JP5025372B2 - Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method - Google Patents

Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method Download PDF

Info

Publication number
JP5025372B2
JP5025372B2 JP2007200845A JP2007200845A JP5025372B2 JP 5025372 B2 JP5025372 B2 JP 5025372B2 JP 2007200845 A JP2007200845 A JP 2007200845A JP 2007200845 A JP2007200845 A JP 2007200845A JP 5025372 B2 JP5025372 B2 JP 5025372B2
Authority
JP
Japan
Prior art keywords
sintered body
rare earth
temperature
earth element
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007200845A
Other languages
Japanese (ja)
Other versions
JP2009038197A (en
Inventor
浩 永田
洋一 広瀬
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007200845A priority Critical patent/JP5025372B2/en
Publication of JP2009038197A publication Critical patent/JP2009038197A/en
Application granted granted Critical
Publication of JP5025372B2 publication Critical patent/JP5025372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼結体の製造方法に関し、より詳しくは、Nd−Fe−B系(ネオジウム鉄ボロン系)の焼結磁石から希土類元素を優先的に蒸発させて高性能の永久磁石を作製するための焼結体の製造方法に関する。   The present invention relates to a method for producing a sintered body, and more specifically, a high-performance permanent magnet is produced by preferentially evaporating rare earth elements from an Nd—Fe—B (neodymium iron boron) sintered magnet. The present invention relates to a method for manufacturing a sintered body.

Nd−Fe−B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。   Nd-Fe-B based sintered magnets (so-called neodymium magnets) can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied. In addition, since it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and is also used in motors and generators for hybrid cars. is increasing.

Nd−Fe−B系の磁石は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合し、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得る。次いで、得られた合金原料粉末を磁界中で配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。そして、この成形体を所定の条件下で焼結させて焼結磁石が作製される(特許文献1参照)。
特開2004−6761号公報(例えば、従来技術の記載参照)
Nd-Fe-B magnets are mainly produced by powder metallurgy. In this method, Nd, Fe, and B are first blended at a predetermined composition ratio, and melted and cast to produce an alloy raw material. For example, it is roughly pulverized by, for example, a hydrogen pulverization process, and then finely pulverized by, for example, a jet mill pulverization process to obtain alloy raw material powder. Next, the obtained alloy raw material powder is oriented in a magnetic field (magnetic field orientation), and compression molded in a state where a magnetic field is applied to obtain a compact. And this sintered compact is sintered on predetermined conditions, and a sintered magnet is produced (refer patent document 1).
Japanese Unexamined Patent Application Publication No. 2004-6761 (for example, see the description of the prior art)

ところで、Nd−Fe−B系の焼結磁石の磁性を担うR14B相(主相成分)は、平衡状態では液相から直接生成せず、先ず初相としてγ鉄が生成し、液相とその鉄との反応(包晶反応)で生成する(γ鉄は温度低下と共にα鉄に変態する)。この場合、例えば、凝固冷却速度の速い急冷法であるストリップキャスティング法(SC法)により合金原料を溶解、鋳造したとしても、Ndの含有量を28.5%以下にすれば、α鉄の生成の抑制が難しく、合金中にデンドライト状に生成することが知られている。 By the way, the R 2 T 14 B phase (main phase component) responsible for the magnetism of the Nd—Fe—B based sintered magnet is not directly generated from the liquid phase in an equilibrium state, and firstly γ iron is generated as an initial phase. It is formed by the reaction between the liquid phase and its iron (peritectic reaction) (γ iron transforms into α iron with decreasing temperature). In this case, for example, even if the alloy raw material is melted and cast by the strip casting method (SC method), which is a rapid cooling method with a rapid solidification cooling rate, if the Nd content is 28.5% or less, the production of α iron It is known that it is difficult to suppress, and it is formed in a dendrite form in the alloy.

α鉄が合金中にデンドライト状に生成し、立体的に繋がっていると、その後の粉砕工程での合金の粉砕性を著しく害する。つまり、粉砕性が悪いと、水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕しようとしても、高磁気特性の焼結磁石を作製することに適した粒形の揃った微細な粉末粒子の粉末を得ることが困難となる。その上、ジェットミル中に粗大粒(デンドライト状に生成したα鉄に起因する)が残留したり、バッグフィルターで回収される微粉の量が増えることによって組成ずれが起こり易く、品質管理が困難であるという問題がある。   If alpha iron is formed in a dendritic form in the alloy and is three-dimensionally connected, the pulverizability of the alloy in the subsequent pulverization step is significantly impaired. In other words, if the grindability is poor, the particles are once coarsely pulverized by the hydrogen pulverization process, and then the particle shapes suitable for producing sintered magnets with high magnetic properties are prepared even if the pulverization is attempted by the jet mill pulverization process. It is difficult to obtain fine powder particles. In addition, coarse grains (due to α-iron produced in a dendritic form) remain in the jet mill, and composition deviation tends to occur due to an increase in the amount of fine powder collected by the bag filter, making quality control difficult. There is a problem that there is.

他方で、Ndの含有量を28.5%より多くすれば、α鉄が生成しないインゴットの製造が可能であるものの、Rリッチ相が増えて、磁性を担うR14B相の体積比が減少するため、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)の大きな超高性能磁石の製造が難しくなるといった問題が生じる。 On the other hand, if the Nd content is more than 28.5%, it is possible to produce an ingot that does not produce α iron, but the R-rich phase increases and the volume ratio of the R 2 T 14 B phase that plays a role in magnetism. Therefore, there arises a problem that it becomes difficult to manufacture an ultra-high performance magnet having a maximum energy product ((BH) max) and a large residual magnetic flux density (Br) exhibiting magnetic characteristics.

そこで、本発明の目的は、上記点に鑑み、例えば永久磁石の磁気特性の向上などの製品機能を改善できる焼結体の製造方法を提供することにある。   In view of the above, an object of the present invention is to provide a method for manufacturing a sintered body that can improve product functions such as improvement of magnetic properties of a permanent magnet.

上記課題を解決するために、請求項1記載の永久磁石の製造方法は、液相焼結により一次焼結体を得た後、この一次焼結体を、液相成分のうち蒸気圧の高い特定元素を優先的に蒸発させることができる温度より高く、かつ、焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相の体積比を減少あるいは消滅させることを特徴とする。

In order to solve the above-mentioned problem, in the method for manufacturing a permanent magnet according to claim 1, after obtaining a primary sintered body by liquid phase sintering, the primary sintered body is made to have a high vapor pressure among liquid phase components. The liquid phase volume ratio is reduced or eliminated by heating in a vacuum atmosphere at a temperature higher than the temperature at which the specific element can be preferentially evaporated and lower than the sintering temperature.

本発明によれば、焼結促進に寄与する液相成分のうち、蒸気圧の高い元素を優先的に蒸発させることにより、液相の体積比を減少させ、主相本来の特性を発揮させることができる。特に、焼結体がR14B相系磁石の場合、希土類元素を効率良く蒸発させて、Rリッチ相の体積比を減少させ、磁性を担うR14B相の体積比を増大させることにより、磁気特性を向上することができる。 According to the present invention, by preferentially evaporating an element having a high vapor pressure among liquid phase components that contribute to the promotion of sintering, the volume ratio of the liquid phase is reduced and the original characteristics of the main phase are exhibited. Can do. In particular, when the sintered body is an R 2 T 14 B phase magnet, the rare earth elements are efficiently evaporated, the volume ratio of the R rich phase is decreased, and the volume ratio of the R 2 T 14 B phase that plays a role in magnetism is increased. By doing so, the magnetic characteristics can be improved.

本発明においては、前記一次焼結体は、原料合金をストリップキャスティング法あるいは遠心鋳造法で製造し、その後、粉砕、磁場成形、焼結の各工程を経て得たものであることが好ましい。   In the present invention, the primary sintered body is preferably obtained by manufacturing a raw material alloy by a strip casting method or a centrifugal casting method, and then performing pulverization, magnetic field forming, and sintering processes.

前記原料合金は、ネオジウム、プラセオジウム及びテルビウムのうち少なくとも1つを含む希土類元素を有するネオジウム鉄ボロン系焼結磁石用のものであり、前記希土類元素の含有量が28.5重量%以上30重量%以下であることが好ましい。これによれば、前記一次焼結体が、例えば主相成分がR14B相で構成され、Rが、Ndを主とする少なくとも1種の希土類元素、Tが、Feを主とする遷移金属であり、R14B相化学量論組成より過剰のRがRリッチ相として、特に焼結時に液相となって焼結の促進に役立つ焼結磁石である場合に、例えば、合金原料を溶解、鋳造するとき、合金中にデンドライト状のα鉄が生成しないように、希土類元素の含有量を多く設定し、α鉄が生成しないインゴットを製造し、公知の工程で焼結磁石を得た後、Rリッチ相の希土類元素のみを蒸発させることで、Ndリッチ相の体積比を減少させ、その結果、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上でき、高性能の永久磁石となる。 The raw material alloy is for a neodymium iron boron based sintered magnet having a rare earth element including at least one of neodymium, praseodymium and terbium, and the content of the rare earth element is 28.5 wt% or more and 30 wt%. The following is preferable. According to this, in the primary sintered body, for example, the main phase component is composed of the R 2 T 14 B phase, R is at least one rare earth element mainly including Nd, and T is mainly Fe. For example, when the transition metal is a sintered magnet that has an excess of R 2 T 14 B phase stoichiometric composition as the R-rich phase, particularly a liquid phase at the time of sintering and serves to promote sintering, When melting and casting the alloy raw material, an ingot that does not produce alpha iron is produced by setting a large amount of rare earth element so that dendritic alpha iron is not produced in the alloy. The volume ratio of the Nd-rich phase is decreased by evaporating only the R-rich phase rare earth element, and as a result, the maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting magnetic characteristics are reduced. ) And a high performance permanent magnet.

この場合、前記希土類元素の蒸発によって、希土類元素の含有量を28.5%未満に減らすか、または、希土類元素の平均濃度の減少量を0.5重量%以上とすればよい。   In this case, the rare earth element content may be reduced to less than 28.5% by evaporation of the rare earth element or the average concentration of the rare earth element may be reduced by 0.5% by weight or more.

前記真空雰囲気中で加熱するときの加熱温度を、900℃以上で焼結温度より低い温度に設定することが好ましい。900℃より低い温度では、一次焼結体が上記焼結磁石であるときに希土類元素を優先的に蒸発させることができず、また、焼結温度以上の温度では、異常粒成長が起こり、磁気特性が大きく低下する。   It is preferable that the heating temperature when heating in the vacuum atmosphere is set to 900 ° C. or higher and lower than the sintering temperature. When the temperature is lower than 900 ° C., the rare earth element cannot be preferentially evaporated when the primary sintered body is the sintered magnet, and when the temperature is higher than the sintering temperature, abnormal grain growth occurs. The characteristics are greatly reduced.

前記真空雰囲気の圧力を、10−3Pa以下に設定することが好ましい。10−3Paより高い圧力では、一次焼結体が上記焼結磁石であるときに希土類元素を優先的に効率よく蒸発させることができない。 The pressure in the vacuum atmosphere is preferably set to 10 −3 Pa or less. When the pressure is higher than 10 −3 Pa, the rare earth element cannot be evaporated preferentially and efficiently when the primary sintered body is the sintered magnet.

また、前記蒸発した希土類元素をトラップする機構を設け、回収することが好ましい。これにより、特にディスプロシム等の高価な希土類元素を蒸発させる場合に、その希土類元素が回収できて良い。   Further, it is preferable to provide and collect a mechanism for trapping the evaporated rare earth element. Thereby, especially when an expensive rare earth element such as dysprosim is evaporated, the rare earth element may be recovered.

なお、請求項1乃至請求項7のいずれか1項に記載の方法によって製造される焼結体は、例えばネオジウム鉄ボロン系焼結磁石である。   In addition, the sintered compact manufactured by the method of any one of Claims 1 thru | or 7 is a neodymium iron boron series sintered magnet, for example.

図1を参照して説明すれば、1は、本発明の焼結体の製造方法を実施して、例えば高磁気特性の永久磁石を作製することに適した真空蒸発装置である。真空蒸発装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段11を介して所定圧力(例えば10−5Pa)まで減圧して保持できる真空チャンバ12を有する。真空チャンバ内12には、上面を開口した円筒形状の焼結体ケース2が設置され、この焼結体ケース2で囲まれた空間が処理室20を構成する。焼結体ケース2は、後述する加熱手段4によって加熱されたとき、焼結磁石Sから、液相である希土類リッチ相のNd、Prなどの希土類元素Rを優先的に蒸発させたとき、その希土類元素Rと反応しない材料から構成されている。 Referring to FIG. 1, reference numeral 1 denotes a vacuum evaporation apparatus suitable for carrying out the method for manufacturing a sintered body of the present invention to produce a permanent magnet having high magnetic properties, for example. The vacuum evaporation apparatus 1 has a vacuum chamber 12 that can be held at a reduced pressure to a predetermined pressure (for example, 10 −5 Pa) through a vacuum exhausting means 11 such as a turbo molecular pump, a cryopump, or a diffusion pump. A cylindrical sintered body case 2 having an upper surface opened is installed in the vacuum chamber 12, and a space surrounded by the sintered body case 2 constitutes a processing chamber 20. When the sintered body case 2 is heated by the heating means 4 to be described later, when the rare earth element R such as Nd and Pr of the rare earth rich phase which is a liquid phase is preferentially evaporated from the sintered magnet S, It is made of a material that does not react with the rare earth element R.

即ち、蒸発させた希土類元素Rが焼結体ケース2の表面に付着してその表面に反応生成物を形成したのでは、希土類元素Rの回収が困難になる場合がある。このため、焼結体ケース2を、表面に付着した希土類元素Rの剥離が容易なMoやSUSから製作するか、またはMo等を他の断熱材の表面に内張膜として成膜したものから構成している。また、処理室20には、焼結体ケース2の底面から上面に向かって相互に所定の間隔を置いて、例えばMo製の皿状の載置部3が複数個配置され、載置部3には、直方体など所定形状に成形した後、焼結してなる一次焼結体である焼結磁石Sが並べて載置できる。   That is, if the evaporated rare earth element R adheres to the surface of the sintered body case 2 and forms a reaction product on the surface, it may be difficult to recover the rare earth element R. For this reason, the sintered body case 2 is manufactured from Mo or SUS from which the rare earth element R adhering to the surface is easily peeled, or Mo or the like is formed as a lining film on the surface of another heat insulating material. It is composed. In the processing chamber 20, for example, a plurality of Mo-shaped plate-like mounting portions 3 are arranged at predetermined intervals from the bottom surface to the upper surface of the sintered body case 2. Can be mounted side by side with the sintered magnets S, which are primary sintered bodies formed into a predetermined shape such as a rectangular parallelepiped and then sintered.

また、真空チャンバ12には、焼結体ケース2の周囲を囲うように加熱手段4が設けられている。加熱手段4は、焼結体ケース2の周囲を囲うようにその全長に亘って列設した複数本の環状のフィラメントから構成される電気ヒータ(図示せず)であり、各フィラメントは、真空チャンバ12内に設けた支持片(図示せず)で支持されている。この場合、フィラメントもまた、希土類元素Rと反応しないMo等から構成されている。そして、減圧下で、加熱手段4によって焼結体ケース2を加熱することで、焼結体ケース2を介して間接的に処理室20、ひいては、載置部3に載置した焼結磁石Sを略均等に加熱できる。   The vacuum chamber 12 is provided with a heating unit 4 so as to surround the sintered body case 2. The heating means 4 is an electric heater (not shown) composed of a plurality of annular filaments arranged over the entire length so as to surround the periphery of the sintered body case 2, and each filament is a vacuum chamber. 12 is supported by a support piece (not shown) provided in the inside. In this case, the filament is also composed of Mo or the like that does not react with the rare earth element R. Then, by heating the sintered body case 2 by the heating means 4 under reduced pressure, the sintered magnet S placed on the processing chamber 20 and thus on the placement portion 3 indirectly through the sintered body case 2. Can be heated substantially evenly.

焼結体ケース2の上方には、その開口した上面を覆うようにトラップ板5が配置されている。トラップ板5もまた、蒸発させた希土類元素Rと反応せず、かつ、表面に付着したものが剥離し易い材料、例えばMoから構成されている。この場合、処理室20の容積は、蒸発させた希土類元素Rの平均自由行程を考慮して、蒸発した希土類元素Rが直接または焼結体ケース2の内壁への衝突を繰返して上面開口を通って外側に排出されるように設定され、また、焼結体ケース2の上端からトラップ板5までの間隔は、排出された希土類元素Rの大部分が付着するように設定されている。この場合、焼結体ケース2に、例えば冷媒の循環による冷却手段を付設し、温度差によって蒸発した希土類元素Rがトラップ板5に付着して堆積するように構成してもよい。   A trap plate 5 is disposed above the sintered body case 2 so as to cover the opened upper surface. The trap plate 5 is also made of a material that does not react with the evaporated rare earth element R and that adheres to the surface easily peels off, for example, Mo. In this case, the volume of the processing chamber 20 is determined by taking into account the mean free path of the evaporated rare earth element R, and the evaporated rare earth element R repeatedly hits the inner wall of the sintered body case 2 directly or through the upper surface opening. The interval from the upper end of the sintered body case 2 to the trap plate 5 is set so that most of the discharged rare earth element R adheres. In this case, the sintered body case 2 may be provided with, for example, a cooling means by circulating a refrigerant so that the rare earth element R evaporated by the temperature difference adheres to the trap plate 5 and is deposited.

次に、本発明の焼結体の製造方法による永久磁石の作製について説明する。先ず、合金原料粉末は次のように作製される。即ち、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm〜0.5mmの合金原料を先ず作製する。あるいは、遠心鋳造法で5〜10mm程度の厚さの合金原料を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。この場合、希土類元素の合計含有量を28.5%より多くし、α鉄が生成しないインゴットとする。   Next, production of a permanent magnet by the method for producing a sintered body of the present invention will be described. First, the alloy raw material powder is produced as follows. That is, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method. First, an alloy raw material of 05 mm to 0.5 mm is prepared. Alternatively, an alloy raw material having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, or the like may be added during blending. . In this case, the total content of rare earth elements is set to more than 28.5%, and an ingot that does not produce α iron is obtained.

次いで、作製した合金原料を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径3〜10μmの合金原料粉末を得る。次いで、合金原料粉末を、公知の圧縮成形機を用いて磁界中で所定形状に圧縮成形する。次いで、圧縮成形機から取出した成形体を、図示しない焼結炉内に収納し、真空中で所定温度(例えば、1050℃)で所定時間焼結(焼結工程)し、さらに所定温度(500℃)、一次焼結体Sを得る。   Next, the produced alloy raw material is coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill fine pulverization step to obtain an alloy raw material powder having an average particle diameter of 3 to 10 μm. Next, the alloy raw material powder is compression molded into a predetermined shape in a magnetic field using a known compression molding machine. Next, the molded body taken out from the compression molding machine is housed in a sintering furnace (not shown), sintered in a vacuum at a predetermined temperature (for example, 1050 ° C.) for a predetermined time (sintering process), and further, a predetermined temperature (500 ° C), a primary sintered body S is obtained.

次いで、作製した一次焼結体Sを、真空蒸発装置1の載置部3上に載置した後、真空排気手段を作動させて、所定圧力(例えば10−5Pa)に到達するまで真空チャンバ12を減圧する。真空チャンバ12内が所定圧力に到達した後、加熱手段4を作動させて処理室20、ひいては焼結磁石Sを加熱し、所定温度に到達した後、この状態で所定時間保持する(真空蒸発処理)。 Next, after the produced primary sintered body S is placed on the placement portion 3 of the vacuum evaporator 1, a vacuum chamber is operated until a predetermined pressure (for example, 10 −5 Pa) is reached by operating the vacuum exhaust means. 12 is depressurized. After the inside of the vacuum chamber 12 reaches a predetermined pressure, the heating means 4 is operated to heat the processing chamber 20 and eventually the sintered magnet S, and after reaching the predetermined temperature, this state is maintained for a predetermined time (vacuum evaporation process). ).

この場合、処理室20、ひいては焼結磁石Sの加熱温度を900℃以上で、焼結温度未満の温度に設定する。900℃より低い温度では、希土類元素Rの蒸発速度が遅く、また、焼結温度を超えると、異常粒成長が起こり、磁気特性が大きく低下する。併せて、真空チャンバ12と真空排気手段11とを連結する排気通路(排気管)11aに開度調整自在な開閉バルブ11bを設け、この開閉バルブ11bの開度を調節して、真空チャンバ11、ひいては処理室20内の圧力を10−3Pa以下の圧力に設定する。10−3Paより高い圧力では、希土類元素Rを効率よく蒸発させることができない。 In this case, the heating temperature of the processing chamber 20, and consequently the sintered magnet S, is set to 900 ° C. or higher and lower than the sintering temperature. When the temperature is lower than 900 ° C., the evaporation rate of the rare earth element R is slow, and when the sintering temperature is exceeded, abnormal grain growth occurs and the magnetic properties are greatly deteriorated. In addition, an open / close valve 11b whose opening degree can be adjusted is provided in an exhaust passage (exhaust pipe) 11a that connects the vacuum chamber 12 and the vacuum exhaust means 11, and the vacuum chamber 11, As a result, the pressure in the processing chamber 20 is set to a pressure of 10 −3 Pa or less. When the pressure is higher than 10 −3 Pa, the rare earth element R cannot be efficiently evaporated.

これにより、一定温度下での蒸気圧の相違により(例えば、1000℃において、Ndの蒸気圧は10−3Pa、Feの蒸気圧は10−5Pa、Bの蒸気圧は10−13Pa)、Rリッチ相中の希土類元素Rのみが蒸発する。その結果、Ndリッチ相の割合が減少して、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上でき、高性能な永久磁石が得られる。この場合、高性能な永久磁石を得るには、永久磁石の希土類元素Rの含有量を28.5wt%未満、または、希土類元素Rの平均濃度の減少量を0.5重量%以上となるまで加熱処理する。 Thereby, due to the difference in vapor pressure at a constant temperature (for example, at 1000 ° C., the vapor pressure of Nd is 10 −3 Pa, the vapor pressure of Fe is 10 −5 Pa, and the vapor pressure of B is 10 −13 Pa). Only the rare earth element R in the R-rich phase evaporates. As a result, the ratio of the Nd-rich phase is reduced, the maximum energy product ((BH) max) and the residual magnetic flux density (Br) showing magnetic characteristics can be improved, and a high-performance permanent magnet can be obtained. In this case, in order to obtain a high-performance permanent magnet, the rare earth element R content of the permanent magnet is less than 28.5 wt%, or the average concentration reduction of the rare earth element R is 0.5 wt% or more. Heat treatment.

そして、上記真空蒸発処理を実施した後、加熱手段4の作動を一旦停止すると共に、開閉バルブ11bを全開して真空チャンバ12を排気しつつ冷却し、処理室20内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段4を再度作動させ、処理室20内の温度を550℃〜650℃の範囲に設定し、一層磁気特性を向上させるための熱処理を施す。最後に、略室温まで冷却し、焼結体たる永久磁石を取り出す。   Then, after carrying out the vacuum evaporation process, the operation of the heating means 4 is temporarily stopped, the open / close valve 11b is fully opened, the vacuum chamber 12 is exhausted and cooled, and the temperature in the process chamber 20 is reduced to, for example, 500 ° C. Lower it once. Subsequently, the heating means 4 is actuated again, the temperature in the processing chamber 20 is set in the range of 550 ° C. to 650 ° C., and heat treatment for further improving the magnetic properties is performed. Finally, it is cooled to approximately room temperature, and the permanent magnet that is a sintered body is taken out.

尚、本実施の形態では、焼結体ケース2の上方にトラップ板5を配置したものについて説明したが、これに限定されるものではく、例えば真空排気手段に通じる排気通路11aにトラップ手段6を配置してもよい。図2(a)及び図2(b)に示すように、トラップ手段6は、ゲートバルブ61を介して排気通路11aに連通する収納室62を有し、収納室62には、断面略矩形の支持枠63が収納され、この支持枠63内には、複数枚のトラップ板64が配置されている。また、支持枠63には、ゲートバルブ61の開位置でこの支持枠63を排気通路11aに対し進退自在とするエアーシリンダ等の駆動手段65が連結されている。   In the present embodiment, the case where the trap plate 5 is disposed above the sintered body case 2 has been described. However, the present invention is not limited to this. For example, the trap means 6 is provided in the exhaust passage 11a leading to the vacuum exhaust means. May be arranged. As shown in FIGS. 2A and 2B, the trap means 6 has a storage chamber 62 that communicates with the exhaust passage 11a via a gate valve 61. The storage chamber 62 has a substantially rectangular cross section. A support frame 63 is accommodated, and a plurality of trap plates 64 are arranged in the support frame 63. The support frame 63 is connected to a driving means 65 such as an air cylinder that allows the support frame 63 to move forward and backward with respect to the exhaust passage 11a when the gate valve 61 is open.

トラップ板64は、上記同様、希土類元素Rと反応しないMo、SUS等から構成され、排気通路6のガス流を遮るように、ガス流方向に対し傾斜させて2列でかつ互い違いに配置される。そして、真空チャンバ12内を所定圧力まで減圧し、加熱手段4を作動させて焼結磁石Sを加熱する場合にのみ、トラップ手段6を排気通路11a内に侵入させ、蒸発した希土類元素Rを付着させて回収する。尚、トラップ手段6は、排気通路11bのうち粘性流領域となる範囲に設けることが好ましい。   Similarly to the above, the trap plate 64 is made of Mo, SUS, or the like that does not react with the rare earth element R, and is alternately arranged in two rows in an inclined manner with respect to the gas flow direction so as to block the gas flow in the exhaust passage 6. . Then, only when the vacuum chamber 12 is depressurized to a predetermined pressure and the heating means 4 is operated to heat the sintered magnet S, the trap means 6 enters the exhaust passage 11a and the evaporated rare earth element R is attached. To collect. In addition, it is preferable to provide the trap means 6 in the range which becomes a viscous flow area | region in the exhaust passage 11b.

また、本実施の形態では、焼結した後の一次焼結体Sに対し、真空蒸発処理を実施する場合について説明したが、これに限定されるものではなく、例えば、焼結後に、焼結磁石Sをワイヤーカット等により所望形状に加工した後、上記真空蒸発処理を実施してもよい。   Further, in the present embodiment, the case where the vacuum evaporation treatment is performed on the primary sintered body S after being sintered has been described. However, the present invention is not limited to this. For example, after sintering, After the magnet S is processed into a desired shape by wire cutting or the like, the vacuum evaporation process may be performed.

さらに、本実施の形態では、焼結磁石Sの製造を例として説明したが、焼結体から特定物質を蒸発させて焼結体の機能を向上できるものであれば、本発明の焼結体の製造方法を適用できる。例えば、炭化珪素(SiC)粉末に金属シリコン粉末を焼結助剤として混合し、成形後シリコンの融点以上で液相焼結して得た焼結体の場合が挙げられる。   Furthermore, in the present embodiment, the manufacture of the sintered magnet S has been described as an example. However, the sintered body of the present invention can be used as long as it can improve the function of the sintered body by evaporating a specific substance from the sintered body. The manufacturing method can be applied. For example, a case of a sintered body obtained by mixing metal carbide powder into silicon carbide (SiC) powder as a sintering aid and performing liquid phase sintering at a temperature equal to or higher than the melting point of silicon after molding.

実施例1では、図1に示す真空蒸発装置1を用い、一次焼結体Sに真空蒸発処理を実施して永久磁石を得た。まず、工業用純鉄、金属ネオジウム、低炭素フェロボロン、電解コバルト、純銅を原料として、配合組成で29Nd−1B−0.1Cu−1Co−Bal Fe(重量%)となるようにして、真空誘導溶解を行い、ストリップキャスティング法で厚さ約0.3mmの薄片状インゴットを得た。次に、水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得た。   In Example 1, a permanent magnet was obtained by subjecting the primary sintered body S to vacuum evaporation using the vacuum evaporator 1 shown in FIG. First, industrial pure iron, metallic neodymium, low carbon ferroboron, electrolytic cobalt, and pure copper are used as raw materials so that the composition is 29Nd-1B-0.1Cu-1Co-BalFe (wt%), and vacuum induction melting is performed. And a flaky ingot having a thickness of about 0.3 mm was obtained by a strip casting method. Next, it was roughly pulverized by a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain an alloy raw material powder.

次に、公知の構造を有する横磁場圧縮成形装置を用いて、成形体を得て、次いで真空焼結炉にて1050℃の温度下で2時間焼結させて一次焼結体Sを得た。そして、ワイヤカットにより一次焼結体をφ10×5mmの形状に加工した後、表面粗さが10μm以下となるように仕上げ加工した後、希硝酸によって表面をエッチングした。   Next, a molded body was obtained using a transverse magnetic field compression molding apparatus having a known structure, and then sintered in a vacuum sintering furnace at a temperature of 1050 ° C. for 2 hours to obtain a primary sintered body S. . Then, the primary sintered body was processed into a shape of φ10 × 5 mm by wire cutting, and then finished to have a surface roughness of 10 μm or less, and then the surface was etched with dilute nitric acid.

次に、図1に示す真空蒸発装置1を用い、処理室20内の載置部3に100個の上記一次焼結体Sを配置した後、真空チャンバ12の圧力が10−5Paに到達するまで真空排気した。真空チャンバ12内の圧力が所定位置に達した後、加熱手段4を作動させて処理室20を加熱した。この場合、加熱温度を975℃に設定すると共に、開閉バルブ11bの開度を調節して真空チャンバ12内の圧力を5×10−5Paに設定した。次いで、保磁力を向上するための熱処理を行った。この場合、熱処理温度を530℃、処理時間を60分に設定した。 Next, using the vacuum evaporation apparatus 1 shown in FIG. 1, after placing the 100 primary sintered bodies S on the mounting part 3 in the processing chamber 20, the pressure in the vacuum chamber 12 reaches 10 −5 Pa. It was evacuated until. After the pressure in the vacuum chamber 12 reached a predetermined position, the heating unit 4 was activated to heat the processing chamber 20. In this case, the heating temperature was set to 975 ° C., and the opening of the opening / closing valve 11b was adjusted to set the pressure in the vacuum chamber 12 to 5 × 10 −5 Pa. Next, heat treatment was performed to improve the coercive force. In this case, the heat treatment temperature was set to 530 ° C., and the treatment time was set to 60 minutes.

図3は、処理時間を変えて上記真空蒸発処理を実施した時の被処理材のNdの含有量(wt%)の変化量と熱処理後の磁気特性(BHカーブトレーサーにより測定)の平均値との関係を示す表である。これによれば、蒸発処理時間が長くなるに従い、Ndの含有量が減少し、24時間に亘る真空蒸発処理を実施すると、約2wt%減少させることができた。この場合、磁気特性を示す最大エネルギー積は、55.1MG0eであり、残留磁束密度は14.88kGであり、磁気特性を向上できたことが判る。   FIG. 3 shows the amount of change in the Nd content (wt%) of the material to be treated when the above-described vacuum evaporation treatment is performed at different treatment times, and the average value of the magnetic properties after heat treatment (measured by a BH curve tracer) It is a table | surface which shows these relationships. According to this, as the evaporation process time becomes longer, the Nd content decreases, and when the vacuum evaporation process for 24 hours is performed, the Nd content can be reduced by about 2 wt%. In this case, the maximum energy product showing the magnetic characteristics is 55.1MG0e, the residual magnetic flux density is 14.88 kG, and it can be seen that the magnetic characteristics can be improved.

実施例2では、実施例1と同条件で一次焼結体Sを作製した。次いで、真空蒸発装置1を用い、蒸発時間を12時間と固定して、処理温度を変え、その他の条件については実施例1と同条件で真空蒸発処理を実施した。真空蒸発処理後の熱処理についても実施例1と同条件で実施した。   In Example 2, a primary sintered body S was produced under the same conditions as in Example 1. Next, using the vacuum evaporator 1, the evaporation time was fixed at 12 hours, the processing temperature was changed, and the vacuum evaporation process was performed under the same conditions as in Example 1 for other conditions. The heat treatment after the vacuum evaporation treatment was also performed under the same conditions as in Example 1.

図4は、蒸発処理温度を875℃から1050℃まで、25℃ずつ温度を変化させて、上記処理を実施した時の被処理材のNdの含有量(wt%)の変化量と熱処理後の磁気特性(BHカーブトレーサーにより測定)の平均値を示す表である。これによれば、900℃より低い温度では、Ndを殆ど蒸発させることができず、他方で、1050℃(焼結磁石の焼結温度)では、2wt%を超える含有量でNdを蒸発できたが、磁気特性を示す最大エネルギー積及び残留磁束密度が大きく低下した。それに対し、900℃〜1025℃の範囲に設定した場合、蒸発処理温度が高くなるに従い、Ndの含有量が減少し、1025℃の場合には、1.89wt%減少させることができた。この場合、磁気特性を示す最大エネルギー積は、55.1MG0eであり、残留磁束密度は14.88kGであり、磁気特性を向上できたことが判る。   FIG. 4 shows the amount of change in Nd content (wt%) of the material to be treated when the above treatment is performed by changing the evaporation treatment temperature from 875 ° C. to 1050 ° C. in increments of 25 ° C. It is a table | surface which shows the average value of a magnetic characteristic (measured with a BH curve tracer). According to this, Nd could hardly be evaporated at a temperature lower than 900 ° C., whereas Nd could be evaporated at a content exceeding 2 wt% at 1050 ° C. (sintering temperature of the sintered magnet). However, the maximum energy product and the residual magnetic flux density showing the magnetic characteristics were greatly reduced. On the other hand, when the temperature was set in the range of 900 ° C. to 1025 ° C., the Nd content decreased as the evaporation temperature increased, and in the case of 1025 ° C., 1.89 wt% could be reduced. In this case, the maximum energy product showing the magnetic characteristics is 55.1MG0e, the residual magnetic flux density is 14.88 kG, and it can be seen that the magnetic characteristics can be improved.

実施例3では、実施例1と同条件で一次焼結体Sを作製した。次いで、真空蒸発装置1を用い、加熱温度を975℃、蒸発時間を12時間と固定して、真空チャンバー内の圧力を変化させ、その他の条件については実施例1と同条件で真空蒸発処理を実施した。真空蒸発処理後の熱処理についても実施例1と同条件で実施した。   In Example 3, a primary sintered body S was produced under the same conditions as in Example 1. Next, using the vacuum evaporator 1, the heating temperature is fixed at 975 ° C. and the evaporation time is fixed at 12 hours, the pressure in the vacuum chamber is changed, and the vacuum evaporation treatment is performed under the same conditions as in Example 1 for other conditions. Carried out. The heat treatment after the vacuum evaporation treatment was also performed under the same conditions as in Example 1.

図5は、真空チャンバ内の圧力を変化させて、上記処理を実施した時の被処理材のNdの含有量(wt%)の変化量と熱処理後の磁気特性(BHカーブトレーサーにより測定)の平均値を示す表である。これによれば、3×10−2Pa以上の高い圧力では、Ndを効率よく蒸発できないのに対し、10−3Pa以下の圧力では、約1.5wt%減少させることができた。この場合、磁気特性を示す最大エネルギー積は、約55MG0eであり、残留磁束密度は約14.8kGであり、磁気特性を向上できたことが判る。 FIG. 5 shows the amount of change in the Nd content (wt%) of the material to be processed and the magnetic properties after heat treatment (measured by a BH curve tracer) when the pressure is changed in the vacuum chamber and the above treatment is performed. It is a table | surface which shows an average value. According to this, Nd could not be efficiently evaporated at a high pressure of 3 × 10 −2 Pa or higher, but about 1.5 wt% could be reduced at a pressure of 10 −3 Pa or lower. In this case, the maximum energy product showing the magnetic characteristics is about 55MG0e, the residual magnetic flux density is about 14.8 kG, and it can be seen that the magnetic characteristics can be improved.

本発明の製造方法を実施する真空蒸発装置を概略的に説明する図。The figure which illustrates schematically the vacuum evaporation apparatus which enforces the manufacturing method of this invention. 他の変形例に係るトラップ手段を説明する図。The figure explaining the trap means which concerns on another modification. 実施例1で作製した焼結磁石材料の希土類元素の含有量の変化量及び磁気特性を示す表。The table | surface which shows the variation | change_quantity and magnetic characteristic of content of rare earth elements of the sintered magnet material produced in Example 1. FIG. 実施例2で作製した焼結磁石材料の希土類元素の含有量の変化量及び磁気特性を示す表。The table | surface which shows the variation | change_quantity and magnetic characteristic of content of rare earth elements of the sintered magnet material produced in Example 2. FIG. 実施例3で作製した焼結磁石材料の希土類元素の含有量の変化量及び磁気特性を示す表。The table | surface which shows the variation | change_quantity and magnetic characteristic of content of rare earth elements of the sintered magnet material produced in Example 3. FIG.

符号の説明Explanation of symbols

1 真空蒸発装置
11 真空排気手段
12 真空蒸発装置
2 焼結体ケース
20 処理室
3 載置部
4 加熱手段
5 トラップ板
S 一次焼結体(焼結磁石)
R 希土類元素
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 11 Vacuum exhaust means 12 Vacuum evaporation apparatus 2 Sintered body case 20 Processing chamber 3 Placement part 4 Heating means 5 Trap plate S Primary sintered body (sintered magnet)
R Rare earth elements

Claims (7)

液相焼結により一次焼結体を得た後、この一次焼結体を、液相成分のうち蒸気圧の高い特定元素を優先的に蒸発させることができる温度より高く、かつ、焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相の体積比を減少あるいは消滅させることを特徴とする焼結体の製造方法。 After obtaining a primary sintered body by liquid phase sintering, the primary sintered body is higher than a temperature at which a specific element having a high vapor pressure among liquid phase components can be preferentially evaporated , and a sintering temperature. A method for producing a sintered body, wherein the volume ratio of the liquid phase is reduced or eliminated by heating in a vacuum atmosphere at a lower temperature. 前記一次焼結体は、原料合金をストリップキャスティング法あるいは遠心鋳造法で製造し、その後、粉砕、磁場成形、焼結の各工程を経て得たものであることを特徴とする請求項1記載の焼結体の製造方法。   The primary sintered body is obtained by manufacturing a raw material alloy by a strip casting method or a centrifugal casting method, and thereafter performing pulverization, magnetic field forming, and sintering processes. A method for producing a sintered body. 前記原料合金は、ネオジウム、プラセオジウム及びテルビウムのうち少なくとも1つを含む希土類元素を有するネオジウム鉄ボロン系焼結磁石用のものであり、前記希土類元素の含有量が28.5重量%以上30重量%以下であることを特徴とする請求項1または請求項2記載の焼結体の製造方法。   The raw material alloy is for a neodymium iron boron based sintered magnet having a rare earth element including at least one of neodymium, praseodymium and terbium, and the content of the rare earth element is 28.5 wt% or more and 30 wt%. The method for producing a sintered body according to claim 1 or 2, wherein: 前記真空雰囲気中で加熱するときの加熱温度を、900℃以上で焼結温度より低い温度に設定することを特徴とする請求項3記載の焼結体の製造方法。   The method for producing a sintered body according to claim 3, wherein a heating temperature when heating in the vacuum atmosphere is set to 900 ° C or higher and lower than a sintering temperature. 前記真空雰囲気の圧力を、10−3〜10−5Paの範囲に設定することを特徴とする請求項3または請求項4記載の焼結体の製造方法。 The method for producing a sintered body according to claim 3 or 4, wherein the pressure of the vacuum atmosphere is set in a range of 10-3 to 10-5Pa . 前記蒸発した希土類元素をトラップする機構を設け、回収することを特徴とする請求項3〜請求項5のいずれか1項に記載の焼結体の製造方法。   The method for manufacturing a sintered body according to any one of claims 3 to 5, wherein a mechanism for trapping the evaporated rare earth element is provided and recovered. 請求項1〜請求項6のいずれか1項に記載の方法によって製造されることを特徴とするネオジウム鉄ボロン系焼結磁石。   A neodymium iron boron-based sintered magnet manufactured by the method according to any one of claims 1 to 6.
JP2007200845A 2007-08-01 2007-08-01 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method Active JP5025372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200845A JP5025372B2 (en) 2007-08-01 2007-08-01 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200845A JP5025372B2 (en) 2007-08-01 2007-08-01 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method

Publications (2)

Publication Number Publication Date
JP2009038197A JP2009038197A (en) 2009-02-19
JP5025372B2 true JP5025372B2 (en) 2012-09-12

Family

ID=40439840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200845A Active JP5025372B2 (en) 2007-08-01 2007-08-01 Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method

Country Status (1)

Country Link
JP (1) JP5025372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231059B (en) * 2013-05-05 2015-08-12 沈阳中北真空磁电科技有限公司 A kind of manufacture method of neodymium iron boron rare earth permanent magnet device
JP6421551B2 (en) * 2014-11-12 2018-11-14 Tdk株式会社 R-T-B sintered magnet
FR3054145B1 (en) * 2016-07-21 2018-08-31 Centre Nat Rech Scient METHOD AND SYSTEM FOR RECOVERING MAGNETIC GRAINS FROM SINK MAGNETS OR PLASTO-MAGNETS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321206A (en) * 1991-01-16 1992-11-11 Kobe Steel Ltd Manufacture of rare earth element-fe-b-based magnet
JP3209380B2 (en) * 1993-07-21 2001-09-17 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP3781095B2 (en) * 2000-02-15 2006-05-31 信越化学工業株式会社 Method for producing corrosion-resistant rare earth magnet
JP2004281493A (en) * 2003-03-13 2004-10-07 Shin Etsu Chem Co Ltd Process for producing permanent magnet material
JP4415683B2 (en) * 2004-01-22 2010-02-17 Tdk株式会社 Manufacturing method of rare earth sintered magnet
JP4276631B2 (en) * 2005-02-28 2009-06-10 Tdk株式会社 Rare earth magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009038197A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5049722B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
US8287661B2 (en) Method for producing R-T-B sintered magnet
JP4748163B2 (en) Rare earth sintered magnet and manufacturing method thereof
US9415444B2 (en) Process for production of R-T-B based sintered magnets and R-T-B based sintered magnets
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
WO2008023731A1 (en) Permanent magnet and process for producing the same
JP5401328B2 (en) Recycling method of scrap magnet
JP4962198B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5275043B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2013108830A1 (en) Method for producing r-t-b sintered magnet
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2016184720A (en) R-t-b-based rare earth sintered magnet and method of manufacturing the same
JP2009200179A (en) Manufacturing method of sintered compact
JP6578916B2 (en) Method for manufacturing alloy for RTB-based rare earth sintered magnet and method for manufacturing RTB-based rare earth sintered magnet
JP5025372B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
US10428408B2 (en) R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JP5433720B2 (en) Sintered body manufacturing equipment
JP5179133B2 (en) Sintered body manufacturing equipment
JP6672753B2 (en) RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
JP6773150B2 (en) RTB-based rare earth sintered magnet alloy, RTB-based rare earth sintered magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5025372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250