石の磁気特性の向上などの製品機能を改善できる焼結体の製造方法を提供することにある。   In view of the above, an object of the present invention is to provide a method for manufacturing a sintered body that can improve product functions such as improvement of magnetic properties of a permanent magnet.

上記課題を解決するために、本発明の焼結体の製造方法は、液相焼結により一次焼結体を得た後、この一次焼結体を処理室に収納して焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い元素を優先的に蒸発させて、液相の体積比を減少あるいは消滅させつつ、当該一次焼結体と同一または異なる処理室に収納した所定の金属蒸発材料を真空雰囲気中にて加熱して蒸発させ、この蒸発した金属原子を一次焼結体表面に付着させ、この付着した金属原子を一次焼結体の結晶粒界相に拡散させる焼結体の製造方法であって、前記原料合金は、所定の希土類元素を有するネオジウム鉄ボロン系焼結磁石用のものであり、前記希土類元素の含有量が28.5重量%以上30重量%以下であることを特徴とする。
In order to solve the above-mentioned problems, the method for producing a sintered body according to the present invention obtains a primary sintered body by liquid phase sintering, and then stores the primary sintered body in a processing chamber and is lower than the sintering temperature. By heating in a vacuum atmosphere at a temperature, the element having a high vapor pressure in the liquid phase component is preferentially evaporated to reduce or eliminate the volume ratio of the liquid phase, while the same as the primary sintered body or Predetermined metal evaporating materials housed in different processing chambers are heated and evaporated in a vacuum atmosphere, and the evaporated metal atoms are attached to the surface of the primary sintered body, and the attached metal atoms are crystallized in the primary sintered body. A method of manufacturing a sintered body that diffuses into a grain boundary phase , wherein the raw material alloy is for a neodymium iron boron based sintered magnet having a predetermined rare earth element, and the content of the rare earth element is 28.5. It is characterized by being from 30% by weight to 30% by weight .

本発明によれば、焼結促進に寄与する液相成分のうち、蒸気圧の高い元素を優先的に蒸発させて液相の体積比を減少等させることで、主相本来の特性を発揮させることができる。特に、一次焼結体がR14B相系磁石の場合、希土類元素を効率良く蒸発させて、Rリッチ相の体積比を減少させ、磁性を担うR14B相(主相成分)の体積比を増大させることにより、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上することができる。 According to the present invention, among the liquid phase components contributing to the promotion of sintering, elements having a high vapor pressure are preferentially evaporated to reduce the volume ratio of the liquid phase, etc., thereby exhibiting the original characteristics of the main phase. be able to. In particular, when the primary sintered body is an R 2 T 14 B phase magnet, the rare earth elements are efficiently evaporated, the volume ratio of the R rich phase is reduced, and the R 2 T 14 B phase (main phase component) that plays a role in magnetism ) Can be increased to improve the maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting magnetic characteristics.

上記のような処理と同時に、主相の特性を向上させる所定の金属原子をその結晶粒界相に拡散させることで、主相本来の特性をより一層向上させることができる。特に、磁性を担うR14B相の体積比を増大させることにより、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上させたものに対し、主相の結晶磁気異方性を大きく向上させるDyやTbをその結晶粒界相に拡散させることで、ニュークリエーション型の保磁力発生機構を強化し、その結果、最大エネルギー積がほとんど損なわれることなく、保磁力が飛躍的に向上し、その結果、超高性能磁石が得られる。 Simultaneously with the treatment as described above, the original characteristics of the main phase can be further improved by diffusing predetermined metal atoms that improve the characteristics of the main phase into the grain boundary phase. In particular, by increasing the volume ratio of the R 2 T 14 B phase responsible for magnetism, the maximum energy product ((BH) max) and residual magnetic flux density (Br) exhibiting magnetic characteristics are improved, while the main phase By diffusing Dy and Tb, which greatly improve the magnetocrystalline anisotropy, into the grain boundary phase, the mechanism of generating a new coercive force is strengthened. As a result, the maximum energy product is hardly impaired. The coercive force is greatly improved, and as a result, an ultra-high performance magnet is obtained.

このように本発明においては、液相成分のうち蒸気圧の高い元素を優先的に蒸発させて液相の体積比を減少等させる処理と、主相の特性を向上させる所定の金属原子をその結晶粒界相に拡散させる処理とを同時に施すため、両処理を順次行う場合と比較して大幅に処理時間を短縮することができ、高い生産性を達成することが可能となる。   As described above, in the present invention, the element having a high vapor pressure among the liquid phase components is preferentially evaporated to reduce the volume ratio of the liquid phase, and a predetermined metal atom that improves the characteristics of the main phase is added to the process. Since the treatment for diffusing into the crystal grain boundary phase is performed at the same time, the treatment time can be greatly reduced as compared with the case where both treatments are carried out sequentially, and high productivity can be achieved.

この場合、前記蒸発した金属原子を二次焼結体表面に金属蒸発材料からなる薄膜が形成される前に二次焼結体の結晶粒界相に拡散させることがよい。これによれば、磁石表面が劣化することが防止され、仕上げ加工が不要な生産性に優れた磁石が得られる。   In this case, it is preferable that the evaporated metal atoms are diffused into the grain boundary phase of the secondary sintered body before the thin film made of the metal evaporation material is formed on the surface of the secondary sintered body. According to this, the magnet surface is prevented from being deteriorated, and a magnet with excellent productivity that does not require finishing is obtained.

本発明においては、前記一次焼結体は、原料合金をストリップキャスティング法あるいは遠心鋳造法で製造し、その後、粉砕、磁場成形、焼結の各工程を経て得たものであることが好ましい。   In the present invention, the primary sintered body is preferably obtained by manufacturing a raw material alloy by a strip casting method or a centrifugal casting method, and then performing pulverization, magnetic field forming, and sintering processes.

これによれば、主相成分がR14B相で構成され、Rが、Ndを主とする少なくとも1種の希土類元素、Tが、Feを主とする遷移金属であり、R14B相化学量論組成より過剰のRがRリッチ相として、特に焼結時に液相となって焼結の促進に役立つ焼結磁石である場合に、例えば、原料合金を溶解、鋳造するとき、合金中にデンドライト状のα鉄が生成しないように、希土類元素の含有量を多く設定し、α鉄が生成しないインゴットを製造し、公知の工程で焼結磁石を得た後、Rリッチ相の希土類元素のみを蒸発させることで、Ndリッチ相の体積比を減少させ、その結果、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上できる。 According to this, the main phase component is composed of an R 2 T 14 B phase, R is at least one rare earth element mainly containing Nd, T is a transition metal mainly containing Fe, and R 2 T 14 When the excess R from the B-phase stoichiometric composition is a R-rich phase, particularly a sintered magnet that becomes a liquid phase during sintering and helps promote sintering, for example, when melting and casting a raw material alloy In order to prevent the formation of dendritic α-iron in the alloy, the content of rare earth elements is set to be large, an ingot that does not generate α-iron is produced, and a sintered magnet is obtained by a known process. By evaporating only the rare earth element, the volume ratio of the Nd-rich phase is reduced, and as a result, the maximum energy product ((BH) max) and residual magnetic flux density (Br) exhibiting magnetic characteristics can be improved.

上記処理と同時に、前記金属蒸発材料を、ジスプロシウム、テルビウムまたはこれらのいずれか一方を含む合金として、DyやTbを蒸発させ、Dy原子を焼結磁石の結晶粒界相に拡散させることで、保磁力を向上でき、その結果、超高性能磁石が得られる。   Simultaneously with the above treatment, the metal evaporation material is treated as dysprosium, terbium, or an alloy containing one of these by evaporating Dy and Tb and diffusing Dy atoms into the grain boundary phase of the sintered magnet. The magnetic force can be improved, and as a result, an ultra-high performance magnet can be obtained.

前記真空雰囲気の圧力を、10−4Pa以下に設定することが好ましい。10−4Paより高い圧力では、液相成分中の蒸気圧の高い元素を優先的に蒸発させつつ、DyやTbの金属原子を焼結磁石の結晶粒界相に効率よく拡散できない。 The pressure in the vacuum atmosphere is preferably set to 10 −4 Pa or less. When the pressure is higher than 10 −4 Pa, the elements having a high vapor pressure in the liquid phase component are preferentially evaporated, and the metal atoms of Dy and Tb cannot be efficiently diffused into the crystal grain boundary phase of the sintered magnet.

また、一次焼結体表面に金属蒸発材料からなる薄膜が形成されないように蒸発した金属原子を供給するために、前記蒸発した金属原子が、前記処理室に配置され、かつ、複数個の微細な開口が形成された調整板の各開口を通して前記焼結磁石に供給される構成を採用するのがよい。   Further, in order to supply evaporated metal atoms so that a thin film made of a metal evaporation material is not formed on the surface of the primary sintered body, the evaporated metal atoms are disposed in the processing chamber, and a plurality of fine particles are arranged. It is preferable to adopt a configuration in which the sintered magnet is supplied through each opening of the adjusting plate in which the opening is formed.

なお、請求項1乃至請求項7のいずれか1項に記載の方法によって製造される焼結体は、例えばネオジウム鉄ボロン系焼結磁石である。   In addition, the sintered compact manufactured by the method of any one of Claims 1 thru | or 7 is a neodymium iron boron series sintered magnet, for example.

図1を参照して説明すれば、1は、ネオジウム鉄ボロン系の焼結磁石(一次焼結体)Sに対し、真空雰囲気にて焼結磁石Sから希土類元素を優先的に蒸発させる処理(真空蒸発処理)と、主相の結晶磁気異方性を大きく向上させるジスプロシウム(Dy)やテルビウム(Tb)をその結晶粒界相に拡散させる処理(真空蒸気処理)とを同時に施して超高性能磁石を得るための真空処理装置である。真空蒸発装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段2を介して所定圧力(例えば10−5Pa)まで減圧して保持できる真空チャンバ3を有する。真空チャンバ内3には、上面を開口した円筒形状の焼結体ケース4が出入れ自在に設置でき、この焼結体ケース4で囲まれた空間が処理室4aを構成する。処理室4a内には、複数本の線材(例えばφ0.1〜10mm)を格子状に配置してなる載置部4bが、底面から高さ方向で所定の間隔を存して複数形成され、この載置部4bに複数個の焼結磁石Sを並べて載置できるようになっている。 Referring to FIG. 1, 1 is a process for preferentially evaporating rare earth elements from a sintered magnet S in a vacuum atmosphere to a neodymium iron boron-based sintered magnet (primary sintered body) S ( Ultra-high performance by simultaneously performing vacuum evaporation) and diffusion of dysprosium (Dy) and terbium (Tb) (vacuum vapor), which greatly improves the magnetocrystalline anisotropy of the main phase, into the grain boundary phase. A vacuum processing apparatus for obtaining a magnet. The vacuum evaporation apparatus 1 includes a vacuum chamber 3 that can be held at a reduced pressure to a predetermined pressure (for example, 10 −5 Pa) through a vacuum exhaust unit 2 such as a turbo molecular pump, a cryopump, or a diffusion pump. A cylindrical sintered body case 4 having an open upper surface can be freely installed and removed in the vacuum chamber 3, and a space surrounded by the sintered body case 4 constitutes a processing chamber 4 a. In the processing chamber 4a, a plurality of mounting portions 4b formed by arranging a plurality of wire rods (for example, φ0.1 to 10 mm) in a lattice shape are formed at predetermined intervals in the height direction from the bottom surface, A plurality of sintered magnets S can be placed side by side on the placement portion 4b.

また、焼結体ケース4には、焼結磁石Sと離間するようにその底面、側面または上面等に金属蒸発材料Vが適宜配置できるようになっている。金属蒸発材料Vとしては、主相の結晶磁気異方性を大きく向上させるジスプロシウム(Dy)、テルビウム(Tb)またはこれらの少なくとも一方を含む合金が用いられ、当該合金には、保磁力を一層高めるために、Nd、Al、Cu及びGa等が含められる。金属蒸発材料Vは、所定の混合割合で配合し、例えばアーク溶解炉を用いてバルク状(略球状)の合金を得て、焼結磁石Sの1〜10重量%の割合で、単位体積当たりの表面積(比表面積)を小さくして処理室4aに配置される。   In addition, the metal case V can be appropriately disposed on the bottom surface, the side surface or the top surface of the sintered body case 4 so as to be separated from the sintered magnet S. As the metal evaporation material V, dysprosium (Dy), terbium (Tb) or an alloy containing at least one of them is used to greatly improve the magnetocrystalline anisotropy of the main phase, and the coercive force is further increased in the alloy. Therefore, Nd, Al, Cu, Ga and the like are included. The metal evaporation material V is blended at a predetermined mixing ratio, for example, an arc melting furnace is used to obtain a bulk (substantially spherical) alloy, and the ratio of 1 to 10% by weight of the sintered magnet S per unit volume. The surface area (specific surface area) is reduced and disposed in the processing chamber 4a.

焼結体ケース4及び載置部4bは、後述するように焼結磁石S及び金属蒸発材料Vを加熱することで、当該焼結磁石Sから液相である希土類リッチ相のNd、Prなどの希土類元素Rを優先的に蒸発させると共に、DyやTbの金属蒸発材料Vを蒸発させたときに、これらの希土類元素Rと反応しない材料から構成されている。即ち、蒸発させた希土類元素Rが焼結体ケース4や載置部4bの表面に付着してその表面に反応生成物を形成したのでは、蒸発させたDy及びTbを含む希土類元素Rの回収が困難になる場合がある。このため、焼結体ケース4及び載置部4bを、表面に付着した希土類元素Rの剥離が容易なMoやSUSから製作するか、またはMo等を他の断熱材の表面に内張膜として成膜したものから構成している。この場合、真空チャンバ3の壁面にも、希土類元素Rが付着するため、その回収を容易にするため、表面に上記材料からなる内張膜を形成したシールド板(図示せず)を設けておくことが好ましい。   As will be described later, the sintered body case 4 and the mounting portion 4b heat the sintered magnet S and the metal evaporating material V, so that the rare earth-rich phase Nd, Pr, etc., which is a liquid phase from the sintered magnet S. The rare earth element R is preferentially evaporated, and when the metal evaporation material V of Dy or Tb is evaporated, the rare earth element R is made of a material that does not react with the rare earth element R. That is, when the evaporated rare earth element R adheres to the surface of the sintered body case 4 or the mounting portion 4b and forms a reaction product on the surface, recovery of the evaporated rare earth element R including Dy and Tb is performed. May be difficult. For this reason, the sintered body case 4 and the mounting portion 4b are manufactured from Mo or SUS, in which the rare earth element R adhering to the surface is easily peeled, or Mo or the like is used as a lining film on the surface of another heat insulating material. It consists of a film. In this case, since the rare earth element R also adheres to the wall surface of the vacuum chamber 3, a shield plate (not shown) in which a lining film made of the above material is formed on the surface is provided in order to facilitate recovery. It is preferable.

真空チャンバ3には、焼結体ケース4の周囲を囲うように加熱手段5が設けられている。加熱手段5は、焼結体ケース4の周囲を囲うようにその全長に亘って列設した複数本の環状のフィラメントから構成される電気ヒータ(図示せず)であり、各フィラメントは、真空チャンバ3内に設けた支持片(図示せず)で支持されている。この場合、フィラメントもまた、希土類元素Rと反応しないMo等から構成されている。そして、減圧下で、加熱手段5によって焼結体ケース4を加熱することで、焼結体ケース4を介して間接的に処理室4a、ひいては、載置部4bに載置した焼結磁石S及び金属蒸発材料Vを略均等に加熱できる。   The vacuum chamber 3 is provided with heating means 5 so as to surround the periphery of the sintered body case 4. The heating means 5 is an electric heater (not shown) composed of a plurality of annular filaments arranged over the entire length so as to surround the periphery of the sintered body case 4, and each filament is a vacuum chamber. 3 is supported by a support piece (not shown) provided in the interior. In this case, the filament is also composed of Mo or the like that does not react with the rare earth element R. Then, by heating the sintered body case 4 by the heating means 5 under reduced pressure, the sintered magnet S placed on the processing chamber 4a, and thus on the placing portion 4b, indirectly through the sintered body case 4. In addition, the metal evaporation material V can be heated substantially uniformly.

焼結体ケース4の上方には、その開口した上面を覆うようにトラップ板6が配置され、このトラップ板6は、焼結磁石Sから蒸発した希土類元素R及び金属蒸発材料Vから蒸発したDy原子やTb原子のうち焼結磁石D表面に付着せずに焼結体ケース4上面の開口を通ってその外側に排出されたものを付着させて回収する役割を果たす。トラップ板6もまた、蒸発させたDy、Tbを含む希土類元素Rと反応せず、かつ、表面に付着したものが剥離し易い材料、例えばMoから構成されている。この場合、処理室4aの容積は、希土類元素Rの平均自由行程を考慮して、特に焼結磁石Sから蒸発させた希土類元素Rが直接または焼結体ケース4の内壁への衝突を繰返して上面開口を通って外側に排出されるように設定され、また、焼結体ケース4の上端からトラップ板6までの間隔は、排出された希土類元素Rの大部分が付着するように設定されている。この場合、焼結体ケース4に、例えば冷媒の循環による冷却手段を付設し、温度差によって蒸発した希土類元素Rがトラップ板6に付着して堆積するように構成してもよい。   A trap plate 6 is disposed above the sintered body case 4 so as to cover the upper surface of the opening. The trap plate 6 is a rare earth element R evaporated from the sintered magnet S and Dy evaporated from the metal evaporation material V. Of the atoms and Tb atoms, they play the role of attaching and collecting those discharged through the opening on the upper surface of the sintered body case 4 without attaching to the surface of the sintered magnet D. The trap plate 6 is also made of a material that does not react with the evaporated rare earth element R including Dy and Tb and that adheres to the surface easily peels off, for example, Mo. In this case, the volume of the processing chamber 4a is determined in consideration of the mean free path of the rare earth element R, and in particular, the rare earth element R evaporated from the sintered magnet S repeatedly or directly collides with the inner wall of the sintered body case 4. It is set to be discharged to the outside through the upper surface opening, and the distance from the upper end of the sintered body case 4 to the trap plate 6 is set so that most of the discharged rare earth element R adheres. Yes. In this case, the sintered body case 4 may be provided with, for example, a cooling means by circulating a refrigerant so that the rare earth element R evaporated by the temperature difference adheres to and accumulates on the trap plate 6.

次に、超高性能磁石(永久磁石)の作製について説明する。原料合金粉末は次のように作製される。即ち、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm〜0.5mmの原料合金を先ず作製する。あるいは、遠心鋳造法で5〜10mm程度の厚さの原料合金を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。この場合、希土類元素の合計含有量を28.5%より多くし、α鉄が生成しないインゴットとする。   Next, production of an ultra-high performance magnet (permanent magnet) will be described. The raw material alloy powder is produced as follows. That is, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method. First, a raw material alloy of 05 mm to 0.5 mm is prepared. Alternatively, a raw material alloy having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, or the like may be added during blending. . In this case, the total content of rare earth elements is set to more than 28.5%, and an ingot that does not produce α iron is obtained.

次いで、作製した原料合金を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径3〜10μmの原料合金粉末を得る。次いで、原料合金粉末を、公知の圧縮成形機を用いて磁界中で所定形状に圧縮成形する。次いで、圧縮成形機から取出した成形体を、図示しない焼結炉内に収納し、真空中で所定温度(例えば、1050℃)で所定時間焼結(焼結工程)し、さらに所定温度(500℃)で熱処理して焼結磁石(一次焼結体)Sを得る。   Next, the produced raw material alloy is coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill pulverization step to obtain a raw material alloy powder having an average particle diameter of 3 to 10 μm. Next, the raw material alloy powder is compression molded into a predetermined shape in a magnetic field using a known compression molding machine. Next, the molded body taken out from the compression molding machine is housed in a sintering furnace (not shown), sintered in a vacuum at a predetermined temperature (for example, 1050 ° C.) for a predetermined time (sintering process), and further, a predetermined temperature (500 And a sintered magnet (primary sintered body) S is obtained.

次に、図1に示す真空処理装置1を用い、上記焼結磁石Sに対し、真空蒸発処理と、金属蒸発材料VとしてTbを用いた真空蒸気処理とを同時に施す。即ち、上記のように作製した焼結磁石Sを、焼結体ケース4の載置部4b上に載置すると共に、当該焼結体ケース4の底面に、金属蒸発材料Vとしてバルク状のTbを設置する。そして、焼結磁石Sと金属蒸発材料Vとを収納した焼結体ケース4を真空チャンバ3内の加熱手段5で囲まれる位置に設置した後、真空排気手段2を作動させて、所定圧力(例えば10−5Pa)に到達するまで真空チャンバ3を減圧する。真空チャンバ3内が所定圧力に到達した後、加熱手段5を作動させて処理室4a、ひいては焼結磁石S及び金属蒸発材料をV加熱し、所定温度に到達した後、この状態で所定時間保持する。 Next, using the vacuum processing apparatus 1 shown in FIG. 1, the sintered magnet S is simultaneously subjected to a vacuum evaporation process and a vacuum vapor process using Tb as the metal evaporation material V. That is, the sintered magnet S produced as described above is placed on the placement portion 4b of the sintered body case 4, and bulk Tb as the metal evaporation material V is formed on the bottom surface of the sintered body case 4. Is installed. And after installing the sintered compact case 4 which accommodated the sintered magnet S and the metal evaporation material V in the position enclosed by the heating means 5 in the vacuum chamber 3, the vacuum exhaust means 2 is operated and predetermined pressure ( For example, the vacuum chamber 3 is depressurized until it reaches 10 −5 Pa). After the inside of the vacuum chamber 3 reaches a predetermined pressure, the heating means 5 is operated to heat the processing chamber 4a, and consequently the sintered magnet S and the metal evaporation material, by V, and after reaching the predetermined temperature, this state is maintained for a predetermined time. To do.

この場合の加熱温度は、900℃以上で焼結温度未満(例えば、1100℃)の温度に設定する。900℃より低い温度では、希土類元素R及び金属蒸発材料VたるTbを効率よく蒸発できず、また、焼結温度を超えると、異常粒成長が起こり、磁気特性が大きく低下すると共に、Tbの蒸気圧が高くなって蒸気雰囲気中のTb原子が焼結磁石S表面に過剰に供給される。併せて、真空チャンバ3と真空排気手段2とを連結する排気通路(排気管)7に開度調整自在な開閉バルブ8を設け、この開閉バルブ8の開度を調節して、真空チャンバ3、ひいては処理室4a内の圧力を10−4Pa以下の圧力に設定する。10−4Paより高い圧力では、希土類元素R及び金属蒸発材料VたるTbを効率よく蒸発させることができない。 In this case, the heating temperature is set to 900 ° C. or higher and lower than the sintering temperature (for example, 1100 ° C.). If the temperature is lower than 900 ° C., the rare earth element R and the metal evaporation material V, Tb, cannot be efficiently evaporated. If the sintering temperature is exceeded, abnormal grain growth occurs, the magnetic properties are greatly reduced, and the vapor of Tb The pressure increases and Tb atoms in the vapor atmosphere are excessively supplied to the surface of the sintered magnet S. In addition, an open / close valve 8 whose opening degree can be adjusted is provided in an exhaust passage (exhaust pipe) 7 that connects the vacuum chamber 3 and the vacuum exhaust means 2, and the opening degree of the open / close valve 8 is adjusted so that the vacuum chamber 3, As a result, the pressure in the processing chamber 4a is set to a pressure of 10 −4 Pa or less. When the pressure is higher than 10 −4 Pa, the rare earth element R and the metal evaporation material V, Tb, cannot be efficiently evaporated.

これにより、一定温度下での蒸気圧の相違により(例えば、1000℃において、Ndの蒸気圧は10−3Pa、Feの蒸気圧は10−5Pa、Bの蒸気圧は10−13Pa)、Rリッチ相中の希土類元素Rのみが蒸発する。このため、Ndリッチ相の割合が減少して、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)が向上する。それに加えて、上記温度範囲で蒸発したTb原子が直接または焼結体ケース4の側壁で衝突を繰返して複数の方向から所定温度に加熱されている焼結磁石S表面に向かって供給されて付着し、この付着したTb原子が焼結磁石Sの結晶粒界相に拡散され、結晶粒界相にTbリッチ相(Dyを5〜80%の範囲で含む相)が形成される。このため、ニュークリエーション型の保磁力発生機構を強化し、最大エネルギー積を殆ど損なうことなく、保磁力が飛躍的に向上する。その結果、超高性能磁石となる。 Thereby, due to the difference in vapor pressure at a constant temperature (for example, at 1000 ° C., the vapor pressure of Nd is 10 −3 Pa, the vapor pressure of Fe is 10 −5 Pa, and the vapor pressure of B is 10 −13 Pa). Only the rare earth element R in the R-rich phase evaporates. For this reason, the ratio of the Nd-rich phase is reduced, and the maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting magnetic characteristics are improved. In addition, the Tb atoms evaporated in the above temperature range are supplied or adhered to the surface of the sintered magnet S heated to a predetermined temperature from a plurality of directions by repeatedly colliding directly or on the side wall of the sintered body case 4. Then, the adhered Tb atoms are diffused into the grain boundary phase of the sintered magnet S, and a Tb rich phase (phase containing Dy in the range of 5 to 80%) is formed in the grain boundary phase. For this reason, the coercive force generation mechanism of the new creation type is strengthened, and the coercive force is dramatically improved without substantially damaging the maximum energy product. The result is an ultra-high performance magnet.

ここで、上記処理の時間は、永久磁石の希土類元素Rの含有量を28.5wt%未満、または、希土類元素Rの平均濃度の減少量を0.5重量%以上となり、その上で結晶粒界相にTbリッチ相が形成されるように適宜設定される。   Here, the processing time is such that the rare earth element R content of the permanent magnet is less than 28.5 wt%, or the average concentration reduction of the rare earth element R is 0.5 wt% or more. It is appropriately set so that a Tb rich phase is formed in the boundary phase.

また、上記圧力及び加熱温度範囲で、Tbを蒸発させることで、Tbの蒸気圧を低くなってその蒸発量が少くなって焼結磁石SへのTb原子の供給量が抑制されることと、焼結磁石が最適な拡散速度が得られる範囲に加熱されていることとが相俟って、焼結磁石S表面に付着したTb原子が、焼結磁石S表面で堆積してTb層(薄膜)を形成する前にその結晶粒界相に効率よく拡散させて均一に行き渡るようになる(図2参照)。その結果、磁石Mの表面が劣化することが防止され、仕上げ加工が不要な生産性に優れた超高性能磁石(永久磁石)Mが得られる。この場合、真空蒸発処理と、真空蒸気処理とを順次行う場合と比較して大幅に処理時間を短縮することができ、さらに高い生産性を達成することが可能となる。   Further, by evaporating Tb in the above pressure and heating temperature range, the vapor pressure of Tb is lowered, the evaporation amount is reduced, and the supply amount of Tb atoms to the sintered magnet S is suppressed, Combined with the fact that the sintered magnet is heated to a range where an optimum diffusion rate can be obtained, Tb atoms attached to the surface of the sintered magnet S are deposited on the surface of the sintered magnet S to form a Tb layer (thin film). ) Is efficiently diffused into the grain boundary phase before it is formed (see FIG. 2). As a result, the surface of the magnet M is prevented from being deteriorated, and an ultra-high performance magnet (permanent magnet) M excellent in productivity that does not require finishing is obtained. In this case, the processing time can be significantly reduced as compared with the case where the vacuum evaporation process and the vacuum vapor process are sequentially performed, and higher productivity can be achieved.

次いで、上記処理を実施した後、加熱手段5の作動を一旦停止すると共に、開閉バルブ8を全開して真空チャンバ3を排気しつつ冷却し、処理室4a内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段5を再度作動させ、処理室4a内の温度を550℃〜650℃の範囲に設定し、一層磁気特性を向上させるための熱処理を施す。最後に、略室温まで冷却し、永久磁石Mを取り出す。   Next, after the above processing is performed, the operation of the heating means 5 is temporarily stopped, and the open / close valve 8 is fully opened to cool the vacuum chamber 3 while evacuating it, and the temperature in the processing chamber 4a is once lowered to, for example, 500 ° C. . Subsequently, the heating means 5 is actuated again, the temperature in the processing chamber 4a is set in the range of 550 ° C. to 650 ° C., and heat treatment for further improving the magnetic properties is performed. Finally, it is cooled to approximately room temperature and the permanent magnet M is taken out.

尚、本実施の形態においては、焼結体ケース4に設置する金属蒸発材料としてTbを用いるものを例に説明したが、これに限定されるものではなく、Dyを用いることができる。この場合、処理室4a内の温度が900℃〜1000℃のとき、Dyの飽和蒸気圧は約1×10−2〜1×10−1Paであるため、処理室4aを900℃を超えた温度で加熱すると、Dyの蒸気圧が高くなって蒸気雰囲気中のDy原子が焼結磁石S表面に過剰に供給される。このとき、Dyが結晶粒内に拡散し、結晶粒内の磁化を大きく下げるため、最大エネルギー積及び残留磁束密度が低下することになる。 In the present embodiment, the example in which Tb is used as the metal evaporation material installed in the sintered body case 4 has been described as an example. However, the present invention is not limited to this, and Dy can be used. In this case, when the temperature in the processing chamber 4a is 900 ° C. to 1000 ° C., the saturated vapor pressure of Dy is about 1 × 10 −2 to 1 × 10 −1 Pa, and thus the processing chamber 4a exceeded 900 ° C. When heated at a temperature, the vapor pressure of Dy increases and Dy atoms in the vapor atmosphere are excessively supplied to the surface of the sintered magnet S. At this time, Dy diffuses into the crystal grains and greatly reduces the magnetization in the crystal grains, so that the maximum energy product and the residual magnetic flux density are reduced.

そこで、図3(a)及び(b)に示すように、金属蒸発材料VがDyを主とするような場合には、焼結体ケース4の底面に、上面を開口した箱体11と当該箱体の上面開口を塞ぐ蓋体12とからなるMo製の蒸発箱13を設置し、蓋体12に形成した微細な貫通孔14(φ0.1〜5mm)を通して、焼結磁石に蒸発したDy原子が供給されるようにすることが好ましい。この場合、蓋体12が調整板を構成する。   Therefore, as shown in FIGS. 3A and 3B, when the metal evaporation material V is mainly Dy, the box 11 having an upper surface opened on the bottom surface of the sintered body case 4 and A Mo evaporation box 13 composed of a lid 12 that closes the upper surface opening of the box is installed, and Dy evaporated to a sintered magnet through a fine through hole 14 (φ0.1 to 5 mm) formed in the lid 12. It is preferable to supply atoms. In this case, the lid body 12 constitutes an adjustment plate.

他方で、特に図示しないが、真空チャンバ3に連通路を介して他の真空チャンバたる蒸発室(他の処理室)を連結し、当該他の真空チャンバ内に金属蒸発材料Vのみを設置し、真空チャンバ3とは別個に金属蒸発材料Vを加熱して蒸発させることができるようにし、焼結体ケース4の底面に設けた開口を介して焼結磁石に蒸発したDy原子が供給されるようにしてもよい。この場合、連通路に複数の微細な貫通孔を形成した調整板を設けるようにしてもよい。   On the other hand, although not particularly illustrated, an evaporation chamber (another processing chamber) which is another vacuum chamber is connected to the vacuum chamber 3 via a communication path, and only the metal evaporation material V is installed in the other vacuum chamber, The metal evaporation material V can be heated and evaporated separately from the vacuum chamber 3, and the evaporated Dy atoms are supplied to the sintered magnet through the opening provided in the bottom surface of the sintered body case 4. It may be. In this case, an adjustment plate in which a plurality of fine through holes are formed in the communication path may be provided.

さらに、本実施の形態では、焼結磁石Sの製造を例として説明したが、焼結体から特定物質を蒸発させ、特定の金属元素をその結晶粒界相に拡散させて焼結体の機能を向上できるものであれば、本発明の焼結体の製造方法を適用できる。   Furthermore, in the present embodiment, the manufacture of the sintered magnet S has been described as an example. However, the function of the sintered body is determined by evaporating a specific substance from the sintered body and diffusing a specific metal element into the crystal grain boundary phase. If it can improve, the manufacturing method of the sintered compact of this invention can be applied.

実施例1では、図1に示す真空処理装置1を用い、永久磁石を得た。まず、工業用純鉄、金属ネオジウム、低炭素フェロボロン、電解コバルト、純銅を原料として、配合組成で29Nd−1B−0.1Cu−1Co−Bal Fe(重量%)となるようにして、真空誘導溶解を行い、ストリップキャスティング法で厚さ約0.3mmの薄片状インゴットを得た。次に、水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、原料合金粉末を得た。   In Example 1, a permanent magnet was obtained using the vacuum processing apparatus 1 shown in FIG. First, industrial pure iron, metallic neodymium, low carbon ferroboron, electrolytic cobalt, and pure copper are used as raw materials so that the composition is 29Nd-1B-0.1Cu-1Co-BalFe (wt%), and vacuum induction melting is performed. And a flaky ingot having a thickness of about 0.3 mm was obtained by a strip casting method. Next, it was coarsely pulverized once by a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain a raw material alloy powder.

次に、公知の構造を有する横磁場圧縮成形装置を用いて、成形体を得て、次いで真空焼結炉にて1050℃の温度下で2時間焼結させて焼結磁石Sを得た。そして、ワイヤカットにより一次焼結体を40×10×3mmの形状に加工した後、表面粗さが10μm以下となるように仕上げ加工した後、希硝酸によって表面をエッチングした。   Next, a compact was obtained using a transverse magnetic field compression molding apparatus having a known structure, and then sintered in a vacuum sintering furnace at a temperature of 1050 ° C. for 2 hours to obtain a sintered magnet S. Then, the primary sintered body was processed into a shape of 40 × 10 × 3 mm by wire cutting, and then finished to have a surface roughness of 10 μm or less, and then the surface was etched with dilute nitric acid.

次いで、図1に示す真空蒸発装置1を用い上記処理を施した。処理室4a内の載置部4bに100個の上記焼結磁石Sを等間隔で配置すると共に、焼結体ケース4の底面に、金属蒸発材料Vとして、純度99.9%で塊状のTb(約φ1mm)を3kgの総量で配置した。   Subsequently, the said process was performed using the vacuum evaporation apparatus 1 shown in FIG. The 100 sintered magnets S are arranged at equal intervals on the mounting portion 4b in the processing chamber 4a, and the bottom surface of the sintered body case 4 has a purity of 99.9% and a massive Tb as a metal evaporation material V. (About φ1 mm) was placed in a total amount of 3 kg.

次いで、焼結磁石Sと金属蒸発材料Vとをセットした焼結体ケース4を真空チャンバ3の所定位置に収納した後、真空排気手段2を作動させて真空チャンバを1×10−5Paまで減圧し、加熱手段5を作動させて加熱した。処理室4aの加熱温度を1000℃に設定し、処理室4aの温度が1000℃に達した後、上記処理を10時間行った。 Next, after the sintered body case 4 in which the sintered magnet S and the metal evaporating material V are set is housed in a predetermined position of the vacuum chamber 3, the vacuum exhaust means 2 is operated to bring the vacuum chamber to 1 × 10 −5 Pa. The pressure was reduced and the heating means 5 was operated to heat. The heating temperature of the processing chamber 4a was set to 1000 ° C., and after the temperature of the processing chamber 4a reached 1000 ° C., the above processing was performed for 10 hours.

図4は、開閉バルブ8の開度を調節して処理室4a内の圧力を1Paから2×10−5Paまで変化させて上記処理を行ったときの永久磁石Mの磁気特性(BHカーブトレーサーにより測定)の平均値を示す表である。これによれば、10−3Paの圧力では、磁気特性を示す最大エネルギー積が53.6MG0e、残留磁束密度が14.62kG、そして保磁力が12.6kOeであり、この圧力より高い圧力下では、超高性能の永久磁石が得られないことが判る。 FIG. 4 shows the magnetic characteristics (BH curve tracer) of the permanent magnet M when the above processing is performed by adjusting the opening of the opening / closing valve 8 to change the pressure in the processing chamber 4a from 1 Pa to 2 × 10 −5 Pa. It is a table | surface which shows the average value of measurement. According to this, at a pressure of 10 −3 Pa, the maximum energy product indicating magnetic characteristics is 53.6 MG0e, the residual magnetic flux density is 14.62 kG, and the coercive force is 12.6 kOe. It can be seen that an ultra-high performance permanent magnet cannot be obtained.

それに対して、10−4Pa以下の圧力では、磁気特性を示す最大エネルギー積が56MG0e、残留磁束密度が14.87kGであり、しかも、保磁力が27.5kOeであり、10−3Paの圧力より高い圧力の場合に比べて倍以上の保磁力を有する超高性能の永久磁石が得られることが判る。 On the other hand, at a pressure of 10 −4 Pa or less, the maximum energy product indicating magnetic characteristics is 56 MG0e, the residual magnetic flux density is 14.87 kG, and the coercive force is 27.5 kOe, and the pressure is 10 −3 Pa. It can be seen that an ultra-high performance permanent magnet having a coercive force more than double that of a higher pressure can be obtained.

実施例2では、実施例1と同条件で焼結磁石Sを作製した。次いで、真空蒸発装置1を用い、加熱温度を900℃、蒸発時間を10時間と固定して、開閉バルブ8の開度を調節して処理室4a内の圧力を2Paから2×10−5Paまで変化させ、上記真空処理を実施した。 In Example 2, a sintered magnet S was produced under the same conditions as in Example 1. Next, the vacuum evaporator 1 is used, the heating temperature is fixed at 900 ° C., the evaporation time is fixed at 10 hours, the opening of the on-off valve 8 is adjusted, and the pressure in the processing chamber 4a is changed from 2 Pa to 2 × 10 −5 Pa. The above vacuum treatment was performed.

また、金属蒸発材料Vとして、純度99.9%で塊状のDy(約φ1mm)を用い、3kgの総量で蒸発箱13(図3参照)に配置した後、焼結体ケース4の底面に設置した。蒸発箱13の蓋体には、φ0.2〜0.5mmの貫通孔を、蓋体上面の面積に対する開口率が1%となるように形成した。   Also, as the metal evaporating material V, a massive Dy (about φ1 mm) with a purity of 99.9% is used, placed in the evaporation box 13 (see FIG. 3) in a total amount of 3 kg, and then installed on the bottom surface of the sintered body case 4 did. A through hole having a diameter of 0.2 to 0.5 mm was formed in the lid of the evaporation box 13 so that the opening ratio with respect to the area of the top surface of the lid was 1%.

図5は、上記処理を行ったときの永久磁石Mの磁気特性(BHカーブトレーサーにより測定)の平均値を示す表である。これによれば、10−3Paの圧力では、磁気特性を示す最大エネルギー積が53.1MG0e、残留磁束密度が14.61kG、そして保磁力が13.5kOeであり、この圧力より高い圧力下では、超高性能の永久磁石が得られないことが判る。 FIG. 5 is a table showing the average value of the magnetic properties (measured by a BH curve tracer) of the permanent magnet M when the above processing is performed. According to this, at a pressure of 10 −3 Pa, the maximum energy product indicating magnetic characteristics is 53.1MG0e, the residual magnetic flux density is 14.61 kG, and the coercive force is 13.5 kOe. It can be seen that an ultra-high performance permanent magnet cannot be obtained.

それに対して、10−4Pa以下の圧力では、磁気特性を示す最大エネルギー積が55.6MG0e、残留磁束密度が14.86kGであり、保磁力が22.5kOeであり、10−3Paの圧力より高い圧力の場合に比べて超高性能の永久磁石が得られることが判る。 On the other hand, at a pressure of 10 −4 Pa or less, the maximum energy product indicating magnetic properties is 55.6 MG0e, the residual magnetic flux density is 14.86 kG, the coercive force is 22.5 kOe, and the pressure is 10 −3 Pa. It can be seen that ultra-high performance permanent magnets can be obtained compared to higher pressures.

本発明の製造方法を実施する真空処理装置を概略的に説明する図。The figure explaining roughly the vacuum processing apparatus which enforces the manufacturing method of this invention. 真空処理を施したときの磁石の断面を模式的に説明する図。The figure which illustrates typically the cross section of the magnet when a vacuum process is performed. 本発明の製造方法を実施する真空処理装置の変形例を概略的に説明する図。The figure explaining roughly the modification of the vacuum processing apparatus which enforces the manufacturing method of this invention. 実施例1で作製した焼結磁石の磁気特性を示す表。2 is a table showing magnetic characteristics of sintered magnets produced in Example 1. 実施例2で作製した焼結磁石の磁気特性を示す表。6 is a table showing magnetic characteristics of sintered magnets produced in Example 2.

符号の説明Explanation of symbols

1 真空蒸発装置
3 真空チャンバ
4 焼結体ケース
4a 処理室
5 加熱手段
6 トラップ板
S 一次焼結体(焼結磁石)
R 希土類元素
V 金属蒸発材料(Dy、Tb)
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 3 Vacuum chamber 4 Sintered body case 4a Processing chamber 5 Heating means 6 Trap board S Primary sintered body (sintered magnet)
R Rare earth element V Metal evaporation material (Dy, Tb)

Claims (7)

液相焼結により一次焼結体を得た後、この一次焼結体を処理室に収納して焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い元素を優先的に蒸発させて、液相の体積比を減少あるいは消滅させつつ、当該一次焼結体と同一または異なる処理室に収納した所定の金属蒸発材料を真空雰囲気中にて加熱して蒸発させ、この蒸発した金属原子を一次焼結体表面に付着させ、この付着した金属原子を一次焼結体の結晶粒界相に拡散させる焼結体の製造方法であって、
前記原料合金は、所定の希土類元素を有するネオジウム鉄ボロン系焼結磁石用のものであり、前記希土類元素の含有量が28.5重量%以上30重量%以下であることを特徴とする焼結体の製造方法。
After obtaining a primary sintered body by liquid phase sintering, the primary sintered body is stored in a processing chamber and heated in a vacuum atmosphere at a temperature lower than the sintering temperature. Preferentially evaporates high-elements and reduces or eliminates the volume ratio of the liquid phase while heating a predetermined metal evaporation material stored in the same or different processing chamber as the primary sintered body in a vacuum atmosphere. Evaporating, attaching the evaporated metal atoms to the surface of the primary sintered body, and diffusing the attached metal atoms into the grain boundary phase of the primary sintered body ,
The raw material alloy is for a neodymium iron boron sintered magnet having a predetermined rare earth element, and the rare earth element content is 28.5 wt% or more and 30 wt% or less. Body manufacturing method.
前記蒸発した金属原子を、一次焼結体表面に金属蒸発材料からなる薄膜が形成される前に一次焼結体の結晶粒界相に拡散させることを特徴とする請求項1記載の焼結体の製造方法。   The sintered body according to claim 1, wherein the evaporated metal atoms are diffused into a grain boundary phase of the primary sintered body before a thin film made of a metal evaporation material is formed on the surface of the primary sintered body. Manufacturing method. 前記一次焼結体は、原料合金をストリップキャスティング法あるいは遠心鋳造法で製造し、その後、粉砕、磁場成形、焼結の各工程を経て得たものであることを特徴とする請求項1または請求項2記載の焼結体の製造方法。   The primary sintered body is obtained by manufacturing a raw material alloy by a strip casting method or a centrifugal casting method, and thereafter performing pulverization, magnetic field forming, and sintering processes. Item 3. A method for producing a sintered body according to Item 2. 前記金属蒸発材料は、ジスプロシウム、テルビウムまたはこれらのいずれか一方を含む合金であることを特徴とする請求項1〜3のいずれか1項に記載の焼結体の製造方法。 The method for producing a sintered body according to any one of claims 1 to 3, wherein the metal evaporation material is dysprosium, terbium, or an alloy containing any one of them . 前記真空雰囲気の圧力を、10−4Pa以下に設定することを特徴とする請求項1〜4のいずれか1項に記載の焼結体の製造方法。 The pressure of the said vacuum atmosphere is set to 10 <-4> Pa or less, The manufacturing method of the sintered compact of any one of Claims 1-4 characterized by the above-mentioned . 前記蒸発した金属原子が、前記処理室に配置されかつ複数個の微細な開口が形成された調整板の各開口を通して前記焼結磁石に供給されるようにしたことを特徴とする請求項記載の焼結体の製造方法。 The evaporated metal atoms, according to claim 5, characterized in that it has to be supplied to the sintered magnet through the openings of the adjusting plate disposed in the processing chamber and a plurality of fine openings are formed The manufacturing method of the sintered compact of this. 請求項1乃至請求項のいずれか1項に記載の方法によって製造されることを特徴とするネオジウム鉄ボロン系焼結磁石。
A neodymium iron boron-based sintered magnet manufactured by the method according to any one of claims 1 to 6 .
JP2007255163A 2007-09-28 2007-09-28 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method Active JP5049722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255163A JP5049722B2 (en) 2007-09-28 2007-09-28 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255163A JP5049722B2 (en) 2007-09-28 2007-09-28 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method

Publications (2)

Publication Number Publication Date
JP2009088191A JP2009088191A (en) 2009-04-23
JP5049722B2 true JP5049722B2 (en) 2012-10-17

Family

ID=40661238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255163A Active JP5049722B2 (en) 2007-09-28 2007-09-28 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method

Country Status (1)

Country Link
JP (1) JP5049722B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845821B2 (en) 2009-07-10 2014-09-30 Hitachi Metals, Ltd. Process for production of R-Fe-B-based rare earth sintered magnet, and steam control member
CN102328080A (en) * 2011-09-06 2012-01-25 东阳市亿力磁业有限公司 Neodymium iron boron sintering process
CN102568806A (en) * 2011-12-29 2012-07-11 包头天和磁材技术有限责任公司 Method for preparing rare-earth permanent magnets by infiltration process and graphite box utilized in method
CN105063550B (en) * 2015-08-20 2017-11-28 包头天和磁材技术有限责任公司 Permeability apparatus and method
CN105097261B (en) * 2015-08-20 2018-06-26 京磁新材料有限公司 A kind of sintering method of neodymium iron boron magnetic body
CN105489369A (en) * 2015-12-29 2016-04-13 浙江东阳东磁稀土有限公司 Method for increasing coercive force of neodymium iron boron magnet
CN106920671A (en) * 2017-03-10 2017-07-04 浙江东阳东磁稀土有限公司 A kind of method for improving neodymium iron boron magnetic body heavy rare earth osmotic effect
KR102082685B1 (en) * 2018-05-11 2020-02-28 한국기계연구원 Apparatus for Production of Metal Alloy and Method for Production of Metal alloy using the same
CN115976423A (en) * 2022-11-21 2023-04-18 江西理工大学 HfFe nano powder composite neodymium iron boron magnet and preparation method thereof
CN115798853A (en) * 2022-11-30 2023-03-14 天津三环乐喜新材料有限公司 Sintered neodymium-iron-boron magnet and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897022A (en) * 1994-09-29 1996-04-12 Tokin Corp Manufacture of rare-earth magnet
JP2000109908A (en) * 1998-10-01 2000-04-18 Sumitomo Metal Mining Co Ltd Production of alloy for rare heath-iron-boron magnet
CN101006534B (en) * 2005-04-15 2011-04-27 日立金属株式会社 Rare earth sintered magnet and process for producing the same
CN103227022B (en) * 2006-03-03 2017-04-12 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing same

Also Published As

Publication number Publication date
JP2009088191A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5049722B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP4748163B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP5247717B2 (en) Method for manufacturing permanent magnet and permanent magnet
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
US10020097B2 (en) R-T-B rare earth sintered magnet and method of manufacturing the same
JP5275043B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
WO2008023731A1 (en) Permanent magnet and process for producing the same
WO2009104640A1 (en) Method for the production of permanent magnets and a permanent magnet
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2011035001A (en) Method for manufacturing permanent magnet
JP2016184720A (en) R-t-b-based rare earth sintered magnet and method of manufacturing the same
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009200179A (en) Manufacturing method of sintered compact
US10428408B2 (en) R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP5025372B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JP2009200180A (en) Manufacturing method of permanent magnet
JP5328369B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5433720B2 (en) Sintered body manufacturing equipment
JP2009170796A (en) Permanent magnet, and manufacturing method of permanent magnet
JP6672753B2 (en) RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
JP5179133B2 (en) Sintered body manufacturing equipment
JP2011060965A (en) Method and apparatus for manufacturing r2fe14b rare earth sintered magnet
JP4860491B2 (en) Permanent magnet and method for manufacturing permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250