JP5179133B2 - Sintered body manufacturing equipment - Google Patents

Sintered body manufacturing equipment Download PDF

Info

Publication number
JP5179133B2
JP5179133B2 JP2007255164A JP2007255164A JP5179133B2 JP 5179133 B2 JP5179133 B2 JP 5179133B2 JP 2007255164 A JP2007255164 A JP 2007255164A JP 2007255164 A JP2007255164 A JP 2007255164A JP 5179133 B2 JP5179133 B2 JP 5179133B2
Authority
JP
Japan
Prior art keywords
sintered body
vacuum
trap
evaporated
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007255164A
Other languages
Japanese (ja)
Other versions
JP2009084628A (en
Inventor
浩 永田
洋一 広瀬
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007255164A priority Critical patent/JP5179133B2/en
Publication of JP2009084628A publication Critical patent/JP2009084628A/en
Application granted granted Critical
Publication of JP5179133B2 publication Critical patent/JP5179133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼結体の製造装置に関し、より詳しくは、Nd−Fe−B系(ネオジウム鉄ボロン系)の焼結磁石から希土類元素を優先的に蒸発させて高性能の永久磁石を作製するために用いられる焼結体の製造装置に関する。   The present invention relates to an apparatus for manufacturing a sintered body, and more specifically, a high-performance permanent magnet is manufactured by preferentially evaporating rare earth elements from an Nd—Fe—B (neodymium iron boron) sintered magnet. The present invention relates to an apparatus for manufacturing a sintered body used for the purpose.

Nd−Fe−B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。   Nd-Fe-B based sintered magnets (so-called neodymium magnets) can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied. In addition, since it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and is also used in motors and generators for hybrid cars. is increasing.

Nd−Fe−B系の磁石は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合し、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得る。次いで、得られた合金原料粉末を磁界中で配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。そして、この成形体を所定の条件下で焼結させて焼結磁石が作製される(特許文献1参照)。   Nd-Fe-B magnets are mainly produced by powder metallurgy. In this method, Nd, Fe, and B are first blended at a predetermined composition ratio, and melted and cast to produce an alloy raw material. For example, it is roughly pulverized by, for example, a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain an alloy raw material powder. Next, the obtained alloy raw material powder is oriented in a magnetic field (magnetic field orientation), and compression molded in a state where a magnetic field is applied to obtain a compact. And this sintered compact is sintered on predetermined conditions, and a sintered magnet is produced (refer patent document 1).

ここで、Nd−Fe−B系の焼結磁石の磁性を担うR14B相(主相成分)は、平衡状態では液相から直接生成せず、先ず初相としてγ鉄が生成し、液相とその鉄との反応(包晶反応)で生成する(γ鉄は温度低下と共にα鉄に変態する)。この場合、例えば、凝固冷却速度の速い急冷法であるストリップキャスティング法(SC法)により合金原料を溶解、鋳造したとしても、Ndの含有量を28.5%以下にすれば、α鉄の生成の抑制が難しく、合金中にデンドライト状に生成することが知られている。 Here, the R 2 T 14 B phase (main phase component) responsible for the magnetism of the Nd—Fe—B based sintered magnet is not generated directly from the liquid phase in the equilibrium state, and firstly γ iron is generated as the initial phase. It is formed by a reaction (peritectic reaction) between the liquid phase and its iron (γ iron transforms into α iron with a decrease in temperature). In this case, for example, even if the alloy raw material is melted and cast by the strip casting method (SC method), which is a rapid cooling method with a rapid solidification cooling rate, if the Nd content is 28.5% or less, the production of α iron It is known that it is difficult to suppress, and it is formed in a dendrite form in the alloy.

α鉄が合金中にデンドライト状に生成し、立体的に繋がっていると、その後の粉砕工程での合金の粉砕性を著しく害する。つまり、粉砕性が悪いと、水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕しようとしても、高磁気特性の焼結磁石を作製することに適した粒形の揃った微細な粉末粒子の粉末を得ることが困難となる。その上、ジェットミル中に粗大粒(デンドライト状に生成したα鉄に起因する)が残留したり、バッグフィルターで回収される微粉の量が増えることによって組成ずれが起こり易く、品質管理が困難であるという問題がある。   If alpha iron is formed in a dendritic form in the alloy and is three-dimensionally connected, the pulverizability of the alloy in the subsequent pulverization step is significantly impaired. In other words, if the grindability is poor, the particles are once coarsely pulverized by the hydrogen pulverization process, and then the particle shapes suitable for producing sintered magnets with high magnetic properties are prepared even if the pulverization is attempted by the jet mill pulverization process. It is difficult to obtain fine powder particles. In addition, coarse grains (due to α-iron produced in a dendritic form) remain in the jet mill, and composition deviation tends to occur due to an increase in the amount of fine powder collected by the bag filter, making quality control difficult. There is a problem that there is.

他方で、Ndの含有量を28.5%より多くすれば、α鉄が生成しないインゴットの製造が可能であるものの、Rリッチ相が増えて、磁性を担うR14B相の体積比が減少するため、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)の大きな超高性能磁石の製造が難しくなるといった問題が生じる。 On the other hand, if the Nd content is more than 28.5%, it is possible to produce an ingot that does not produce α iron, but the R-rich phase increases and the volume ratio of the R 2 T 14 B phase that plays a role in magnetism. Therefore, there arises a problem that it becomes difficult to manufacture an ultra-high performance magnet having a maximum energy product ((BH) max) and a large residual magnetic flux density (Br) exhibiting magnetic characteristics.

そこで、液相焼結により焼結磁石を得た後、当該焼結磁石を焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い希土類元素を優先的に蒸発させて液相の体積比を減少させることが本出願人により提案されている(特願2007−200845号参照)。
特開2004−6761号公報(例えば、従来技術の記載参照)
Therefore, after obtaining a sintered magnet by liquid phase sintering, heating the sintered magnet in a vacuum atmosphere at a temperature lower than the sintering temperature gives priority to rare earth elements having a high vapor pressure in the liquid phase component. It has been proposed by the present applicant to reduce the volume ratio of the liquid phase by evaporation (see Japanese Patent Application No. 2007-200845).
Japanese Unexamined Patent Application Publication No. 2004-6761 (for example, see the description of the prior art)

上記方法によれば、希土類元素を効率良く蒸発させてRリッチ相の体積比を減少させることで、磁性を担うR14B相(主相成分)の体積比を増大させることにより、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上することができる。然し、このような焼結磁石には、ディスプロシムやテルビウム等に代表されるような希土類元素であって、資源的に乏しく、安定供給が望めない高価なものが含まれていることが多く、このような場合に、蒸発した元素をそのまま真空排気手段で排気したのでは、貴重な希土類元素が無駄になるばかりか、製造コスト高を招く。 According to the above method, the rare earth element is efficiently evaporated to reduce the volume ratio of the R-rich phase, thereby increasing the volume ratio of the R 2 T 14 B phase (main phase component) that plays a role in magnetism. The maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting characteristics can be improved. However, such sintered magnets often contain rare earth elements such as dysprosim and terbium, which are scarce in resources and cannot be expected to provide a stable supply. In such a case, if the evaporated element is evacuated as it is by the vacuum evacuation means, not only valuable rare earth elements are wasted, but also the production cost is increased.

そこで、本発明の目的は、上記点に鑑み、例えば磁石の磁気特性の向上などの製品機能を改善する際に、蒸発させた元素が効率よく回収されるようにした焼結体の製造装置を提供することにある。   Therefore, in view of the above points, an object of the present invention is to provide an apparatus for manufacturing a sintered body in which evaporated elements are efficiently recovered when improving product functions such as improvement of magnetic characteristics of a magnet. It is to provide.

上記課題を解決するために、本発明の焼結体の製造装置は、真空排気手段を有する真空チャンバと、この真空チャンバ内で、液相焼結で得られた一次焼結体を収納する焼結体ケースと、この焼結体ケースの加熱を可能とする加熱手段とを備え、加熱手段を作動させて当該一次焼結体を焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い元素を優先的に蒸発させて、液相の体積比を減少あるいは消滅させるように構成した焼結体の製造装置であって、前記蒸発させた元素が付着するようにトラップ手段を設け、前記焼結体ケースは一面を開口した箱状のものであり、前記トラップ手段が、前焼結体の開口面から所定の間隔を存してかつ当該開口面全体を覆うように配置された板材から構成されることを特徴とする。 In order to solve the above problems, a sintered body manufacturing apparatus of the present invention includes a vacuum chamber having a vacuum exhaust means, and a sintered body containing a primary sintered body obtained by liquid phase sintering in the vacuum chamber. A unit case and a heating unit that enables heating of the sintered body case, and the heating unit is operated to heat the primary sintered body at a temperature lower than the sintering temperature in a vacuum atmosphere. An apparatus for manufacturing a sintered body configured to preferentially evaporate an element having a high vapor pressure in a liquid phase component to reduce or eliminate the volume ratio of the liquid phase, and the evaporated element is attached the trapping means so as to provided the sintered body case is of box-shaped having an open one surface, the trap means, and the opening surface at a predetermined interval from the opening surface of the front Symbol sintered body It is composed of plate materials arranged to cover the whole And butterflies.

本発明によれば、焼結促進に寄与する液相成分のうち、蒸気圧の高い元素を優先的に蒸発させることにより(蒸発処理)、液相の体積比を減少または消滅させ、主相本来の特性を発揮させることができる。この場合、本発明の焼結体の製造装置においては、蒸発させた元素が付着するトラップ手段を備えているため、上記蒸発処理中には、蒸発させた元素を当該トラップ手段に順次付着させておき、当該処理後に、公知の剥離方法を用いて当該元素をトラップ手段から剥離するだけで、その回収が可能になる。その結果、ネオジウム鉄ボロン系の焼結磁石から、特にディスプロシム等の高価な希土類元素を蒸発させる場合に、その希土類元素が回収できて良い。   According to the present invention, by preferentially evaporating an element having a high vapor pressure among the liquid phase components contributing to the promotion of sintering (evaporation process), the volume ratio of the liquid phase is reduced or eliminated, The characteristics can be exhibited. In this case, since the sintered body manufacturing apparatus of the present invention includes the trap means to which the evaporated element adheres, the evaporated element is sequentially attached to the trap means during the evaporation process. In addition, after the treatment, the element can be recovered only by peeling the element from the trap means using a known peeling method. As a result, when an expensive rare earth element such as dysprosim is evaporated from a neodymium iron boron based sintered magnet, the rare earth element may be recovered.

他方で、前記トラップ手段は、真空チャンバから真空排気手段に通じる排気通路に連通させて設けた収納室と、当該収納室に配置された少なくとも1枚の板材とから構成され、当該板材に駆動手段を連結し、前記板材を排気通路に対し進退自在とした構成を採用すれば、蒸発処理を行う場合にのみ、トラップ手段を排気通路内に侵入させるようにできてよい。   On the other hand, the trap means is composed of a storage chamber provided in communication with an exhaust passage leading from the vacuum chamber to the vacuum exhaust means, and at least one plate material disposed in the storage chamber, and the drive means is connected to the plate material. And the plate member can be moved forward and backward with respect to the exhaust passage, the trap means may be allowed to enter the exhaust passage only when performing the evaporation process.

この場合、蒸発した元素を効率よく板材に付着させるには、前記板材は、ガス流方向に対し傾斜させて2列でかつ互い違いとなるように配置されていることが好ましい。   In this case, in order to efficiently attach the evaporated elements to the plate material, the plate material is preferably arranged so as to be alternately arranged in two rows inclined with respect to the gas flow direction.

また、前記トラップ手段は、排気通路のうち粘性流領域となる範囲に進退自在とすることが好ましい。   Moreover, it is preferable that the trap means is freely movable back and forth in a range that becomes a viscous flow region in the exhaust passage.

さらに、前記トラップ手段に、冷媒の循環による冷却手段が組み込まれている構成を採用すれば、温度差によって蒸発した元素を効率よくトラップ板に付着させることができてよい。   Furthermore, if a configuration in which a cooling means by circulating a refrigerant is incorporated in the trap means, the element evaporated by the temperature difference may be efficiently attached to the trap plate.

尚、処理後に、公知の剥離方法を用いて当該元素をトラップ手段から剥離するために、前記トラップ手段の少なくとも蒸発させた元素が付着する部位が、当該元素と反応しない材料から形成されている。   In addition, in order to peel off the element from the trap unit using a known stripping method after the treatment, at least a portion of the trap unit to which the evaporated element is attached is formed of a material that does not react with the element.

図1を参照して説明すれば、1は、本発明の焼結体の製造装置たる真空蒸発装置1であり、特に、ネオジウム鉄ボロン系の焼結磁石(一次焼結体)Sを真空雰囲気にて加熱し、当該焼結磁石Sから希土類元素を優先的に蒸発させる処理(真空蒸発処理)を施して、超高性能磁石(永久磁石)を作製することに適したものである。真空蒸発装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段11を介して所定圧力(例えば10−5Pa)まで減圧して保持できる真空チャンバ12を有する。真空チャンバ内12には、上面を開口した円筒形状の焼結体ケース2が設置され、この焼結体ケース2で囲まれた空間が処理室20を構成する。焼結体ケース2は、加熱により焼結磁石Sから液相である希土類リッチ相のNd、Prなどの希土類元素Rを優先的に蒸発させたとき、その希土類元素Rと反応しない材料から構成されている。 Referring to FIG. 1, reference numeral 1 denotes a vacuum evaporation apparatus 1 which is a sintered body manufacturing apparatus according to the present invention. In particular, a neodymium iron boron-based sintered magnet (primary sintered body) S is placed in a vacuum atmosphere. It is suitable for producing an ultra-high performance magnet (permanent magnet) by performing a process (vacuum evaporation process) of preferentially evaporating rare earth elements from the sintered magnet S. The vacuum evaporation apparatus 1 has a vacuum chamber 12 that can be held at a reduced pressure to a predetermined pressure (for example, 10 −5 Pa) through a vacuum exhausting means 11 such as a turbo molecular pump, a cryopump, or a diffusion pump. A cylindrical sintered body case 2 having an upper surface opened is installed in the vacuum chamber 12, and a space surrounded by the sintered body case 2 constitutes a processing chamber 20. The sintered body case 2 is made of a material that does not react with the rare earth element R when the rare earth element R such as Nd and Pr in the liquid phase, which is a liquid phase, is preferentially evaporated from the sintered magnet S by heating. ing.

即ち、蒸発させた希土類元素Rが焼結体ケース2の表面に付着してその表面に反応生成物を形成したのでは、希土類元素Rの回収が困難になる場合がある。このため、焼結体ケース2を、表面に付着した希土類元素Rの剥離が容易なMoやSUSから製作するか、またはMo等を他の断熱材の表面に内張膜として成膜したものから構成している。また、処理室20には、焼結体ケース2の底面から上面に向かって相互に所定の間隔を置いて、例えばMo製の皿状の載置部3が複数個配置され、載置部3には、直方体など所定形状に成形した後、焼結してなる焼結磁石Sが並べて載置できる。   That is, if the evaporated rare earth element R adheres to the surface of the sintered body case 2 and forms a reaction product on the surface, it may be difficult to recover the rare earth element R. For this reason, the sintered body case 2 is manufactured from Mo or SUS from which the rare earth element R adhering to the surface is easily peeled, or Mo or the like is formed as a lining film on the surface of another heat insulating material. It is composed. In the processing chamber 20, for example, a plurality of Mo-shaped plate-like mounting portions 3 are arranged at predetermined intervals from the bottom surface to the upper surface of the sintered body case 2. Can be mounted side by side on the sintered magnet S formed by sintering into a predetermined shape such as a rectangular parallelepiped.

また、真空チャンバ12には、焼結体ケース2の周囲を囲うように加熱手段4が設けられている。加熱手段4は、焼結体ケース2の周囲を囲うようにその全長に亘って列設した複数本の環状のフィラメントから構成される電気ヒータ(図示せず)であり、各フィラメントは、真空チャンバ12内に設けた支持片(図示せず)で支持されている。この場合、フィラメントもまた、希土類元素Rと反応しないMo等から構成されている。そして、減圧下で、加熱手段4によって焼結体ケース2を加熱することで、焼結体ケース2を介して間接的に処理室20、ひいては、載置部3に載置した焼結磁石Sを略均等に加熱できる。   The vacuum chamber 12 is provided with a heating unit 4 so as to surround the sintered body case 2. The heating means 4 is an electric heater (not shown) composed of a plurality of annular filaments arranged over the entire length so as to surround the periphery of the sintered body case 2, and each filament is a vacuum chamber. 12 is supported by a support piece (not shown) provided in the inside. In this case, the filament is also composed of Mo or the like that does not react with the rare earth element R. Then, by heating the sintered body case 2 by the heating means 4 under reduced pressure, the sintered magnet S placed on the processing chamber 20 and thus on the placement portion 3 indirectly through the sintered body case 2. Can be heated substantially evenly.

焼結体ケース2の上方には、その開口した上面を覆うようにトラップ板(トラップ手段)5が着脱自在にセットされている。トラップ板5は、上記焼結体ケース2と同様、蒸発させた希土類元素Rと反応せず、かつ、表面に付着したものが剥離し易い材料、例えばMoから構成されている。また、トラップ板5には、図示しないが冷媒の循環による冷却手段が組み込まれており、トラップ板5を所定温度に冷却することで、蒸発させた希土類元素Rが当該トラップ板5に到達したときに、温度差によって希土類元素Rがトラップ板5に効率よく付着して堆積するようにしている。   A trap plate (trap means) 5 is detachably set above the sintered body case 2 so as to cover the opened upper surface. Similar to the sintered body case 2, the trap plate 5 is made of a material that does not react with the evaporated rare earth element R and that adheres to the surface easily peels off, for example, Mo. Further, although not shown, the trap plate 5 incorporates a cooling means by circulation of the refrigerant, and when the trapped plate 5 is cooled to a predetermined temperature, the evaporated rare earth element R reaches the trap plate 5. In addition, the rare earth element R efficiently adheres to and accumulates on the trap plate 5 due to the temperature difference.

処理室20の容積は、蒸発させた希土類元素Rの平均自由行程を考慮して、蒸発した希土類元素Rが直接または焼結体ケース2の内壁への衝突を繰返して上面開口を通って外側に排出されるように設定され、また、焼結体ケース2の上端からトラップ板5までの間隔は、焼結体ケースの上面開口から排出された希土類元素Rの大部分が一旦トラップ板5に向って導かれるように設定されている。これにより、本実施の形態の蒸発処理装置1においては、蒸発処理中には、蒸発させた元素をトラップ板5に順次付着させることができ、当該処理後に、トラップ板5を脱離した後、公知の剥離方法を用いてトラップ板5から当該元素を剥離するだけで、その元素の回収が可能になる。   Considering the mean free path of the evaporated rare earth element R, the volume of the processing chamber 20 is set to the outside through the upper surface opening through repeated collision of the evaporated rare earth element R directly or on the inner wall of the sintered body case 2. The interval from the upper end of the sintered body case 2 to the trap plate 5 is set so that most of the rare earth element R discharged from the upper surface opening of the sintered body case once faces the trap plate 5. Is set to be guided. Thereby, in the evaporation processing apparatus 1 of the present embodiment, during the evaporation process, the evaporated elements can be sequentially attached to the trap plate 5, and after the trap plate 5 is detached after the process, By simply peeling the element from the trap plate 5 using a known peeling method, the element can be recovered.

次に、本発明の蒸発処理装置1の作動について、超高性能永久磁石の作製を例に説明する。先ず、原料合金粉末は次のように作製される。即ち、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm〜0.5mmの原料合金を先ず作製する。あるいは、遠心鋳造法で5〜10mm程度の厚さの合金原料を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。この場合、希土類元素の合計含有量を28.5%より多くし、α鉄が生成しないインゴットとする。   Next, the operation of the evaporation processing apparatus 1 of the present invention will be described by taking the production of an ultra-high performance permanent magnet as an example. First, the raw material alloy powder is produced as follows. That is, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method. First, a raw material alloy of 05 mm to 0.5 mm is prepared. Alternatively, an alloy raw material having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, or the like may be added during blending. . In this case, the total content of rare earth elements is set to more than 28.5%, and an ingot that does not produce α iron is obtained.

次いで、作製した原料合金を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径3〜10μmの合金原料粉末を得る。次いで、原料合金粉末を、公知の圧縮成形機を用いて磁界中で所定形状に圧縮成形する。次いで、圧縮成形機から取出した成形体を、図示しない焼結炉内に収納し、真空中で所定温度(例えば、1050℃)で所定時間焼結(焼結工程)し、さらに所定温度(500℃)、一次焼結体Sを得る。   Next, the produced raw material alloy is coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill fine pulverization step to obtain an alloy raw material powder having an average particle size of 3 to 10 μm. Next, the raw material alloy powder is compression molded into a predetermined shape in a magnetic field using a known compression molding machine. Next, the molded body taken out from the compression molding machine is housed in a sintering furnace (not shown), sintered in a vacuum at a predetermined temperature (for example, 1050 ° C.) for a predetermined time (sintering process), and further, a predetermined temperature (500 ° C), a primary sintered body S is obtained.

次いで、作製した一次焼結体Sを、真空蒸発装置1の載置部3上に載置するとともに、トラップ板5を所定の位置にセットした後(図1に示す状態)、真空排気手段を作動させて、所定圧力(例えば10−5Pa)に到達するまで真空チャンバ12を減圧する。真空チャンバ12内が所定圧力に到達した後、加熱手段4を作動させて処理室20、ひいては焼結磁石Sを加熱し、所定温度に到達した後、この状態で所定時間保持する(真空蒸発処理)。 Next, the produced primary sintered body S is placed on the placement portion 3 of the vacuum evaporator 1 and the trap plate 5 is set at a predetermined position (the state shown in FIG. 1), and then the vacuum evacuation means is used. The vacuum chamber 12 is depressurized until it reaches a predetermined pressure (for example, 10 −5 Pa). After the inside of the vacuum chamber 12 reaches a predetermined pressure, the heating means 4 is operated to heat the processing chamber 20 and eventually the sintered magnet S, and after reaching the predetermined temperature, this state is maintained for a predetermined time (vacuum evaporation process). ).

この場合、処理室20、ひいては焼結磁石Sの加熱温度を900℃以上で、焼結温度未満の温度に設定する。900℃より低い温度では、希土類元素Rの蒸発速度が遅く、また、焼結温度を超えると、異常粒成長が起こり、磁気特性が大きく低下する。併せて、真空チャンバ12と真空排気手段11とを連結する排気通路(排気管)11aに開度調整自在な開閉バルブ11bを設け、この開閉バルブ11bの開度を調節して、真空チャンバ11、ひいては処理室20内の圧力を10−3Pa以下の圧力に設定する。10−3Paより高い圧力では、希土類元素Rを効率よく蒸発させることができない。 In this case, the heating temperature of the processing chamber 20, and consequently the sintered magnet S, is set to 900 ° C. or higher and lower than the sintering temperature. When the temperature is lower than 900 ° C., the evaporation rate of the rare earth element R is slow, and when the sintering temperature is exceeded, abnormal grain growth occurs and the magnetic properties are greatly deteriorated. In addition, an open / close valve 11b whose opening degree can be adjusted is provided in an exhaust passage (exhaust pipe) 11a that connects the vacuum chamber 12 and the vacuum exhaust means 11, and the opening degree of the open / close valve 11b is adjusted so that the vacuum chamber 11, As a result, the pressure in the processing chamber 20 is set to a pressure of 10 −3 Pa or less. When the pressure is higher than 10 −3 Pa, the rare earth element R cannot be efficiently evaporated.

これにより、一定温度下での蒸気圧の相違により(例えば、1000℃において、Ndの蒸気圧は10−3Pa、Feの蒸気圧は10−5Pa、Bの蒸気圧は10−13Pa)、Rリッチ相中の希土類元素Rのみが蒸発する。その際、蒸発した希土類元素Rの大部分は、冷却されたトラップ板5に付着して堆積する。 Thereby, due to the difference in vapor pressure at a constant temperature (for example, at 1000 ° C., the vapor pressure of Nd is 10 −3 Pa, the vapor pressure of Fe is 10 −5 Pa, and the vapor pressure of B is 10 −13 Pa). Only the rare earth element R in the R-rich phase evaporates. At that time, most of the evaporated rare earth element R adheres to the cooled trap plate 5 and accumulates.

このように蒸発処理を施すと、Ndリッチ相の割合が減少して、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上でき、高性能な永久磁石が得られる。この場合、高性能な永久磁石を得るには、永久磁石の希土類元素Rの含有量を28.5wt%未満、または、希土類元素Rの平均濃度の減少量を0.5重量%以上となるまで加熱処理する。   When the evaporation process is performed in this way, the ratio of the Nd-rich phase is reduced, and the maximum energy product ((BH) max) and residual magnetic flux density (Br) showing magnetic characteristics can be improved, and a high-performance permanent magnet can be obtained. It is done. In this case, in order to obtain a high-performance permanent magnet, the rare earth element R content of the permanent magnet is less than 28.5 wt%, or the average concentration reduction of the rare earth element R is 0.5 wt% or more. Heat treatment.

そして、上記真空蒸発処理を実施した後、加熱手段4の作動を一旦停止すると共に、開閉バルブ11bを全開して真空チャンバ12内を排気しつつ冷却し、処理室20内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段4を再度作動させ、処理室20内の温度を550℃〜650℃の範囲に設定し、一層磁気特性を向上させるための熱処理を施す。最後に、略室温まで冷却し、焼結体たる永久磁石を取り出す。他方で、トラップ板5もまた、真空チャンバ12から脱離され、公知の剥離方法を用いてトラップ板5から希土類元素Rを剥離させて回収される。   Then, after the vacuum evaporation process is performed, the operation of the heating unit 4 is temporarily stopped, the open / close valve 11b is fully opened and the vacuum chamber 12 is evacuated and cooled, and the temperature in the process chamber 20 is set to 500 ° C., for example. Lower until. Subsequently, the heating means 4 is actuated again, the temperature in the processing chamber 20 is set in the range of 550 ° C. to 650 ° C., and heat treatment for further improving the magnetic properties is performed. Finally, it is cooled to approximately room temperature, and the permanent magnet that is a sintered body is taken out. On the other hand, the trap plate 5 is also detached from the vacuum chamber 12 and recovered by separating the rare earth element R from the trap plate 5 using a known peeling method.

尚、本実施の形態では、焼結体ケース2の上方にトラップ板5を配置したものについて説明したが、これに限定されるものではく、例えば図示しない真空チャンバから真空排気手段に通じる排気通路11aにトラップ手段6を配置してもよい(図2(a)及び図2(b)参照)。トラップ手段6は、ゲートバルブ61を介して排気通路11aに連通する収納室62を有し、収納室62には、断面略矩形の支持枠63が収納され、この支持枠63内には、複数枚のトラップ板64が配置されている。また、支持枠63には、ゲートバルブ61の開位置でこの支持枠63を排気通路11aに対し進退自在とするエアーシリンダ等の駆動手段65が連結されている。   In the present embodiment, the trap plate 5 disposed above the sintered body case 2 has been described. However, the present invention is not limited to this. For example, an exhaust passage leading from a vacuum chamber (not shown) to the vacuum exhaust means. You may arrange | position the trap means 6 to 11a (refer Fig.2 (a) and FIG.2 (b)). The trap means 6 has a storage chamber 62 that communicates with the exhaust passage 11 a via a gate valve 61. A storage frame 62 having a substantially rectangular cross section is stored in the storage chamber 62. A number of trap plates 64 are arranged. The support frame 63 is connected to a driving means 65 such as an air cylinder that allows the support frame 63 to move forward and backward with respect to the exhaust passage 11a when the gate valve 61 is open.

トラップ板64は、上記同様、希土類元素Rと反応しないMo、SUS等から構成され、排気通路6のガス流を遮るように、ガス流方向に対し傾斜させて2列でかつ互い違いに配置される。そして、真空チャンバ12内を所定圧力まで減圧し、加熱手段4を作動させて焼結磁石Sを加熱する場合にのみ、トラップ手段6を排気通路11a内に侵入させ、蒸発した希土類元素Rを付着させて回収する。尚、蒸発させた元素を効率よくトラップ手段6に付着させるために、トラップ手段6は、排気通路11bのうち粘性流領域となる範囲に設けられる。   Similarly to the above, the trap plate 64 is made of Mo, SUS, or the like that does not react with the rare earth element R, and is alternately arranged in two rows in an inclined manner with respect to the gas flow direction so as to block the gas flow in the exhaust passage 6. . Then, only when the vacuum chamber 12 is depressurized to a predetermined pressure and the heating means 4 is operated to heat the sintered magnet S, the trap means 6 enters the exhaust passage 11a and the evaporated rare earth element R is attached. To collect. In order to allow the evaporated element to adhere to the trap means 6 efficiently, the trap means 6 is provided in the exhaust passage 11b in a range that becomes a viscous flow region.

ところで、焼結体ケース2の上方にトラップ板5を配置したとしても、蒸発した元素が、真空チャンバの壁面まで回り込んだ付着する場合がある。このため、真空チャンバ12の内壁に、例えばMo製のトラップ板を配置し、当該真空チャンバ12の壁面の汚染を防止するためのシールドと兼用させるようにしてもよい。   By the way, even if the trap plate 5 is arranged above the sintered body case 2, the evaporated element may wrap around and adhere to the wall surface of the vacuum chamber. For this reason, a trap plate made of, for example, Mo may be disposed on the inner wall of the vacuum chamber 12 and may also be used as a shield for preventing contamination of the wall surface of the vacuum chamber 12.

さらに、本実施の形態では、焼結磁石Sの製造を例として説明したが、焼結体から特定物質を蒸発させて焼結体の機能を向上できるものであれば、本発明の焼結体の製造方法を適用できる。例えば、炭化珪素(SiC)粉末に金属シリコン粉末を焼結助剤として混合し、成形後シリコンの融点以上で液相焼結して得た焼結体の場合が挙げられる。   Furthermore, in the present embodiment, the manufacture of the sintered magnet S has been described as an example. However, the sintered body of the present invention can be used as long as it can improve the function of the sintered body by evaporating a specific substance from the sintered body. The manufacturing method can be applied. For example, a case of a sintered body obtained by mixing metal carbide powder into silicon carbide (SiC) powder as a sintering aid and performing liquid phase sintering at a temperature equal to or higher than the melting point of silicon after molding.

実施例1では、図1に示す真空蒸発装置1を用い、一次焼結体Sに真空蒸発処理を実施して永久磁石を得た。まず、工業用純鉄、金属ネオジウム、低炭素フェロボロン、電解コバルト、純銅を原料として、配合組成で29Nd−1B−0.1Cu−1Co−Bal Fe(重量%)となるようにして、真空誘導溶解を行い、ストリップキャスティング法で厚さ約0.3mmの薄片状インゴットを得た。次に、水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、原料合金粉末を得た。   In Example 1, a permanent magnet was obtained by subjecting the primary sintered body S to vacuum evaporation using the vacuum evaporator 1 shown in FIG. First, industrial pure iron, metallic neodymium, low carbon ferroboron, electrolytic cobalt, and pure copper are used as raw materials so that the composition is 29Nd-1B-0.1Cu-1Co-BalFe (wt%), and vacuum induction melting is performed. And a flaky ingot having a thickness of about 0.3 mm was obtained by a strip casting method. Next, it was coarsely pulverized once by a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain a raw material alloy powder.

次に、公知の構造を有する横磁場圧縮成形装置を用いて、成形体を得て、次いで真空焼結炉にて1050℃の温度下で2時間焼結させて一次焼結体Sを得た。そして、ワイヤカットにより一次焼結体をφ10×5mmの形状に加工した後、表面粗さが10μm以下となるように仕上げ加工した後、希硝酸によって表面をエッチングした。   Next, a molded body was obtained using a transverse magnetic field compression molding apparatus having a known structure, and then sintered in a vacuum sintering furnace at a temperature of 1050 ° C. for 2 hours to obtain a primary sintered body S. . Then, the primary sintered body was processed into a shape of φ10 × 5 mm by wire cutting, and then finished to have a surface roughness of 10 μm or less, and then the surface was etched with dilute nitric acid.

次に、図1に示す真空蒸発装置1を用い、処理室20内の載置部3に100個の上記一次焼結体Sを配置した後、真空チャンバ12の圧力が10−5Paに到達するまで真空排気した。真空チャンバ12内の圧力が所定位置に達した後、加熱手段4を作動させて処理室20を加熱した。この場合、加熱温度を975℃に設定すると共に、開閉バルブ11bの開度を調節して真空チャンバ12内の圧力を5×10−5Paに設定した。次いで、保磁力を向上するための熱処理を行った。この場合、熱処理温度を530℃、処理時間を60分に設定した。 Next, using the vacuum evaporation apparatus 1 shown in FIG. 1, after placing the 100 primary sintered bodies S on the mounting part 3 in the processing chamber 20, the pressure in the vacuum chamber 12 reaches 10 −5 Pa. It was evacuated until. After the pressure in the vacuum chamber 12 reached a predetermined position, the heating unit 4 was activated to heat the processing chamber 20. In this case, the heating temperature was set to 975 ° C., and the opening of the opening / closing valve 11b was adjusted to set the pressure in the vacuum chamber 12 to 5 × 10 −5 Pa. Next, heat treatment was performed to improve the coercive force. In this case, the heat treatment temperature was set to 530 ° C., and the treatment time was set to 60 minutes.

図3は、処理時間を変えて上記真空蒸発処理を実施した時の被処理材のNdの含有量(wt%)の変化量と熱処理後の磁気特性(BHカーブトレーサーにより測定)の平均値との関係を示す表である。これによれば、蒸発処理時間が長くなるに従い、Ndの含有量が減少し、24時間に亘る真空蒸発処理を実施すると、約2wt%減少させることができた。この場合、磁気特性を示す最大エネルギー積は、55.1MG0eであり、残留磁束密度は14.88kGであり、磁気特性を向上できたことが判る。   FIG. 3 shows the amount of change in the Nd content (wt%) of the material to be treated when the above-described vacuum evaporation treatment is performed at different treatment times, and the average value of the magnetic properties after heat treatment (measured by a BH curve tracer) It is a table | surface which shows these relationships. According to this, as the evaporation process time becomes longer, the Nd content decreases, and when the vacuum evaporation process for 24 hours is performed, the Nd content can be reduced by about 2 wt%. In this case, the maximum energy product showing the magnetic characteristics is 55.1MG0e, the residual magnetic flux density is 14.88 kG, and it can be seen that the magnetic characteristics can be improved.

本発明の焼結体の製造装置たる真空蒸発装置の構成を概略的に説明する図。The figure which illustrates schematically the structure of the vacuum evaporation apparatus which is a manufacturing apparatus of the sintered compact of this invention. 他の変形例に係るトラップ手段を説明する図。The figure explaining the trap means which concerns on another modification. 実施例1で作製した焼結磁石材料の希土類元素の含有量の変化量及び磁気特性を示す表。The table | surface which shows the variation | change_quantity and magnetic characteristic of content of rare earth elements of the sintered magnet material produced in Example 1. FIG.

符号の説明Explanation of symbols

1 真空蒸発装置(焼結体の製造装置)
11 真空排気手段
12 真空蒸発装置
2 焼結体ケース
20 処理室
3 載置部
4 加熱手段
5 トラップ板(トラップ手段:板材)
S 一次焼結体(焼結磁石)
R 希土類元素
1 Vacuum evaporator (sintered body manufacturing equipment)
DESCRIPTION OF SYMBOLS 11 Vacuum exhaust means 12 Vacuum evaporation apparatus 2 Sintered body case 20 Processing chamber 3 Placement part 4 Heating means 5 Trap plate (trap means: plate material)
S Primary sintered body (sintered magnet)
R Rare earth elements

Claims (3)

真空排気手段を有する真空チャンバと、この真空チャンバ内で、液相焼結で得られた一次焼結体を収納する焼結体ケースと、この焼結体ケースの加熱を可能とする加熱手段とを備え、加熱手段を作動させて当該一次焼結体を焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い元素を優先的に蒸発させて、液相の体積比を減少あるいは消滅させるように構成した焼結体の製造装置であって、前記蒸発させた元素が付着するようにトラップ手段を設け、
前記焼結体ケースは一面を開口した箱状のものであり、前記トラップ手段が、前焼結体の開口面から所定の間隔を存してかつ当該開口面全体を覆うように配置された板材から構成されることを特徴とする焼結体の製造装置。
A vacuum chamber having a vacuum evacuation means, a sintered body case for storing a primary sintered body obtained by liquid phase sintering in the vacuum chamber, and a heating means for enabling heating of the sintered body case; And by heating the primary sintered body in a vacuum atmosphere at a temperature lower than the sintering temperature by operating the heating means, the element having a high vapor pressure in the liquid phase component is preferentially evaporated, An apparatus for manufacturing a sintered body configured to reduce or eliminate the volume ratio of the liquid phase, provided with trap means so that the evaporated element adheres,
The sintered body case is of box-shaped having an open one surface, the trap means, disposed from the opening surface of the front Symbol sintered body so as to cover the entire presence to and the opening surface by a predetermined distance An apparatus for producing a sintered body comprising a plate material.
前記トラップ手段に、冷媒の循環による冷却手段が組み込まれていることを特徴とする請求項記載の焼結体の製造装置。 Wherein the trap means, apparatus for producing a sintered body according to claim 1, wherein the cooling means is incorporated by circulation of the refrigerant. 前記トラップ手段の少なくとも蒸発させた元素が付着する部位が、当該元素と反応しない材料から形成されていることを特徴とする請求項1または請求項2記載の焼結体の製造装置。

3. The apparatus for manufacturing a sintered body according to claim 1, wherein at least a portion to which the evaporated element of the trap means adheres is formed of a material that does not react with the element.

JP2007255164A 2007-09-28 2007-09-28 Sintered body manufacturing equipment Expired - Fee Related JP5179133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255164A JP5179133B2 (en) 2007-09-28 2007-09-28 Sintered body manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255164A JP5179133B2 (en) 2007-09-28 2007-09-28 Sintered body manufacturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012095099A Division JP5433720B2 (en) 2012-04-18 2012-04-18 Sintered body manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2009084628A JP2009084628A (en) 2009-04-23
JP5179133B2 true JP5179133B2 (en) 2013-04-10

Family

ID=40658435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255164A Expired - Fee Related JP5179133B2 (en) 2007-09-28 2007-09-28 Sintered body manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5179133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107498041B (en) * 2017-09-11 2024-03-12 重庆市九瑞粉末冶金有限责任公司 Reaction device with dustproof function for sintering front block

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033201B2 (en) * 1990-12-28 2000-04-17 神鋼電機株式会社 Low melting point metal removal equipment
JP4781555B2 (en) * 2001-05-02 2011-09-28 古河機械金属株式会社 Collection method of valuable metals

Also Published As

Publication number Publication date
JP2009084628A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5401328B2 (en) Recycling method of scrap magnet
US10020097B2 (en) R-T-B rare earth sintered magnet and method of manufacturing the same
JP5049722B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
WO2008023731A1 (en) Permanent magnet and process for producing the same
WO2006112403A1 (en) Rare earth sintered magnet and process for producing the same
JPWO2009057592A1 (en) Method for manufacturing permanent magnet and permanent magnet
JP6582940B2 (en) R-T-B system rare earth sintered magnet and manufacturing method thereof
JP5275043B2 (en) Permanent magnet and method for manufacturing permanent magnet
US20160284452A1 (en) R-t-b-based rare earth sintered magnet and method of manufacturing same
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009200179A (en) Manufacturing method of sintered compact
US10428408B2 (en) R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP5025372B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP5433720B2 (en) Sintered body manufacturing equipment
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JP5053105B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009200180A (en) Manufacturing method of permanent magnet
JP5179133B2 (en) Sintered body manufacturing equipment
JP6672753B2 (en) RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator
JP4860491B2 (en) Permanent magnet and method for manufacturing permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees