JP2009200179A - Manufacturing method of sintered compact - Google Patents

Manufacturing method of sintered compact Download PDF

Info

Publication number
JP2009200179A
JP2009200179A JP2008039298A JP2008039298A JP2009200179A JP 2009200179 A JP2009200179 A JP 2009200179A JP 2008039298 A JP2008039298 A JP 2008039298A JP 2008039298 A JP2008039298 A JP 2008039298A JP 2009200179 A JP2009200179 A JP 2009200179A
Authority
JP
Japan
Prior art keywords
processing chamber
sintered
molded body
compact
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039298A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagata
浩 永田
Yoshinori Aragaki
良憲 新垣
Atsushi Nakatsuka
篤 中塚
Tetsuya Kakizawa
哲也 柿沢
Shinji Ozaki
伸二 尾崎
Ryuji Hamada
龍二 浜田
Yuki Nogiwa
悠希 野際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008039298A priority Critical patent/JP2009200179A/en
Publication of JP2009200179A publication Critical patent/JP2009200179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a sintered compact by which the sintered compact can be manufactured inexpensively with high mass-productivity while enhancing product functions, such as the improvement of magnetic characteristics of a sintered magnet. <P>SOLUTION: The manufacturing method of the sintered compact includes: a stage of obtaining a compact by compressing and compacting raw material powder; and a step of disposing the compact in a processing chamber to heat it, vaporizing a vaporized material disposed in the same or a different processing chamber to stick vaporized metal atoms on a compact surface, and performing liquid-phase sintering while diffusing the stuck metal atoms to grain boundaries and/or a grain boundary phase. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、焼結体の製造方法に関し、特に、Nd−Fe−B系焼結磁石の結晶粒界及び/または結晶粒界相にDyやTbを拡散させてなる高性能の永久磁石を生産性よく製造するための方法に関する。   The present invention relates to a method for producing a sintered body, and in particular, produces high-performance permanent magnets in which Dy and Tb are diffused in the grain boundaries and / or grain boundary phases of Nd—Fe—B based sintered magnets. The present invention relates to a method for manufacturing with good quality.

従来、焼結体であるNd−Fe−B系焼結磁石(所謂、ネオジム磁石)は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合する。その際、保磁力を高めるためにジスプロシウム(Dy)、テルビウム(Tb)などの希少な希土類元素が混合される。そして、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して(粉砕工程)、合金原料粉末を得る。次いで、得られた合金原料粉末を磁界中で配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。最後に、この成形体を所定の条件下(例えば、1100℃)で液相焼結させて焼結磁石が作製される(特許文献1参照)。   Conventionally, Nd—Fe—B sintered magnets (so-called neodymium magnets), which are sintered bodies, are mainly produced by powder metallurgy. In this method, first, Nd, Fe, and B are mixed with a predetermined composition ratio. Blend in. At that time, rare earth elements such as dysprosium (Dy) and terbium (Tb) are mixed to increase the coercive force. Then, the alloy raw material is prepared by melting and casting, for example, coarsely pulverized by, for example, a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step (pulverization step) to obtain alloy raw material powder. Next, the obtained alloy raw material powder is oriented in a magnetic field (magnetic field orientation), and compression molded in a state where a magnetic field is applied to obtain a compact. Finally, this compact is subjected to liquid phase sintering under predetermined conditions (for example, 1100 ° C.) to produce a sintered magnet (see Patent Document 1).

ところで、配合の際に適宜混合される希土類元素のうちDyやTbは、Ndより大きい4f電子の磁気異方性を有し、Ndと同じく負のスティーブンス因子を持つことで主相の結晶磁気異方性を大きく向上させることが知られているが、焼結磁石作製の際にDyやTbを添加したのでは、Dy、Tbは主相結晶格子中でNdと逆向きのスピン配列をするフェリ磁性構造を取ることから磁界強度、ひいては、磁気特性を示す最大エネルギー積が大きく低下する。   By the way, among rare earth elements appropriately mixed at the time of blending, Dy and Tb have a magnetic anisotropy of 4f electrons larger than Nd, and have a negative Stevens factor like Nd, so that the main phase crystal magnetism. It is known that the anisotropy is greatly improved. However, when Dy or Tb is added at the time of producing a sintered magnet, Dy and Tb have a spin arrangement opposite to Nd in the main phase crystal lattice. Since the ferrimagnetic structure is adopted, the magnetic field strength, and hence the maximum energy product showing the magnetic characteristics, is greatly reduced.

このような問題を解決策として、粉末冶金法で得た焼結磁石を用い、この焼結磁石とDy、Tbの少なくとも一方を含む金属蒸発材料とを相互に離間させて処理室内に収納し、この処理箱を真空雰囲気にて加熱して金属蒸発材料を蒸発させ、この蒸発した金属原子を焼結磁石表面に付着させ、この付着した金属原子を、焼結磁石表面に金属蒸発材料からなる薄膜が形成される前に焼結磁石の結晶粒界及び/または結晶粒界相に拡散させる処理(真空蒸気処理)を施すことが、本出願人により提案されている(国際出願PCT/JP2007/066272)。   As a solution to such a problem, using a sintered magnet obtained by powder metallurgy, this sintered magnet and a metal evaporation material containing at least one of Dy and Tb are separated from each other and stored in a processing chamber, The processing box is heated in a vacuum atmosphere to evaporate the metal evaporation material, the evaporated metal atoms are attached to the surface of the sintered magnet, and the attached metal atoms are attached to the sintered magnet surface by a thin film made of a metal evaporation material. It has been proposed by the present applicant (International Application PCT / JP2007 / 066272) to perform a treatment (vacuum vapor treatment) for diffusing into the crystal grain boundaries and / or grain boundary phases of the sintered magnet before the sinter is formed. ).

然し、上述した液相焼結により焼結磁石を得る工程と保磁力などの磁気特性を向上または回復させる真空蒸気処理工程とを別々の処理装置で行ったのでは、生産設備が多くなって作業性が悪く、また、各工程で数時間に及ぶ(加熱)処理が行われるため、高い量産性を達成できず、その上、生産コストが高くなるという不具合がある。
特開2004−6761号公報(例えば、従来技術の記載参照)
However, if the process for obtaining a sintered magnet by liquid phase sintering as described above and the vacuum vapor treatment process for improving or recovering the magnetic properties such as coercive force are carried out by separate processing devices, the production facilities increase. In addition, since the process is performed for several hours (heating) in each step, high mass productivity cannot be achieved, and the production cost increases.
Japanese Unexamined Patent Application Publication No. 2004-6761 (for example, see the description of the prior art)

本発明は、以上の点に鑑み、例えば永久磁石(焼結体)の磁気特性の向上など製品機能を高めつつ高い量産性をもって低コストで製造できるようにした焼結体の製造方法を提供することにその課題がある。   In view of the above points, the present invention provides a method for manufacturing a sintered body that can be manufactured at a low cost with high mass productivity while enhancing product functions such as improvement of magnetic properties of a permanent magnet (sintered body). There is a particular problem.

上記課題を解決するために、本発明の焼結体の製造方法は、原料粉末を圧縮成形して成形体を得る工程と、前記成形体を処理室内に配置して加熱すると共に、同一または他の処理室内に配置した蒸発材料を蒸発させ、前記蒸発した金属原子を成形体表面に付着させ、前記付着した金属原子を結晶粒界及び/または結晶粒界相に拡散させながら液相焼結する工程とを含むことを特徴とする。   In order to solve the above-described problems, the method for producing a sintered body of the present invention includes a step of obtaining a molded body by compression molding raw material powder, and heating the molded body by placing the molded body in a processing chamber. The evaporation material disposed in the processing chamber is evaporated, the evaporated metal atoms are attached to the surface of the compact, and liquid phase sintering is performed while diffusing the attached metal atoms to the crystal grain boundary and / or the crystal grain boundary phase. And a process.

本発明によれば、液相焼結(焼結工程)と、蒸発させた特定の金属元素をその結晶粒界及び/または結晶粒界相に拡散させる(真空蒸気処理工程)こととを同一の処理室内で同時に行うようにしたため、永久磁石(焼結体)の磁気特性の向上など製品機能を高めつつ高い量産性をもって低コストで製造できる。その際、液相焼結時の成形体は緻密化していないため、金属原子が拡散され易くなり、焼結工程後に金属原子の拡散処理工程を行う場合と比較して処理時間も短くでき、更に量産性向上に寄与する。   According to the present invention, liquid phase sintering (sintering process) is the same as diffusing the evaporated specific metal element into the crystal grain boundary and / or crystal grain boundary phase (vacuum vapor treatment process). Since it is performed simultaneously in the processing chamber, it can be manufactured with high mass productivity and low cost while enhancing the product functions such as improvement of the magnetic characteristics of the permanent magnet (sintered body). At that time, since the compact during the liquid phase sintering is not densified, the metal atoms are easily diffused, and the treatment time can be shortened compared to the case where the metal atom diffusion treatment step is performed after the sintering step. Contributes to improving mass productivity.

本発明においては、前記原料粉末は、Nd−Fe−B系焼結磁石用のものであってストリップキャスティング法あるいは遠心鋳造法で製造した原料合金を粉砕して得たものであり、前記蒸発材料は、Dy及びTbの少なくとも一方を含有するものとすれば、高性能磁石を製造することに最適である。   In the present invention, the raw material powder is for an Nd—Fe—B based sintered magnet, obtained by pulverizing a raw material alloy produced by a strip casting method or a centrifugal casting method, and the evaporating material. Is optimal for producing a high performance magnet if it contains at least one of Dy and Tb.

これによれば、液相焼結により成形体を緻密化することと同時にDyやTbの金属原子を結晶粒界や結晶粒界相に拡散させた永久磁石(焼結体)が得られる。その結果、結晶粒界や結晶粒界相にDyリッチ相(Dyを5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyが拡散することで、磁化および保磁力が効果的に向上または回復した永久磁石となる。   According to this, a permanent magnet (sintered body) is obtained in which the compact is compacted by liquid phase sintering and at the same time the metal atoms of Dy and Tb are diffused into the crystal grain boundaries and crystal grain boundary phases. As a result, it has a Dy-rich phase (phase containing Dy in the range of 5 to 80%) in the crystal grain boundary or the crystal grain boundary phase, and further, Dy diffuses only near the surface of the crystal grain. A permanent magnet having effectively improved or recovered coercive force is obtained.

この場合、蒸発材料を蒸発させたときに前記蒸発材料が直接成形体に付着することを防止するため、前記成形体と蒸発材料とを同一の処理室に配置する場合に相互に離間して配置することが好ましい。   In this case, when the evaporating material is evaporated, the evaporating material is prevented from adhering directly to the molded body. Therefore, when the molded body and the evaporating material are arranged in the same processing chamber, they are arranged apart from each other It is preferable to do.

また、前記成形体を配置して処理室内の加熱温度を900℃〜1150℃の範囲に設定すればよい。900℃より低い温度では、焼結できず、また、1150℃を超えた温度では、磁石の結晶粒の異常粒成長により磁気特性が低下するという不具合が生じる。   Moreover, the said molded object may be arrange | positioned and the heating temperature in a process chamber should just be set to the range of 900 to 1150 degreeC. When the temperature is lower than 900 ° C., sintering cannot be performed, and when the temperature exceeds 1150 ° C., the magnetic characteristics deteriorate due to abnormal grain growth of the magnet crystal grains.

さらに、前記加熱温度より低い温度で前記焼結体に対し熱処理を施す工程をさらに含むものであれば、永久磁石の磁気特性を一層向上できてよい。   Furthermore, the magnetic properties of the permanent magnet may be further improved as long as it further includes a step of performing a heat treatment on the sintered body at a temperature lower than the heating temperature.

尚、前記成形体と蒸発材料とが配置される処理室を箱体から構成し、前記箱体及びこの箱体内で成形体と蒸発材料とを相互に離間するスペーサーとしてW、Nb、V、Ta、イットリアまたはこれらの合金から選択されたものを用いればよい。   A processing chamber in which the molded body and the evaporation material are arranged is constituted by a box, and W, Nb, V, Ta are used as spacers for separating the molded body and the evaporation material from each other in the box and the box. A material selected from yttria or an alloy thereof may be used.

以下に図面を参照しながら、本発明の実施の形態の焼結体の製造方法を永久磁石(Nd−Fe−B系焼結磁石)を製造する場合を例に説明する。先ず、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm〜0.5mmの合金原料を先ず作製する。あるいは、遠心鋳造法で5〜10mm程度の厚さの合金原料を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。   Hereinafter, a method for producing a sintered body according to an embodiment of the present invention will be described with reference to the drawings, taking as an example the case of producing a permanent magnet (Nd—Fe—B based sintered magnet). First, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method. First, an alloy raw material of 05 mm to 0.5 mm is prepared. Alternatively, an alloy raw material having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, or the like may be added during blending. .

次いで、作製した合金原料を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径3〜10μmの磁界中で分極する原料粉末たる原料粉末を得る。そして、原料粉末を、公知の圧縮成形機を用いて磁界中で配向させ、所定形状に圧縮成形する。そして、圧縮成形機から取出した成形体に対し焼結工程と真空蒸気処理工程とを同時に施す。以下に、上記焼結工程及び真空蒸気処理工程を同時実施する真空蒸気処理装置を図1及び図2を用いて説明する。   Next, the produced alloy raw material is coarsely pulverized by a known hydrogen pulverization step, then finely pulverized in a nitrogen gas atmosphere by a jet mill fine pulverization step, and is a raw material powder that is polarized in a magnetic field having an average particle diameter of 3 to 10 μm. A raw material powder is obtained. And raw material powder is orientated in a magnetic field using a well-known compression molding machine, and is compression-molded to a predetermined shape. And a sintering process and a vacuum steam processing process are performed simultaneously with respect to the molded object taken out from the compression molding machine. Below, the vacuum steam processing apparatus which performs the said sintering process and a vacuum steam processing process simultaneously is demonstrated using FIG.1 and FIG.2.

真空蒸気処理装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段2を介して所定圧力(例えば1×10−5Pa)まで減圧して保持できる真空チャンバ3を有する。真空チャンバ3内には、後述する処理箱の周囲を囲う断熱材41とその内側に配置した発熱体42とから構成される加熱手段4が設けられる。断熱材41は、例えばMo製であり、また、発熱体42としては、Mo製のフィラメント42を有する電気ヒータであり、図示省略した電源からフィラメント42に通電し、抵抗加熱式で断熱材41により囲繞され処理箱7が設置される空間5を加熱できる。この空間5には、例えばMo製の載置テーブル6が設けられ、少なくとも1個の処理箱7が載置できるようになっている。 The vacuum vapor processing apparatus 1 has a vacuum chamber 3 that can be held at a reduced pressure to a predetermined pressure (for example, 1 × 10 −5 Pa) via a vacuum exhaust means 2 such as a turbo molecular pump, a cryopump, or a diffusion pump. In the vacuum chamber 3, there is provided a heating means 4 composed of a heat insulating material 41 surrounding a processing box, which will be described later, and a heating element 42 arranged inside the heat insulating material 41. The heat insulating material 41 is made of, for example, Mo, and the heating element 42 is an electric heater having a Mo-made filament 42. The filament 42 is energized from a power source (not shown) and is heated by a resistance heating type. The space 5 in which the processing box 7 is enclosed can be heated. In this space 5, for example, a mounting table 6 made of Mo is provided, and at least one processing box 7 can be mounted.

処理箱7は、上面を開口した直方体形状の箱部71と、開口した箱部71の上面に着脱自在な蓋部72とから構成されている。蓋部72の外周縁部には下方に屈曲させたフランジ72aがその全周に亘って形成され、箱部71の上面に蓋部72を装着すると、フランジ72aが箱部71の外壁に嵌合して(この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ3と隔絶された処理室70が画成される。そして、真空排気手段2を作動させて真空チャンバ3を所定圧力(例えば、1×10−5Pa)まで減圧すると、処理室70が真空チャンバ3より略半桁高い圧力(例えば、5×10−4Pa)まで減圧される。これにより、付加的な真空排気手段を必要とすることなく、処理室70内を適宜所定の真空圧に減圧できる。この場合、処理室70の容積は、蒸発材料vの平均自由行程を考慮して蒸気雰囲気中の金属原子が直接または衝突を繰返して複数の方向から成形体Sに供給されるように設定されている。 The processing box 7 includes a rectangular parallelepiped box portion 71 whose upper surface is opened and a lid portion 72 that is detachable from the upper surface of the opened box portion 71. A flange 72a bent downward is formed on the outer peripheral edge of the lid portion 72 over the entire circumference. When the lid portion 72 is attached to the upper surface of the box portion 71, the flange 72a is fitted to the outer wall of the box portion 71. Thus (in this case, a vacuum seal such as a metal seal is not provided), and a processing chamber 70 isolated from the vacuum chamber 3 is defined. Then, a predetermined pressure of the vacuum chamber 3 by actuating the evacuating means 2 (e.g., 1 × 10 -5 Pa) until the depressurizing substantially semi orders of magnitude higher pressure than the process chamber 70 is a vacuum chamber 3 (e.g., 5 × 10 - The pressure is reduced to 4 Pa). As a result, the inside of the processing chamber 70 can be appropriately reduced to a predetermined vacuum pressure without the need for additional evacuation means. In this case, the volume of the processing chamber 70 is set so that metal atoms in the vapor atmosphere are supplied to the shaped body S from a plurality of directions directly or repeatedly in consideration of the mean free path of the evaporation material v. Yes.

また、処理箱70の底面から所定の高さ位置には、例えばMo製の複数本の線材81(例えばφ0.1〜10mm)を格子状に組付けてなるスペーサー8が形成され、このスペーサー8に複数個の成形体Sを並設でき、処理室70内で成形体Sと蒸発材料vとを相互に離間する役割を果たす(図2参照)。他方、蒸発材料vは、処理室70の底面、側面または上面等に直接またはメッシュ状の容器9a、9bに収納した状態で適宜配置される。これにより、処理箱7内で成形体S及び蒸発材料vが相互に接触しないようになる(上記容器9a、9bがスペーサー8と同じ役割を果たす)。   Further, a spacer 8 formed by assembling a plurality of wire rods 81 made of Mo (for example, φ0.1 to 10 mm) in a lattice shape is formed at a predetermined height position from the bottom surface of the processing box 70. A plurality of molded bodies S can be arranged side by side, and the molded body S and the evaporation material v are separated from each other in the processing chamber 70 (see FIG. 2). On the other hand, the evaporation material v is appropriately disposed on the bottom surface, side surface, top surface, or the like of the processing chamber 70 in a state of being stored directly or in the mesh-like containers 9a and 9b. This prevents the molded body S and the evaporation material v from contacting each other in the processing box 7 (the containers 9a and 9b play the same role as the spacer 8).

ここで、蒸発材料vとしては、主相の結晶磁気異方性を大きく向上させるDy及びTbまたはこれらに、Nd、Pr、Al、Cu及びGa等の一層保磁力を高める金属を配合した合金(DyやTbの質量比が50%以上)が用いられ、上記各金属を所定の混合割合で配合した後、例えばアーク溶解炉で溶解した後、粒状(φ0.1〜10mm)または薄片状(0.03〜1.00mm)に形成されている。   Here, as the evaporating material v, Dy and Tb that greatly improve the magnetocrystalline anisotropy of the main phase, or an alloy in which these are mixed with a metal that further increases the coercive force such as Nd, Pr, Al, Cu, and Ga ( Dy or Tb mass ratio is 50% or more), and after blending the above metals at a predetermined mixing ratio, for example, after melting in an arc melting furnace, granular (φ0.1 to 10 mm) or flaky (0 0.03 to 1.00 mm).

処理箱7やスペーサー8(メッシュ状の容器9a、9bに収納して蒸発材料vを配置する場合にはその容器を含む)は、Mo製以外に、W、Nb、V、Ta、イットリアまたはこれらの合金(希土類添加型Mo合金などを含む)から構成される。これにより、蒸発したDyやTbと反応してその表面に付着し、反応生成物が形成されることが防止できる。尚、CaO、Y 、或いは希土類酸化物から製作するか、またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成してもよい。 The processing box 7 and the spacer 8 (including the container when the evaporation material v is placed in the mesh-like containers 9a and 9b) are made of W, Nb, V, Ta, yttria (Including rare earth-added Mo alloys and the like). Thereby, it can prevent reacting with evaporated Dy and Tb, adhering to the surface, and forming a reaction product. Incidentally, CaO, Y 2 O 3, or either fabricated from rare earth oxide, or may be constructed of these materials from those deposited as lining film on the surface of another heat-insulating material.

次に、上記真空蒸気処理装置1を用い、蒸発材料vとしてDyを用いた場合を例に永久磁石(焼結体)の製造方法を説明する。上述のように作製した成形体SとDyとを箱部71内で相互に離間して配置し、箱部71の開口した上面に蓋部72を装着した後、真空チャンバ3内で加熱手段4によって囲繞された空間5内でテーブル6上に処理箱7を設置する(図1参照)。そして、真空排気手段2を介して真空チャンバ3を所定圧力(例えば、1×10−4Pa)に達するまで真空引きして減圧し、(処理室70は略半桁高い圧力まで真空排気される)、真空チャンバ3が所定圧力に達すると、加熱手段4を作動させて処理室70を加熱する。このとき、処理室70の温度を段階的に上昇させ、所定の温度(例えば、200℃、500℃、800℃)で一定時間保持し、脱バインダー処理や脱ガス処理を行うようにすることが好ましい。 Next, a method for manufacturing a permanent magnet (sintered body) will be described using the vacuum vapor processing apparatus 1 and Dy as the evaporation material v as an example. The molded bodies S and Dy produced as described above are arranged apart from each other in the box portion 71, the lid portion 72 is attached to the opened upper surface of the box portion 71, and then the heating means 4 in the vacuum chamber 3. The processing box 7 is installed on the table 6 in the space 5 surrounded by (see FIG. 1). Then, the vacuum chamber 3 is evacuated and reduced in pressure until it reaches a predetermined pressure (for example, 1 × 10 −4 Pa) via the vacuum evacuation means 2 (the processing chamber 70 is evacuated to a pressure approximately half digit higher). ) When the vacuum chamber 3 reaches a predetermined pressure, the heating means 4 is operated to heat the processing chamber 70. At this time, the temperature of the processing chamber 70 may be increased stepwise and held at a predetermined temperature (for example, 200 ° C., 500 ° C., 800 ° C.) for a certain period of time to perform a debinding process or a degassing process. preferable.

減圧下で処理室70内の温度が所定温度に達すると、処理室70のDyが、処理室70と略同温まで加熱されて蒸発を開始し、処理室70内にDy蒸気雰囲気が形成される。Dyが蒸発を開始した場合、成形体SとDyとを相互に接触しないように配置されているため、溶けたDyが成形体Sに直接付着することはない。そして、処理箱70内で拡散されたDy蒸気雰囲気中のDy原子が、直接または衝突を繰返して複数の方向から、Dyと略同温まで加熱された成形体S表面略全体に向かって供給されて付着される。これにより、液相焼結(焼結工程)と、蒸発させたDyをその結晶粒界及び/または結晶粒界相に拡散させる(真空蒸気処理工程)こととが同一の処理室70内で同時に行なわれる。   When the temperature in the processing chamber 70 reaches a predetermined temperature under reduced pressure, the Dy in the processing chamber 70 is heated to substantially the same temperature as the processing chamber 70 to start evaporation, and a Dy vapor atmosphere is formed in the processing chamber 70. The When Dy starts to evaporate, the molded body S and Dy are arranged so as not to contact each other, so that the melted Dy does not directly adhere to the molded body S. Then, Dy atoms in the Dy vapor atmosphere diffused in the processing box 70 are supplied from a plurality of directions, directly or repeatedly, toward the substantially entire surface of the compact S heated to substantially the same temperature as Dy. Attached. Thereby, the liquid phase sintering (sintering process) and the diffusion of evaporated Dy to the crystal grain boundary and / or the crystal grain boundary phase (vacuum vapor processing process) are performed simultaneously in the same processing chamber 70. Done.

ここで、液相焼結とDy原子の拡散とを同時に行うためには、処理室70の温度を900℃〜1150℃(例えば、処理室内温度が900℃〜1000℃のとき、Dyの飽和蒸気圧は約1×10−2〜1×10−1Paとなる)の範囲に設定する。900℃より低い温度では、焼結できず、また、1150℃を超えた温度では、磁石の結晶粒の異常粒成長により磁気特性が低下するという不具合が生じる。 Here, in order to perform liquid phase sintering and Dy atom diffusion simultaneously, the temperature of the processing chamber 70 is set to 900 ° C. to 1150 ° C. (for example, when the processing chamber temperature is 900 ° C. to 1000 ° C., saturated steam of Dy) The pressure is set in a range of about 1 × 10 −2 to 1 × 10 −1 Pa). When the temperature is lower than 900 ° C., sintering cannot be performed, and when the temperature exceeds 1150 ° C., the magnetic characteristics deteriorate due to abnormal grain growth of the magnet crystal grains.

これにより、液相焼結により成形体Sを緻密化することと同時にDy原子が結晶粒界や結晶粒界相に拡散された永久磁石(焼結体)が得られる。その結果、結晶粒界や結晶粒界相にDyリッチ相(Dyを5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyが拡散することで、磁化および保磁力が効果的に向上または回復した永久磁石が得られる。   As a result, a permanent magnet (sintered body) is obtained in which the compact S is densified by liquid phase sintering and at the same time Dy atoms are diffused into the grain boundaries and the grain boundary phases. As a result, it has a Dy-rich phase (phase containing Dy in the range of 5 to 80%) in the crystal grain boundary or the crystal grain boundary phase, and further, Dy diffuses only near the surface of the crystal grain. A permanent magnet whose coercivity is effectively improved or recovered can be obtained.

次いで、上記真空蒸気処理を所定時間(例えば、0.5〜8時間)だけ実施した後、加熱手段4の作動を停止させ、図示省略したガス導入手段を介して不活性ガスを導入し(例えば、10kPa)、蒸発材料vの蒸発を停止させる。そして、処理室70内の温度を例えば500℃まで一旦下げた後、不活性ガスの導入を停止して真空排気しつつ、加熱手段4を再度作動させ、処理室70内の温度を450℃〜650℃の範囲に設定し、一層保磁力を向上または回復させるために、熱処理を施す。最後に、処理室70を冷却し、作製された永久磁石を処理室70から処理箱7ごと取出す。   Next, after the vacuum vapor treatment is performed for a predetermined time (for example, 0.5 to 8 hours), the operation of the heating unit 4 is stopped, and an inert gas is introduced through a gas introduction unit (not shown) (for example, 10 kPa), the evaporation of the evaporation material v is stopped. Then, after the temperature in the processing chamber 70 is temporarily lowered to, for example, 500 ° C., the heating unit 4 is operated again while stopping the introduction of the inert gas and evacuating, so that the temperature in the processing chamber 70 is increased from 450 ° C. Heat treatment is performed in order to further improve or recover the coercive force by setting the temperature within a range of 650 ° C. Finally, the processing chamber 70 is cooled, and the produced permanent magnet is taken out from the processing chamber 70 together with the processing box 7.

尚、本実施の形態では、スペーサー8として、線材を格子状に組付けて構成したものを例に説明したが、これに限定されるものではなく、蒸発した金属原子の通過を許容しつつ成形体Sと蒸発材料Sとを離間するものであれば、その形態を問わず、例えば、スペーサー8(蒸発材料v収納用の容器9a、9b)は所謂エクスパンドメタルで構成してもよい。   In the present embodiment, the spacer 8 is described as an example of a structure in which wires are assembled in a lattice shape. However, the spacer 8 is not limited to this and is formed while allowing the passage of evaporated metal atoms. As long as the body S and the evaporating material S are separated from each other, for example, the spacer 8 (the containers 9a and 9b for storing the evaporating material v) may be formed of a so-called expanded metal regardless of the form.

また、本実施の形態では、蒸発材料vとしてDyを用いるものを例として説明したが、液相焼結温度で蒸気圧が低いTbを用いることができる。この場合、処理室70を950℃〜1150℃の範囲で加熱すればよい。950℃より低い温度では、Tbが効果的に焼結磁石S表面に供給されず、また、1150℃を超えた温度では、磁石の結晶粒の異常粒成長により磁気特性が低下するという不具合が生じる。   In the present embodiment, the example using Dy as the evaporation material v has been described as an example, but Tb having a low vapor pressure at the liquid phase sintering temperature can be used. In this case, the processing chamber 70 may be heated in the range of 950 ° C to 1150 ° C. When the temperature is lower than 950 ° C., Tb is not effectively supplied to the surface of the sintered magnet S, and when the temperature exceeds 1150 ° C., the magnetic characteristics deteriorate due to abnormal grain growth of the magnet grains. .

さらに、本実施の形態では、箱部71の上面に蓋部72を装着して処理箱7を構成するものについて説明したが、真空チャンバ3と隔絶されかつ真空チャンバ3を減圧するのに伴って処理室70が減圧されるものであれば、これに限定されるものではなく、例えば、箱部71に蒸発材料vと成形体Sを収納した後、その上面開口を例えばMo製の箔で覆うようにしてもよい。他方、例えば、真空チャンバ3内で処理室70を密閉できるようにし、真空チャンバ3とは独立して所定圧力に保持できるように構成してもよい。   Further, in the present embodiment, the description has been given of the case in which the lid 72 is attached to the upper surface of the box portion 71 to constitute the processing box 7, but the processing chamber 7 is isolated from the vacuum chamber 3 and the vacuum chamber 3 is decompressed. For example, after the evaporation material v and the molded body S are stored in the box portion 71, the upper surface opening is covered with, for example, a foil made of Mo. You may do it. On the other hand, for example, the processing chamber 70 may be sealed in the vacuum chamber 3 and may be configured to be maintained at a predetermined pressure independently of the vacuum chamber 3.

また、本実施の形態では、永久磁石Sの製造を例として説明したが、成形体を液相焼結させながら特定の金属元素をその結晶粒界及び/または結晶粒界相に拡散させて焼結体の機能を向上させるものであれば、本発明の焼結体の製造方法を適用できる。SiCの超硬材料を例に説明すれば、炭化珪素(SiC)粉末とC粉末(カーボンブラック)とを所定の質量比で混合し、粉砕して原料粉末とし、公知の成形法により原料粉末を圧縮成形して成形体とする。次いで、上記真空蒸気処理装置1を用いて真空蒸発処理によりシリコンを供給しながら、液相焼結する。これにより、結晶粒界にSiとSiCの強固なバインダー相が形成されるため、機械的強度、特に、高い靭性値を有する超硬材料が作製できる。   In the present embodiment, the manufacture of the permanent magnet S has been described as an example. However, a specific metal element is diffused into the crystal grain boundary and / or the crystal grain boundary phase while being sintered in a liquid phase, and sintered. As long as the function of the bonded body is improved, the method for manufacturing a sintered body of the present invention can be applied. For example, SiC carbide material is mixed with silicon carbide (SiC) powder and C powder (carbon black) at a predetermined mass ratio and pulverized to obtain a raw material powder. A molded body is formed by compression molding. Next, liquid phase sintering is performed while supplying silicon by vacuum evaporation using the vacuum vapor processing apparatus 1. Thereby, since a strong binder phase of Si and SiC is formed at the crystal grain boundary, a cemented carbide material having a mechanical strength, in particular, a high toughness value can be produced.

実施例1では、以下のようにNd−Fe−B系焼結磁石用の原料粉末を作製し、公知の自動横磁場プレス装置を用いて配向しながら成形工程を実施して成形体Sを作製し、次いで、図1に示す真空蒸気処理装置を用い、成形体に対し液相焼結と、Dyの拡散とを同時実施して永久磁石(焼結磁石)を得た。   In Example 1, a raw material powder for an Nd—Fe—B based sintered magnet was prepared as follows, and a forming process was performed while aligning using a known automatic transverse magnetic field pressing device to prepare a compact S. Then, using the vacuum vapor processing apparatus shown in FIG. 1, liquid phase sintering and Dy diffusion were simultaneously performed on the compact to obtain a permanent magnet (sintered magnet).

<原料粉末> 組成が28(Nd+Pr)−1Co−0.1Cu−0.1Hf−0.1Ga−0.98B−bal.Feのものを用い、真空誘導溶解炉内で遠心鋳造してインゴット(合金原料)を作製した(平均厚さは30mm)。そして、1気圧の水素雰囲気でインゴットを5時間水素粉砕し(水素粉砕工程)、その後、5時間600℃の条件で脱水素処理を行い、冷却した。   <Raw material powder> The composition is 28 (Nd + Pr) -1Co-0.1Cu-0.1Hf-0.1Ga-0.98B-bal. An ingot (alloy raw material) was prepared by centrifugal casting in a vacuum induction melting furnace using a material of Fe (average thickness is 30 mm). The ingot was pulverized with hydrogen in a hydrogen atmosphere at 1 atm for 5 hours (hydrogen pulverization step), then dehydrogenated at 600 ° C. for 5 hours and cooled.

次いで、冷却したものを、8kg/cmの圧力下で1時間、ジェットミル微粉砕機を用いて微粉砕した(ジェットミル微粉砕工程)。これにより、平均粒径2.8μm(FSS測定値)の原料粉末を得た。 Next, the cooled product was pulverized using a jet mill pulverizer under a pressure of 8 kg / cm 2 for 1 hour (jet mill pulverization step). This obtained the raw material powder with an average particle diameter of 2.8 micrometers (FSS measured value).

<成形工程> プレス装置のキャビティに原料粉末を充填した後、最高20k0eの静磁場を印加しながら磁場配向し、圧縮成形を行った(成形工程)。この場合の成形圧力は、1.0t/cmに設定した。そして、圧縮成形後に4k0eの逆磁場を印加し、脱磁を行った。その後、キャビティ22から、縦75mm、横(磁場配向方向)75mm、高さ50mmの直方体形状に成形された成形体Sを取り出した。 <Molding Step> After filling the cavity of the press apparatus with the raw material powder, the magnetic field was oriented while applying a static magnetic field of 20 k0 e at the maximum, and compression molding was performed (molding step). The molding pressure in this case was set to 1.0 t / cm 2 . And after the compression molding, a 4 k0e reverse magnetic field was applied to demagnetize. Thereafter, a molded body S formed into a rectangular parallelepiped shape having a length of 75 mm, a width (magnetic field orientation direction) of 75 mm, and a height of 50 mm was taken out of the cavity 22.

<焼結工程及び真空蒸気処理工程> 図1に示す真空蒸気処理装置1を用い、上記のようにそれぞれ作製した成形体S(各4個をずつ)を材質の異なる処理箱7にそれぞれ収容した。この場合、蒸発材料vとして0.5mmの薄片状(フレーク状)のDy(純度99.5%)を用い、Dyを10gの総量で各処理箱7内に配置した。この場合、Dyは、処理箱7の底面に配置すると共に、処理箱7と同じ材質からなるメッシュ材に収納したものを成形体Sの上方及び側面に配置した(これにより、成形体SとDyとが相互に離間される)。このようにDyと成形体Sとがそれぞれセットされた処理箱を、Dyからなる蒸発材料を入れないものと共に(比較例)、真空チャンバ3に配置した(16箱)。   <Sintering Step and Vacuum Vapor Treatment Step> Using the vacuum vapor treatment apparatus 1 shown in FIG. 1, the molded bodies S (four pieces each) produced as described above were accommodated in treatment boxes 7 made of different materials. . In this case, 0.5 mm flaky Dy (purity 99.5%) was used as the evaporation material v, and Dy was placed in each processing box 7 in a total amount of 10 g. In this case, Dy is disposed on the bottom surface of the processing box 7 and is stored in a mesh material made of the same material as the processing box 7 on the upper side and the side surface of the molded body S (thereby, the molded body S and Dy). Are separated from each other). Thus, the processing box in which Dy and the molded object S were set, respectively, was placed in the vacuum chamber 3 (16 boxes) together with the one not containing the evaporation material made of Dy (comparative example).

次いで、真空チャンバ3を真空引きし、その圧力が10−5Paに達した後、加熱手段4を作動させて処理室70の加熱を開始した。この場合、昇温過程において10−5Pa〜20kPaの圧力下で処理室70内の温度が200℃、500℃及び800℃の温度に達したとき、それぞれ60分間、真空脱バインダー、脱ガス処理を行った。そして、処理室70の温度を950℃(Dyの蒸気圧0.1kPa)に上げ、4時間、焼結工程及び真空蒸気処理工程を実施した。 Next, the vacuum chamber 3 was evacuated, and after the pressure reached 10 −5 Pa, the heating means 4 was operated to start heating the processing chamber 70. In this case, when the temperature in the processing chamber 70 reaches 200 ° C., 500 ° C., and 800 ° C. under a pressure of 10 −5 Pa to 20 kPa in the temperature rising process, vacuum debinding and degassing treatment are performed for 60 minutes, respectively. Went. And the temperature of the process chamber 70 was raised to 950 degreeC (vapor pressure of 0.1 kPa of Dy), and the sintering process and the vacuum steam process process were implemented for 4 hours.

次いで、上記工程後、加熱手段4の作動を停止させ、処理室70内の温度を800℃、2時間、500℃、3時間熱処理を施し、その後、室温まで冷却して真空チャンバから処理箱7を取り出した。   Next, after the above process, the operation of the heating means 4 is stopped, the temperature in the processing chamber 70 is subjected to heat treatment at 800 ° C., 2 hours, 500 ° C., 3 hours, and then cooled to room temperature, and then the processing box 7 from the vacuum chamber. Was taken out.

図3は、処理7箱から取り出した永久磁石の中央部からφ10×10mmの寸法で切り出し、この切り出した磁石の密度(水中重量法により測定)及び磁気特性(BHカーブトレーサーにより測定)の平均値を示す表である。これによれば、処理箱及びスペーサーの材質がMo、W、Nb、V、Ta、イットリアのいずれかである場合、スペーサーへの成形体Sの付着は確認されず、また、密度が約7.5g/cc以上で緻密な焼結体たる永久磁石が得られ、その上、17kOe以上の高い保磁力を有する高性能磁石が得られていることが判る。なお、処理箱やスペーサーの材質がSUS製等であるときは、成形体が溶着し、他方で、一般の真空処理装置で用いられるアルミナ製等であるときは、成形体がスペーサーに付着し、また、保磁力を効果的に向上できていないことが判る。   FIG. 3 shows the average value of the density (measured by the underwater weight method) and magnetic properties (measured by the BH curve tracer) of the magnet cut out from the central part of the permanent magnet taken out from the processing box 7 in a size of φ10 × 10 mm. It is a table | surface which shows. According to this, when the material of the processing box and the spacer is any one of Mo, W, Nb, V, Ta, and yttria, the adhesion of the molded body S to the spacer is not confirmed, and the density is about 7. It can be seen that a permanent magnet that is a dense sintered body at 5 g / cc or more is obtained, and that a high-performance magnet having a high coercive force of 17 kOe or more is obtained. When the material of the processing box or spacer is made of SUS or the like, the molded body is welded. On the other hand, when it is made of alumina or the like used in a general vacuum processing apparatus, the molded body adheres to the spacer, Moreover, it turns out that the coercive force has not been improved effectively.

実施例2では、平均粒径7μmのSiC粉末とC粉末(カーボンブラック)を10:1のモル比でアトライター中で混合した。   In Example 2, SiC powder having an average particle diameter of 7 μm and C powder (carbon black) were mixed in an attritor at a molar ratio of 10: 1.

次いで、公知の構造を有する成形機を用い、混合した粉体を1.5t/cmに設定して圧縮成型し、成形体を得た。 Next, using a molding machine having a known structure, the mixed powder was set at 1.5 t / cm 2 and compression molded to obtain a molded body.

次いで、図1に示す真空蒸気処理装置を用い、上記成形体Sを石英製の処理箱7に収容した。この場合、蒸発材料vとして0.5mmの薄片状(フレーク状)のSi(純度99.9%)を用い、Siを10gの総量で各処理箱7の底面に配置した。このようにSiと成形体とがセットされた処理箱を真空チャンバ3に配置した。そして、真空チャンバ3を真空引きし、その圧力が10−5Paに達した後、加熱手段4を作動させて処理室70の加熱を開始し、10−2Paの圧力下で処理室70内の温度が1400℃に達する加熱し、6時間、焼結工程及び真空蒸気処理工程を実施した。最後に、室温まで冷却して真空チャンバから処理箱を取り出した。 Next, the molded body S was accommodated in a quartz processing box 7 using the vacuum vapor processing apparatus shown in FIG. In this case, 0.5 mm flakes (flakes) Si (purity 99.9%) was used as the evaporation material v, and Si was disposed on the bottom surface of each processing box 7 in a total amount of 10 g. Thus, the processing box in which Si and the compact were set was placed in the vacuum chamber 3. Then, after the vacuum chamber 3 is evacuated and the pressure reaches 10 −5 Pa, the heating means 4 is operated to start heating the processing chamber 70, and the processing chamber 70 is heated under a pressure of 10 −2 Pa. Was heated to reach 1400 ° C., and a sintering process and a vacuum steam treatment process were performed for 6 hours. Finally, it was cooled to room temperature and the processing box was removed from the vacuum chamber.

図4は、処理箱から取り出した焼結体(SiC)超硬材料)の曲げ強度(インストロン社製万能試験機により測定)及び破壊靭性値(シャルピー衝撃試験により測定)を示す表であり、Si金属を処理箱入れることなく液相焼結させた場合の値も併せて示す(比較例)。これによれば、実施例2で得た焼結体は、約5倍の曲げ強度を有し、破壊靭性値も約倍となっていることが判る。   FIG. 4 is a table showing the bending strength (measured by an Instron universal testing machine) and fracture toughness value (measured by a Charpy impact test) of a sintered body (SiC) cemented carbide material taken out from the processing box, A value in the case of liquid phase sintering without adding Si metal into the processing box is also shown (comparative example). According to this, it turns out that the sintered compact obtained in Example 2 has about 5 times the bending strength, and the fracture toughness value is also about twice.

本発明の処理を実施する真空処理装置を概略的に示す断面図。Sectional drawing which shows schematically the vacuum processing apparatus which implements the process of this invention. 処理箱への成形体と蒸発材料との収納を模式的に説明する斜視図。The perspective view which illustrates typically the accommodation of the molded object and evaporation material to a processing box. 実施例1で作製した永久磁石の磁気特性を示す表。2 is a table showing the magnetic characteristics of the permanent magnet produced in Example 1. 実施例2で作製した焼結体の機械特性を示す表。The table | surface which shows the mechanical characteristic of the sintered compact produced in Example 2. FIG.

符号の説明Explanation of symbols

1 真空蒸気処理装置
2 真空排気手段
3 真空チャンバ
4 加熱手段
7 処理箱
71 箱部
72 蓋部
8 スペーサー
S 成形体
M 永久磁石
v 金属蒸発材料
DESCRIPTION OF SYMBOLS 1 Vacuum vapor processing apparatus 2 Vacuum exhaust means 3 Vacuum chamber 4 Heating means 7 Processing box 71 Box part 72 Cover part 8 Spacer S Molding body M Permanent magnet v Metal evaporation material

Claims (6)

原料粉末を圧縮成形して成形体を得る工程と、
前記成形体を処理室内に配置して加熱すると共に、同一または他の処理室内に配置した蒸発材料を蒸発させ、前記蒸発した金属原子を成形体表面に付着させ、前記付着した金属原子を結晶粒界及び/または結晶粒界相に拡散させながら液相焼結する工程とを含むことを特徴とする焼結体の製造方法。
A step of compression molding raw material powder to obtain a molded body;
The molded body is placed in a processing chamber and heated, and evaporation material disposed in the same or another processing chamber is evaporated, the evaporated metal atoms are attached to the surface of the molded body, and the attached metal atoms are crystallized. And a liquid phase sintering process while diffusing into the boundary and / or grain boundary phase.
前記成形体と蒸発材料とを同一の処理室に配置する場合に相互に離間して配置することを特徴とする請求項1記載の焼結体の製造方法。   2. The method for manufacturing a sintered body according to claim 1, wherein when the molded body and the evaporating material are disposed in the same processing chamber, they are disposed apart from each other. 前記原料粉末は、Nd−Fe−B系焼結磁石用のものであってストリップキャスティング法あるいは遠心鋳造法で製造した原料合金を粉砕して得たものであり、前記蒸発材料は、Dy及びTbの少なくとも一方を含有するものであることを特徴とする請求項1または請求項2記載の焼結体の製造方法。   The raw material powder is for an Nd—Fe—B based sintered magnet, obtained by pulverizing a raw material alloy produced by a strip casting method or a centrifugal casting method, and the evaporating materials include Dy and Tb. The method for producing a sintered body according to claim 1, comprising at least one of the following. 前記成形体を配置した処理室内の加熱温度を900℃〜1150℃の範囲に設定することを特徴とする請求項3記載の焼結体の製造方法。   The method for producing a sintered body according to claim 3, wherein the heating temperature in the processing chamber in which the compact is disposed is set in a range of 900 ° C to 1150 ° C. 前記加熱温度より低い温度で前記焼結体に対し熱処理を施す工程をさらに含むことを特徴とする請求項3または請求項4記載の焼結体の製造方法。   The method for producing a sintered body according to claim 3, further comprising a step of heat-treating the sintered body at a temperature lower than the heating temperature. 前記成形体と蒸発材料とが配置される処理室を箱体から構成し、前記箱体及びこの箱体内で成形体と蒸発材料とを相互に離間するスペーサーとしてW、Nb、V、Ta、イットリアまたはこれらの合金から選択されたものを用いることを特徴とする請求項3乃至請求項4のいずれか1項に記載の焼結体の製造方法。










A processing chamber in which the molded body and the evaporation material are arranged is constituted by a box, and W, Nb, V, Ta, and yttria are used as spacers for separating the molded body and the evaporation material from each other in the box and the box. Or the thing selected from these alloys is used, The manufacturing method of the sintered compact of any one of Claim 3 thru | or 4 characterized by the above-mentioned.










JP2008039298A 2008-02-20 2008-02-20 Manufacturing method of sintered compact Pending JP2009200179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039298A JP2009200179A (en) 2008-02-20 2008-02-20 Manufacturing method of sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039298A JP2009200179A (en) 2008-02-20 2008-02-20 Manufacturing method of sintered compact

Publications (1)

Publication Number Publication Date
JP2009200179A true JP2009200179A (en) 2009-09-03

Family

ID=41143389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039298A Pending JP2009200179A (en) 2008-02-20 2008-02-20 Manufacturing method of sintered compact

Country Status (1)

Country Link
JP (1) JP2009200179A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110036508A (en) * 2009-10-01 2011-04-07 신에쓰 가가꾸 고교 가부시끼가이샤 Assembling method of rotor for ipm type permanent magnet rotating machine
JP2011078269A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Rotor for axial gap type permanent magnet rotary machine
JP2011204965A (en) * 2010-03-26 2011-10-13 Hitachi Metals Ltd Method of manufacturing r-t-b-based sintered magnet, and tool for rh diffusion treatment
WO2012111611A1 (en) * 2011-02-15 2012-08-23 株式会社豊田中央研究所 Rare earth magnet and production method for same
WO2012121351A1 (en) * 2011-03-10 2012-09-13 株式会社豊田中央研究所 Rare earth magnet and process for producing same
CN104900359A (en) * 2015-05-07 2015-09-09 安泰科技股份有限公司 Composite target vapor deposition method for preparing grain boundary diffusion rare earth permanent magnetic materials
CN106847456A (en) * 2016-12-21 2017-06-13 包头稀土研究院 The preparation method of NdFeB magnetic powder

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417804A (en) * 1987-07-10 1989-01-20 Kawasaki Steel Co High density iron series sintered material and its production
JPH0285333A (en) * 1988-03-11 1990-03-26 Vermont American Corp Boron treated hard metal
JPH04136106A (en) * 1990-09-26 1992-05-11 Sumitomo Metal Mining Co Ltd Sintered body containing metallic carbide on surface layer part and production thereof
JPH04157106A (en) * 1990-10-19 1992-05-29 Sumitomo Metal Mining Co Ltd Ni-containing metal sintered body and manufacture thereof
JP2002121604A (en) * 2000-10-16 2002-04-26 Matsushita Electric Works Ltd Sintered alloy and its manufacturing method
WO2006100968A1 (en) * 2005-03-18 2006-09-28 Ulvac, Inc. Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet
WO2007009547A1 (en) * 2005-07-15 2007-01-25 Gkn Sinter Metals Holding Gmbh Method for the alloying of aluminium to form components
JP2007116142A (en) * 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
WO2007102391A1 (en) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP2007329331A (en) * 2006-06-08 2007-12-20 Hitachi Metals Ltd R-Fe-B BASED RARE EARTH SINTERED MAGNET AND ITS MANUFACTURING METHOD
WO2008032668A1 (en) * 2006-09-11 2008-03-20 Ulvac, Inc. Vacuum evaporation processing equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417804A (en) * 1987-07-10 1989-01-20 Kawasaki Steel Co High density iron series sintered material and its production
JPH0285333A (en) * 1988-03-11 1990-03-26 Vermont American Corp Boron treated hard metal
JPH04136106A (en) * 1990-09-26 1992-05-11 Sumitomo Metal Mining Co Ltd Sintered body containing metallic carbide on surface layer part and production thereof
JPH04157106A (en) * 1990-10-19 1992-05-29 Sumitomo Metal Mining Co Ltd Ni-containing metal sintered body and manufacture thereof
JP2002121604A (en) * 2000-10-16 2002-04-26 Matsushita Electric Works Ltd Sintered alloy and its manufacturing method
WO2006100968A1 (en) * 2005-03-18 2006-09-28 Ulvac, Inc. Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet
WO2007009547A1 (en) * 2005-07-15 2007-01-25 Gkn Sinter Metals Holding Gmbh Method for the alloying of aluminium to form components
JP2007116142A (en) * 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
WO2007102391A1 (en) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP2007329331A (en) * 2006-06-08 2007-12-20 Hitachi Metals Ltd R-Fe-B BASED RARE EARTH SINTERED MAGNET AND ITS MANUFACTURING METHOD
WO2008032668A1 (en) * 2006-09-11 2008-03-20 Ulvac, Inc. Vacuum evaporation processing equipment

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678221B1 (en) 2009-10-01 2016-11-21 신에쓰 가가꾸 고교 가부시끼가이샤 Assembling method of rotor for ipm type permanent magnet rotating machine
KR101680900B1 (en) 2009-10-01 2016-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Rotor for axial gap-type permanent magnetic rotating machine
US8823235B2 (en) 2009-10-01 2014-09-02 Shin-Etsu Chemical Co., Ltd. Rotor for axial gap-type permanent magnetic rotating machine
US9742248B2 (en) 2009-10-01 2017-08-22 Shin-Etsu Chemical Co., Ltd. Method for assembling rotor for use in IPM rotary machine
JP2011078269A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Rotor for axial gap type permanent magnet rotary machine
KR20110036508A (en) * 2009-10-01 2011-04-07 신에쓰 가가꾸 고교 가부시끼가이샤 Assembling method of rotor for ipm type permanent magnet rotating machine
JP2011078268A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Method of assembling rotor for ipm-type permanent magnet rotary machine
US8756793B2 (en) 2009-10-01 2014-06-24 Shin-Etsu Chemical Co., Ltd. Method for assembling rotor for use in IPM rotary machine
JP2011204965A (en) * 2010-03-26 2011-10-13 Hitachi Metals Ltd Method of manufacturing r-t-b-based sintered magnet, and tool for rh diffusion treatment
US9514870B2 (en) 2011-02-15 2016-12-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Rare earth magnet and method for producing the same
JP2012169464A (en) * 2011-02-15 2012-09-06 Toyota Central R&D Labs Inc Rare earth magnet and method of producing the same
WO2012111611A1 (en) * 2011-02-15 2012-08-23 株式会社豊田中央研究所 Rare earth magnet and production method for same
WO2012121351A1 (en) * 2011-03-10 2012-09-13 株式会社豊田中央研究所 Rare earth magnet and process for producing same
CN103443885A (en) * 2011-03-10 2013-12-11 丰田自动车株式会社 Rare earth magnet and process for producing same
KR101459253B1 (en) 2011-03-10 2014-11-07 도요타 지도샤(주) Rare earth magnet and process for producing same
CN103443885B (en) * 2011-03-10 2016-07-06 丰田自动车株式会社 Rare-earth magnet and manufacture method thereof
JP2012190949A (en) * 2011-03-10 2012-10-04 Toyota Central R&D Labs Inc Rare-earth magnet and production method therefor
US8866574B2 (en) 2011-03-10 2014-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Rare earth magnet and process for producing same
US10385442B2 (en) 2015-05-07 2019-08-20 Advanced Technology & Materials Co., Ltd. Method for preparing rare-earth permanent magnetic material with grain boundary diffusion using composite target by vapor deposition
CN104900359A (en) * 2015-05-07 2015-09-09 安泰科技股份有限公司 Composite target vapor deposition method for preparing grain boundary diffusion rare earth permanent magnetic materials
CN104900359B (en) * 2015-05-07 2017-09-12 安泰科技股份有限公司 The method that composition target gaseous phase deposition prepares grain boundary decision rare earth permanent-magnetic material
CN106847456A (en) * 2016-12-21 2017-06-13 包头稀土研究院 The preparation method of NdFeB magnetic powder

Similar Documents

Publication Publication Date Title
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5247717B2 (en) Method for manufacturing permanent magnet and permanent magnet
JP5275043B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5049722B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP5598465B2 (en) R-T-B-M alloy for sintered magnet and method for producing the same
WO2007088718A1 (en) R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP2009200179A (en) Manufacturing method of sintered compact
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2020095992A (en) Sintered magnet and rotary machine
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP5053105B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009200180A (en) Manufacturing method of permanent magnet
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JP5025372B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP5433720B2 (en) Sintered body manufacturing equipment
JP6672753B2 (en) RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
JP2011060965A (en) Method and apparatus for manufacturing r2fe14b rare earth sintered magnet
JP5179133B2 (en) Sintered body manufacturing equipment
JP4860491B2 (en) Permanent magnet and method for manufacturing permanent magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115