JP2004281493A - Process for producing permanent magnet material - Google Patents

Process for producing permanent magnet material Download PDF

Info

Publication number
JP2004281493A
JP2004281493A JP2003067615A JP2003067615A JP2004281493A JP 2004281493 A JP2004281493 A JP 2004281493A JP 2003067615 A JP2003067615 A JP 2003067615A JP 2003067615 A JP2003067615 A JP 2003067615A JP 2004281493 A JP2004281493 A JP 2004281493A
Authority
JP
Japan
Prior art keywords
magnet
magnet body
permanent magnet
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003067615A
Other languages
Japanese (ja)
Inventor
Hajime Nakamura
中村  元
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003067615A priority Critical patent/JP2004281493A/en
Publication of JP2004281493A publication Critical patent/JP2004281493A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small or thin permanent magnet having S/V=6 mm-1 or above representing good magnetic characteristics by preventing the magnetic characteristics from deteriorating due to grinding. <P>SOLUTION: In the process for producing the permanent magnet material, a sintered magnet body having an R-Fe-B based composition (R is one kind or more than one kinds being selected from rare earth elements including Y) and ground to have a specific surface area of 6 mm<SP>-1</SP>or above is subjected to surface diffusion heat treatment for 1 min to 10 hours in vacuum or inert gas at a temperature not lower than the fusion starting temperature of an R rich grain boundary phase existing in the magnet and not higher than the sintering temperature of the magnet so that the grain boundary phase components are diffused onto the grinding surface of the magnet thus forming a thin film layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼結磁石体表面の研削加工等に伴う磁気特性の劣化を防止したR−Fe−B系永久磁石の製造方法に係り、特に磁石体の比表面積(S(表面積)/V(体積))が6mm−1以上の小型あるいは薄型用高性能永久磁石材料の製造方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系永久磁石は磁気特性が優れているために、ますますその用途が広がってきている。近年、磁石を応用したコンピュータ関連機器やCDプレーヤー、DVDプレーヤー、携帯電話をはじめとする電子機器の軽薄短小化、高性能化、省エネルギー化に伴い、Nd−Fe−B系磁石、中でも特に高性能なNd−Fe−B系焼結磁石の小型化、薄型化が要求されており、磁石体の比表面積S/Vが6mm−1を超えるような小型あるいは薄型の磁石に対する需要も増大しつつある。
【0003】
小型あるいは薄型のNd−Fe−B系焼結磁石を実用形状に加工し、磁気回路に実装するためには、成形焼結したブロック状の焼結磁石を研削加工する必要があり、この加工には外周刃切断機、内周刃切断機、表面研削機、センタレス研磨機、ラッピングマシンなどが使用される。
【0004】
しかしながら、上記装置にてNd−Fe−B系焼結磁石を研削加工すると磁石体が小さくなるほど磁気特性が劣化することが知られており、これは本系磁石の高保磁力の発現に必要な粒界構造が、磁石表面では加工により欠損しているためと考えられている。磁気特性の劣化を防止するために、例えば、磁石の焼結過程において結晶粒の成長を防ぐことで比表面積S/Vが2.6mm−1となるまで研削加工しても磁気特性が劣化しない磁石材料が提案されている(特許文献1:特許第2514155号公報参照)。しかし、S/Vが6mm−1を超える場合、磁気特性の劣化が顕著となる問題があった。
【0005】
そのような極微小磁石体における特性劣化を防止する方法として、被研削面に希土類を主成分とする薄膜層を形成し、更に熱処理を施して劣化した被研削面を磁石内部と同様な高保磁力に必要な粒界構造に改質することで、磁石体の特性劣化を防止する方法が提案されている(特許文献2:特公平5−60241号公報、特許文献3:特公平6−63086号公報参照)。特許文献2では、研削加工後の磁石体を希土類金属とともに石英管に真空封入し、1,000℃で加熱することで、蒸発した希土類金属を磁石体に被着させるという方法が採られているが、量産に対しては極端に生産性が低いために適用は困難である。特許文献3では、希土類金属をターゲットとしたスパッタで磁石体表面に薄膜を被着させる方法が採られている。通常の技術では、1回のスパッタで薄膜を被着できるのは磁石体の1つの面のみである。被研削面が1面のみであれば適用可能と考えられるが、通常の磁石体は全面が被研削面であるため、磁石体全体に薄膜を被着させるには磁石の仕込み直しとスパッタを繰り返さなければならない。
【0006】
以上のように、従来技術では、量産に対して極端に生産性が低いために適用は困難であり、このため磁気特性の劣化がなく、かつS/Vが6mm−1を超える極微小磁石体の製造は実質不可能と考えられていた。
【0007】
【特許文献1】
特許第2514155号公報
【特許文献2】
特公平5−60241号公報
【特許文献3】
特公平6−63086号公報
【0008】
【発明が解決しようとする課題】
本発明は、上述した従来の問題点に鑑みなされたもので、研削加工による磁気特性の劣化を防止したR−Fe−B系焼結磁石材料を高い生産性を持って製造する方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段及び発明の実施の形態】
Nd−Fe−B系焼結磁石に代表されるR−Fe−B系焼結磁石における保磁力の発現には結晶粒界の構造が重要であり、主相の周りに存在するRに富む相が主相表面を覆い、原子レベルで見ても平坦な界面を有するときに高い保磁力が発現されることはよく知られている。このRに富む相は、添加元素あるいは構成元素の種類や組成に依存するが、400〜700℃以上で溶融する。この溶融開始温度をT℃と表記すると、本発明者らは、研削後の磁石体をT℃以上に加熱するとRに富む相は液相となり、その流動性が著しく増大したことで、被研削面全体にRに富む相の成分が表面拡散し、磁石体表面全体にRに富む薄膜を被着し得ることを見出し、この発明を完成したものである。
【0010】
即ち、本発明は、R−Fe−B系組成(RはYを含む希土類元素から選ばれる1種又は2種以上)からなり、比表面積が6mm−1以上に研削加工された焼結磁石体を、当該磁石内部に存在するRに富む粒界相の溶融開始温度以上、かつ当該磁石の焼結温度以下の温度で真空あるいは不活性ガス中において1分〜10時間の表面拡散熱処理を施すことにより、粒界相成分を当該磁石体の被研削加工面に拡散させて薄膜層を被着することを特徴とする永久磁石材料の製造方法を提供する。
【0011】
この場合、前記表面拡散処理後に前記粒界相の溶融開始温度未満で真空あるいは不活性ガス中において、1分〜10時間の時効処理を施すことが好ましい。
また、前記表面拡散処理前に、アルカリ、酸あるいは有機溶剤のいずれか1種以上により洗浄する、あるいはショットブラストで表面層を除去することが好ましい。
【0012】
以下、本発明を更に詳細に説明する。
本発明は、R−Fe−B系焼結磁石体表面の研削加工等に伴う磁気特性の劣化を防止した、磁石体の比表面積S/Vが6mm−1以上の小型あるいは薄型用高性能永久磁石材料の製造方法に関するものである。
ここで、R−Fe−B系焼結磁石体は、常法に従い、母合金を粗粉砕、微粉砕、成形、焼結させることにより得ることができる。
この場合、母合金には、R、Fe、Bを含有する。RはYを含む希土類元素から選ばれる1種又は2種以上で、具体的にはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはNd、Pr、Dyを主体とする。これらYを含む希土類元素は合金全体の10〜20原子%、特に12〜15原子%であることが好ましく、更に好ましくはR中にNdとPrあるいはいずれか1種を10原子%以上、特に50原子%以上含有することが好適である。Bは3〜15原子%、特に4〜8原子%含有することが好ましい。その他、Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上を0〜11原子%、特に0.1〜5原子%含有してもよい。残部はFe又はC、N、O等の不可避的な不純物であるが、Feは50原子%以上、特に65原子%以上含有することが好ましい。また、Feの一部、例えばFeの0〜40原子%、特に0〜15原子%をCoで置換しても差支えない。
【0013】
母合金は原料金属あるいは合金を真空あるいは不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、あるいはストリップキャストにより鋳造することで得られる。なお、本系合金の主相であるRFe14B化合物組成に近い合金と焼結温度で液相助剤となるRリッチな合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる2合金法も本発明には適用可能である。但し、主相組成に近い合金に対して、鋳造時の冷却速度や合金組成に依存してα−Feが残存しやすく、RFe14B化合物相の量を増やす目的で必要に応じて均質化処理を施す。その条件は真空あるいはAr雰囲気中で700〜1,200℃で1時間以上熱処理する。液相助剤となるRリッチな合金については上記鋳造法のほかに、いわゆる液体急冷法も適用できる。
【0014】
上記合金は、通常0.05〜3mm、特に0.05〜1.5mmに粗粉砕される。粗粉砕工程にはブラウンミルあるいは水素粉砕が用いられ、ストリップキャストにより作製された合金の場合は水素粉砕が好ましい。粗粉は、例えば高圧窒素を用いたジェットミルにより通常0.2〜30μm、特に0.5〜20μmに微粉砕される。微粉末は磁界中圧縮成形機で成形され、焼結炉に投入される。焼結は真空あるいは不活性ガス雰囲気中、通常900〜1,250℃、特に1,000〜1,100℃で行われる。
【0015】
ここで得られた焼結磁石は、正方晶RFe14B化合物を主相として60〜99体積%、特に好ましくは80〜98体積%含有し、残部は0.5〜20体積%のRに富む相、0〜10体積%のBに富む相及び不可避的不純物により生成した炭化物、窒化物、酸化物、水酸化物のうち少なくとも1種あるいはこれらの混合物または複合物からなる。
【0016】
得られた焼結ブロックは実用形状に研削されるが、加工歪の影響をできるだけ小さくするために、生産性を落とさない範囲で加工速度は小さくすることが好ましい。この場合、研削方法としては、常法に従って行うことができるが、加工速度としては、具体的には0.1〜20mm/min、特に0.5〜10mm/minであることが好ましい。
【0017】
この場合、研削量としては、焼結ブロックの比表面積S/V(表面積mm/体積mm)が6mm−1以上、好ましくは8mm−1以上である。その上限は適宜選定され、特に制限されるものではないが、通常40mm−1以下、特に30mm−1以下である。
【0018】
研削加工された磁石体は、真空あるいはAr、He等の不活性ガス雰囲気中で表面拡散処理される。処理温度はRに富む粒界相の溶融開始温度(T℃)以上かつ当該焼結磁石の焼結温度以下である。Tは予め焼結体を示差熱分析することで知ることができる。処理温度の限定理由は以下の通りである。
まず、T℃未満ではRに富む相が液相とならないために、本発明の表面拡散処理が進行しないので、T℃以上、好ましくは(T+50)℃以上とする。また、当該焼結磁石の焼結温度より高い温度で処理すると、(1)焼結磁石の組織が変質し、高い磁気特性が得られなくなる、(2)磁石体の比表面積が大きいために不可避的な酸化や成分の蒸発が顕著に起こり、表面層をむしろ劣化させてしまう、(3)熱変形により加工寸法が維持できなくなる等の問題が生じるために、処理温度は焼結温度以下、好ましくは(T+200)℃以下とする。表面拡散処理時間は1分〜10時間である。1分未満では表面拡散処理が完了せず、10時間を超えると、焼結磁石の組織が変質する、不可避的な酸化や成分の蒸発が磁気特性に悪い影響を与えるといった問題が生じる。より好ましくは5分〜8時間、特に10分〜6時間である。
【0019】
以上のような表面拡散熱処理により、Rに富む粒界相成分が表面拡散し、Rに富む薄膜層が形成される。
この場合、この薄膜層の組成は、当該磁石の内部に存在するRに富む粒界相とほぼ同様で50〜95原子%のRが含有されている。
また、薄膜層の厚さは1nm〜10μm、特に10nm〜5μmであることが好ましい。更に、薄膜層の最表部には、表面拡散処理及び以下に述べる時効処理を通して生成した不可避的な酸化膜層が存在し、この厚さは薄膜層全体の0.01〜90%を占める。
【0020】
以上のような表面拡散熱処理後、時効処理を施すことが好ましい。この時効処理としては、前記粒界相の溶融開始温度未満、好ましくは200℃以上で溶融開始温度より5℃低い温度以下、更に好ましくは350℃以上で溶融開始温度より5℃低い温度以下であることが望ましい。また、その雰囲気は真空あるいはAr、He等の不活性ガス中であることが好ましい。時効処理の時間は1分〜10時間、好ましくは10分〜5時間、特に30分〜2時間である。
【0021】
なお、上述した研削加工時において、研削加工機の冷却液に水系のものを用いる、あるいは加工時に研削面が高温に曝される場合、被研削面に酸化膜が生じやすく、この酸化膜が磁石体表面におけるRに富む相の成分の表面拡散を妨げることがある。このような場合には、アルカリ、酸及び有機溶剤のいずれか1種以上を用いて洗浄する、あるいはショットブラストを施して、その酸化膜を除去することで適切な表面拡散処理ができる。
【0022】
なお、アルカリとしては、ピロリン酸カリウム、ピロリン酸ナトリウム、クエン酸カリウム、クエン酸ナトリウム、酢酸カリウム、酢酸ナトリウム、シュウ酸カリウム、シュウ酸ナトリウム等を、酸としては、塩酸、硝酸、硫酸、酢酸、クエン酸、酒石酸等を、有機溶剤としては、アセトン、メタノール、エタノール、イソプロピルアルコール等を使用することができる。この場合、上記アルカリや酸は、磁石体を侵食しない、適宜濃度の水溶液として使用することができる。
【0023】
以上のようにして得られた永久磁石材料は、特性劣化のない小型あるいは薄型の永久磁石として用いることができる。この場合、この永久磁石の具体的な大きさの一例として、1mm×1mm×1mm(S/V=6mm−1)、0.8mm×0.8mm×0.25mm(S/V=13mm−1)、0.8mm×0.8mm×0.13mm(S/V=20mm−1)、0.8mm×0.3mm×0.13mm(S/V=25mm−1)等が挙げられる。
【0024】
【実施例】
以下、本発明の具体的態様について実施例をもって詳述するが、本発明の内容はこれに限定されるものではない。
【0025】
[実施例1]
純度99重量%以上のNd、Dy、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが11.0原子%、Dyが1.5原子%、Coが1.0原子%、Alが1.0原子%、Bが4.5原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に、純度99重量%以上のNd、Dy、Fe、Co、Al、Cuメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが20原子%、Dyが10原子%、Feが24原子%、Bが6原子%、Alが1原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕された。
【0026】
続いて、合金A粉末を90重量%、合金B粉末を10重量%秤量して、窒素置換したVブレンダー中で30分間混合した。この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の重量中位粒径4μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cmの圧力で成形した。次いで、この成形体はAr雰囲気の焼結炉内に投入され、1,060℃で2時間焼結し、10mm×20mm×厚み15mm寸法の磁石ブロックを作製した。磁石ブロックは内周刃切断機により、比表面積S/Vが22mm−1となるように所定寸法の直方体に全面研削加工された。この加工後の磁石体を磁石体P1と称する。
【0027】
研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。
各洗浄の前後には純水による洗浄工程が含まれている。
これに、Ar雰囲気中600℃で2時間という条件で、本発明である表面拡散処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M1と称する。なお、示差熱分析の結果より、Rに富む相が溶融を開始する温度T℃は525℃であった。
【0028】
磁石体M1,P1の減磁曲線をそれぞれ曲線H1,K1として図1に示し、これらの磁気特性を表1に示した。更に、加工前のブロック磁石の磁気特性も表1に併記した。比表面積がS/V=22mm−1となるまで研削加工すると、保磁力HcBが約20%減少したのに対し、本発明ではほとんど減少していないことがわかる。
【0029】
[実施例2]
純度99重量%以上のNd、Dy、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが11.0原子%、Dyが4.2原子%、Coが1.0原子%、Alが1.0原子%、Bが4.5原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に、純度99重量%以上のNd、Dy、Fe、Al、Cu、Coメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが20原子%、Dyが10原子%、Feが24原子%、Bが6原子%、Alが1原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕された。続いて、合金A粉末を90重量%、合金B粉末を10重量%秤量して、窒素置換したVブレンダー中で30分間混合した。この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の重量中位粒径6μmに微粉砕された。得られた混合微粉末を15kOeの磁界中で配向させながら、約1ton/cmの圧力で成形した。次いで、この成形体はAr雰囲気の焼結炉内に投入され、1,070℃で2時間焼結し、10mm×20mm×厚み15mm寸法の磁石ブロックを作製した。磁石ブロックは内周刃切断機により、比表面積S/Vが24mm−1となるように所定寸法の直方体に全面研削加工された。この加工後の磁石体を磁石体P2と称する。
【0030】
研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。各洗浄の前後には純水による洗浄工程が含まれている。
これに、Ar雰囲気中600℃で2時間という条件で、本発明である表面拡散処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M2と称する。
磁石体M2,P2の減磁曲線をそれぞれ曲線H2,K2として図2に示した。磁石体M2,P2、更に、加工前のブロック磁石の磁気特性は表1に併記してある。なお、いずれの保磁力HcJについても“>30”と表記してあるが、これはHcJが測定装置の最大印加磁界を超えているという意味である。比表面積がS/V=24mm−1となるまで研削加工すると、保磁力HcBが約17%減少したのに対し、本発明ではほとんど減少していないことがわかる。
【0031】
【表1】

Figure 2004281493
【0032】
【発明の効果】
本発明によれば、研削加工による磁気特性の劣化を防止して良好な磁気特性を示すS/V=6mm−1以上の小型あるいは薄型の永久磁石を提供することができる。
【図面の簡単な説明】
【図1】本発明により作製された磁石体の減磁曲線(曲線H1)及び研削加工のみの磁石体の減磁曲線(曲線K1)を示した図である。
【図2】本発明により作製された磁石体の減磁曲線(曲線H2)及び研削加工のみの磁石体の減磁曲線(曲線K2)を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an R—Fe—B permanent magnet in which deterioration of magnetic properties due to grinding of the surface of a sintered magnet body or the like is prevented, and in particular, the specific surface area (S (surface area) / V ( The present invention relates to a method for producing a small or thin high-performance permanent magnet material having a volume (volume) of 6 mm −1 or more.
[0002]
[Prior art]
Nd-Fe-B-based permanent magnets have been increasingly used because of their excellent magnetic properties. In recent years, Nd-Fe-B magnets, especially high-performance, have been developed with computer-related equipment using magnets, CD players, DVD players, mobile phones, and other electronic devices that are becoming lighter, thinner, smaller, more efficient, and more energy efficient. There is a demand for smaller and thinner Nd-Fe-B based sintered magnets, and the demand for small or thin magnets whose specific surface area S / V exceeds 6 mm -1 is also increasing. .
[0003]
In order to process a small or thin Nd-Fe-B based sintered magnet into a practical shape and mount it on a magnetic circuit, it is necessary to grind a shaped and sintered block-shaped sintered magnet. An outer edge cutting machine, an inner edge cutting machine, a surface grinding machine, a centerless polishing machine, a lapping machine and the like are used.
[0004]
However, it is known that when the Nd-Fe-B based sintered magnet is ground by the above-described apparatus, the magnetic properties deteriorate as the magnet body becomes smaller. It is considered that the field structure is missing on the magnet surface due to processing. In order to prevent the deterioration of the magnetic characteristics, for example, by preventing the growth of crystal grains in the sintering process of the magnet, the magnetic characteristics do not deteriorate even if the grinding process is performed until the specific surface area S / V becomes 2.6 mm −1. A magnet material has been proposed (see Patent Document 1: Japanese Patent No. 2514155). However, when the S / V exceeds 6 mm −1 , there is a problem that the magnetic characteristics are significantly deteriorated.
[0005]
As a method of preventing the characteristic deterioration of such an extremely small magnet, a thin film layer mainly composed of a rare earth element is formed on the surface to be ground, and further subjected to a heat treatment so that the deteriorated surface to be ground has the same high coercive force as the inside of the magnet. A method has been proposed to prevent the deterioration of the properties of the magnet body by modifying the grain boundary structure necessary for the above (Patent Document 2: Japanese Patent Publication No. 5-60241, Patent Document 3: Japanese Patent Publication No. 6-63086). Gazette). Patent Literature 2 employs a method in which a magnet body after grinding is vacuum-sealed together with a rare earth metal in a quartz tube and heated at 1,000 ° C. so that the evaporated rare earth metal is adhered to the magnet body. However, it is difficult to apply to mass production due to extremely low productivity. Patent Literature 3 employs a method of depositing a thin film on the surface of a magnet body by sputtering using a rare earth metal as a target. In a conventional technique, a thin film can be applied to only one surface of the magnet body by one sputtering. It is considered to be applicable if there is only one surface to be ground. However, since the entire surface of a normal magnet body is the surface to be ground, recoating of the magnet and sputtering are repeated to deposit a thin film on the entire magnet body. There must be.
[0006]
As described above, it is difficult to apply the prior art because of extremely low productivity with respect to mass production. Therefore, there is no deterioration in magnetic characteristics and the S / V exceeds 6 mm −1. Was considered virtually impossible.
[0007]
[Patent Document 1]
Japanese Patent No. 2514155 [Patent Document 2]
Japanese Patent Publication No. 5-60241 [Patent Document 3]
Japanese Patent Publication No. 6-63086
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional problems, and provides a method of manufacturing an R—Fe—B based sintered magnet material with high productivity, in which deterioration of magnetic properties due to grinding is prevented. It is intended for that purpose.
[0009]
Means for Solving the Problems and Embodiments of the Invention
The appearance of coercive force in an R—Fe—B sintered magnet represented by an Nd—Fe—B based sintered magnet depends on the structure of the crystal grain boundaries, and the R-rich phase existing around the main phase. It is well known that a high coercive force is exhibited when the surface covers the main phase surface and has a flat interface even at the atomic level. The R-rich phase melts at 400 to 700 ° C. or higher, depending on the type and composition of the added element or constituent element. When this melting start temperature is expressed as TE ° C, the present inventors have found that when the magnet body after grinding is heated to TE ° C or higher, the R-rich phase becomes a liquid phase, and its fluidity is significantly increased. The inventors have found that the component of the R-rich phase is diffused on the entire surface to be ground and that a thin film rich in R can be deposited on the entire surface of the magnet body, thereby completing the present invention.
[0010]
That is, the present invention provides a sintered magnet body having an R—Fe—B composition (R is one or more selected from rare earth elements including Y) and having a specific surface area of 6 mm −1 or more. Is subjected to a surface diffusion heat treatment for 1 minute to 10 hours in a vacuum or an inert gas at a temperature equal to or higher than the melting start temperature of the R-rich grain boundary phase present inside the magnet and equal to or lower than the sintering temperature of the magnet. Thus, a method of manufacturing a permanent magnet material is provided, in which a grain boundary phase component is diffused on a surface to be ground of the magnet body to form a thin film layer.
[0011]
In this case, it is preferable to perform an aging treatment for 1 minute to 10 hours in a vacuum or an inert gas at a temperature lower than the melting start temperature of the grain boundary phase after the surface diffusion treatment.
Before the surface diffusion treatment, it is preferable to wash with one or more of an alkali, an acid and an organic solvent, or to remove a surface layer by shot blasting.
[0012]
Hereinafter, the present invention will be described in more detail.
The present invention is directed to a small or thin high-performance permanent magnet having a specific surface area S / V of 6 mm -1 or more, which prevents deterioration of magnetic properties due to grinding of the surface of an R-Fe-B based sintered magnet body. The present invention relates to a method for manufacturing a magnet material.
Here, the R—Fe—B based sintered magnet body can be obtained by coarsely pulverizing, finely pulverizing, molding, and sintering the master alloy according to a conventional method.
In this case, the master alloy contains R, Fe, and B. R is one or more selected from rare earth elements including Y, and specifically, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu Nd, Pr, and Dy are preferred. The content of the rare earth element containing Y is preferably 10 to 20 at%, particularly 12 to 15 at% of the entire alloy, and more preferably, R contains Nd and Pr or any one of them at 10 at% or more, particularly 50 at%. It is preferable to contain at least atomic%. B is preferably contained in an amount of 3 to 15 atomic%, particularly 4 to 8 atomic%. In addition, Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, One or more selected from W may be contained in an amount of 0 to 11 atomic%, particularly 0.1 to 5 atomic%. The balance is Fe or inevitable impurities such as C, N, and O, but Fe is preferably contained at 50 at% or more, particularly at least 65 at%. Further, a part of Fe, for example, 0 to 40 atomic%, particularly 0 to 15 atomic% of Fe may be replaced with Co.
[0013]
The mother alloy is obtained by melting a raw metal or alloy in a vacuum or an inert gas, preferably an Ar atmosphere, and then casting it in a flat mold or book mold, or casting it by strip casting. It should be noted that an alloy close to the R 2 Fe 14 B compound composition, which is the main phase of the present alloy, and an R-rich alloy, which is a liquid phase aid at the sintering temperature, are separately prepared, weighed and mixed after coarse pulverization. The two-alloy method is also applicable to the present invention. However, for an alloy having a composition close to the main phase, α-Fe tends to remain depending on the cooling rate during casting and the alloy composition, and is homogenized as necessary for the purpose of increasing the amount of the R 2 Fe 14 B compound phase. A chemical treatment is performed. The heat treatment is performed at 700 to 1,200 ° C. for 1 hour or more in a vacuum or Ar atmosphere. For an R-rich alloy serving as a liquid phase aid, a so-called liquid quenching method can be applied in addition to the casting method.
[0014]
The above alloy is usually coarsely pulverized to 0.05 to 3 mm, particularly 0.05 to 1.5 mm. A brown mill or hydrogen pulverization is used in the coarse pulverization step, and hydrogen pulverization is preferable for an alloy produced by strip casting. The coarse powder is usually finely pulverized to, for example, 0.2 to 30 μm, particularly 0.5 to 20 μm by a jet mill using high-pressure nitrogen. The fine powder is formed by a compression molding machine in a magnetic field, and put into a sintering furnace. The sintering is performed in a vacuum or an inert gas atmosphere, usually at 900 to 1,250 ° C, especially 1,000 to 1,100 ° C.
[0015]
The sintered magnet obtained here contains the tetragonal R 2 Fe 14 B compound as a main phase in an amount of 60 to 99% by volume, particularly preferably 80 to 98% by volume, and the balance is 0.5 to 20% by volume of R. At least one of carbides, nitrides, oxides, and hydroxides formed by unavoidable impurities, and a mixture or composite thereof.
[0016]
The obtained sintered block is ground into a practical shape. However, in order to minimize the influence of processing strain, it is preferable to reduce the processing speed within a range where productivity is not reduced. In this case, the grinding method can be performed according to a conventional method, but the processing speed is specifically 0.1 to 20 mm / min, particularly preferably 0.5 to 10 mm / min.
[0017]
In this case, as the grinding amount, the specific surface area S / V (surface area mm 2 / volume mm 3 ) of the sintered block is 6 mm −1 or more, preferably 8 mm −1 or more. The upper limit is appropriately selected and is not particularly limited, but is usually 40 mm -1 or less, particularly 30 mm -1 or less.
[0018]
The ground magnet body is subjected to surface diffusion treatment in a vacuum or an inert gas atmosphere such as Ar or He. The treatment temperature is equal to or higher than the melting start temperature ( TE ° C.) of the R-rich grain boundary phase and equal to or lower than the sintering temperature of the sintered magnet. T E can know in advance the sintered body by differential thermal analysis. The reasons for limiting the processing temperature are as follows.
First, it is less than T E ° C. for rich phase R does not become a liquid phase, the surface diffusion process of the present invention does not proceed, T E ° C. or higher, preferably (T E +50) ℃ or higher. Further, if the treatment is performed at a temperature higher than the sintering temperature of the sintered magnet, (1) the structure of the sintered magnet is deteriorated and high magnetic characteristics cannot be obtained, and (2) the specific surface area of the magnet body is large, so that it is inevitable. The oxidation temperature and the evaporation of components are remarkable, and the surface layer is rather deteriorated. (3) The processing dimensions cannot be maintained due to thermal deformation. Is (T E +200) ° C. or less. The surface diffusion treatment time is 1 minute to 10 hours. If the time is less than 1 minute, the surface diffusion treatment is not completed, and if the time exceeds 10 hours, the structure of the sintered magnet is deteriorated, and unavoidable oxidation and evaporation of components adversely affect the magnetic properties. More preferably, it is 5 minutes to 8 hours, particularly 10 minutes to 6 hours.
[0019]
By the surface diffusion heat treatment as described above, the R-rich grain boundary phase component is diffused on the surface, and a R-rich thin film layer is formed.
In this case, the composition of the thin film layer is almost the same as that of the R-rich grain boundary phase existing inside the magnet, and contains 50 to 95 atomic% of R.
The thickness of the thin film layer is preferably 1 nm to 10 μm, particularly preferably 10 nm to 5 μm. Furthermore, an unavoidable oxide film layer formed through the surface diffusion treatment and the aging treatment described below is present at the outermost portion of the thin film layer, and this thickness occupies 0.01 to 90% of the entire thin film layer.
[0020]
After the surface diffusion heat treatment as described above, it is preferable to perform an aging treatment. This aging treatment is performed at a temperature lower than the melting start temperature of the grain boundary phase, preferably 200 ° C. or higher and 5 ° C. lower than the melting start temperature, more preferably 350 ° C. or higher and 5 ° C. lower than the melting start temperature. It is desirable. Preferably, the atmosphere is vacuum or in an inert gas such as Ar or He. The time of the aging treatment is 1 minute to 10 hours, preferably 10 minutes to 5 hours, particularly 30 minutes to 2 hours.
[0021]
When using a water-based coolant for the grinding machine during the above-described grinding, or when the ground surface is exposed to a high temperature during the processing, an oxide film is easily formed on the surface to be ground. It may hinder the surface diffusion of R-rich phase components on the body surface. In such a case, appropriate surface diffusion treatment can be performed by washing with one or more of an alkali, an acid, and an organic solvent, or by performing shot blasting to remove the oxide film.
[0022]
Incidentally, as the alkali, potassium pyrophosphate, sodium pyrophosphate, potassium citrate, sodium citrate, potassium acetate, sodium acetate, potassium oxalate, sodium oxalate, etc., as the acid, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, Citric acid, tartaric acid and the like can be used, and as an organic solvent, acetone, methanol, ethanol, isopropyl alcohol and the like can be used. In this case, the alkali or acid can be used as an aqueous solution having an appropriate concentration that does not corrode the magnet body.
[0023]
The permanent magnet material obtained as described above can be used as a small or thin permanent magnet with no characteristic deterioration. In this case, as an example of a specific size of the permanent magnet, 1 mm × 1 mm × 1 mm (S / V = 6 mm −1 ), 0.8 mm × 0.8 mm × 0.25 mm (S / V = 13 mm −1) ), 0.8 mm × 0.8 mm × 0.13 mm (S / V = 20 mm −1 ), 0.8 mm × 0.3 mm × 0.13 mm (S / V = 25 mm −1 ), and the like.
[0024]
【Example】
Hereinafter, specific embodiments of the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0025]
[Example 1]
Strip casting method in which a predetermined amount of Nd, Dy, Co, Al, Fe metal and ferroboron having a purity of 99% by weight or more and ferroboron are weighed in a high frequency and melted in an Ar atmosphere, and the molten alloy is poured into a copper single roll in an Ar atmosphere. Thus, a thin plate-shaped alloy was obtained. The composition of the obtained alloy was such that Nd was 11.0 atomic%, Dy was 1.5 atomic%, Co was 1.0 atomic%, Al was 1.0 atomic%, B was 4.5 atomic%, and Fe was the balance. And this is referred to as alloy A. After absorbing hydrogen in the alloy A, the alloy A was heated to 500 ° C. while performing evacuation to partially release hydrogen, so-called hydrogen pulverization to obtain coarse powder of 30 mesh or less. Further, a predetermined amount of Nd, Dy, Fe, Co, Al, Cu metal and ferroboron having a purity of 99% by weight or more was weighed, and after high frequency melting in an Ar atmosphere, casting was performed. The composition of the obtained alloy was 20 atomic% of Nd, 10 atomic% of Dy, 24 atomic% of Fe, 6 atomic% of B, 1 atomic% of Al, 2 atomic% of Cu, and the balance of Co. Is referred to as alloy B. The alloy B was coarsely pulverized to 30 mesh or less using a brown mill in a nitrogen atmosphere.
[0026]
Subsequently, 90% by weight of the alloy A powder and 10% by weight of the alloy B powder were weighed and mixed in a nitrogen-purged V blender for 30 minutes. This mixed powder was finely pulverized by a jet mill using high-pressure nitrogen gas to a powder having a median particle diameter of 4 μm. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into a sintering furnace in an Ar atmosphere, and sintered at 1,060 ° C. for 2 hours to produce a magnet block having a size of 10 mm × 20 mm × 15 mm. The magnet block was entirely ground into a rectangular parallelepiped having a predetermined size so that the specific surface area S / V became 22 mm −1 by an inner peripheral blade cutting machine. The magnet body after this processing is called magnet body P1.
[0027]
After the ground magnet body was washed with an alkaline solution, it was washed with an acid and dried.
Before and after each cleaning, a cleaning step using pure water is included.
This was subjected to the surface diffusion treatment according to the present invention in an Ar atmosphere at 600 ° C. for 2 hours, and further subjected to aging treatment at 500 ° C. for 1 hour and rapidly cooled to obtain a magnet body. This is called a magnet M1. Incidentally, the results of differential thermal analysis, the temperature T E ° C. for rich phase R starts to melt was 525 ° C..
[0028]
The demagnetization curves of the magnet bodies M1 and P1 are shown in FIG. 1 as curves H1 and K1, respectively, and their magnetic properties are shown in Table 1. Further, Table 1 also shows the magnetic properties of the block magnet before processing. When the grinding process is performed until the specific surface area becomes S / V = 22 mm −1 , it can be seen that the coercive force HcB is reduced by about 20%, but is hardly reduced in the present invention.
[0029]
[Example 2]
Strip casting method in which a predetermined amount of Nd, Dy, Co, Al, Fe metal and ferroboron having a purity of 99% by weight or more and ferroboron are weighed in a high frequency and melted in an Ar atmosphere, and the molten alloy is poured into a copper single roll in an Ar atmosphere. Thus, a thin plate-shaped alloy was obtained. The composition of the obtained alloy was such that Nd was 11.0 atomic%, Dy was 4.2 atomic%, Co was 1.0 atomic%, Al was 1.0 atomic%, B was 4.5 atomic%, and Fe was the balance. And this is referred to as alloy A. After absorbing hydrogen in the alloy A, the alloy A was heated to 500 ° C. while performing evacuation to partially release hydrogen, so-called hydrogen pulverization to obtain coarse powder of 30 mesh or less. Further, a predetermined amount of Nd, Dy, Fe, Al, Cu, Co metal and ferroboron having a purity of 99% by weight or more were weighed, melted by high frequency in an Ar atmosphere, and then cast. The composition of the obtained alloy was 20 atomic% of Nd, 10 atomic% of Dy, 24 atomic% of Fe, 6 atomic% of B, 1 atomic% of Al, 2 atomic% of Cu, and the balance of Co. Is referred to as alloy B. The alloy B was coarsely pulverized to 30 mesh or less using a brown mill in a nitrogen atmosphere. Subsequently, 90% by weight of the alloy A powder and 10% by weight of the alloy B powder were weighed and mixed in a nitrogen-purged V blender for 30 minutes. This mixed powder was finely pulverized by a jet mill using high-pressure nitrogen gas to a weight median particle diameter of 6 μm. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe. Next, this compact was put into a sintering furnace in an Ar atmosphere, and sintered at 1,070 ° C. for 2 hours to produce a magnet block having a size of 10 mm × 20 mm × 15 mm. The magnet block was entirely ground into a rectangular parallelepiped having a predetermined size so that the specific surface area S / V was 24 mm −1 by an inner peripheral blade cutting machine. The magnet body after this processing is called magnet body P2.
[0030]
After the ground magnet body was washed with an alkaline solution, it was washed with an acid and dried. Before and after each cleaning, a cleaning step using pure water is included.
This was subjected to the surface diffusion treatment according to the present invention in an Ar atmosphere at 600 ° C. for 2 hours, and further subjected to aging treatment at 500 ° C. for 1 hour and rapidly cooled to obtain a magnet body. This is called magnet body M2.
FIG. 2 shows the demagnetization curves of the magnet bodies M2 and P2 as curves H2 and K2, respectively. Table 1 also shows the magnetic properties of the magnet bodies M2 and P2 and the block magnet before processing. Note that the coercive force HcJ is described as ">30", which means that HcJ exceeds the maximum applied magnetic field of the measuring apparatus. When the grinding process is performed until the specific surface area becomes S / V = 24 mm −1 , the coercive force HcB is reduced by about 17%, but is hardly reduced in the present invention.
[0031]
[Table 1]
Figure 2004281493
[0032]
【The invention's effect】
According to the present invention, it is possible to provide a small or thin permanent magnet of S / V = 6 mm −1 or more that exhibits good magnetic characteristics while preventing deterioration of magnetic characteristics due to grinding.
[Brief description of the drawings]
FIG. 1 is a diagram showing a demagnetization curve (curve H1) of a magnet body manufactured according to the present invention and a demagnetization curve (curve K1) of a magnet body only subjected to grinding.
FIG. 2 is a diagram showing a demagnetization curve (curve H2) of a magnet body manufactured according to the present invention and a demagnetization curve (curve K2) of a magnet body only subjected to grinding.

Claims (4)

R−Fe−B系組成(RはYを含む希土類元素から選ばれる1種又は2種以上)からなり、比表面積が6mm−1以上に研削加工された焼結磁石体を、当該磁石内部に存在するRに富む粒界相の溶融開始温度以上、かつ当該磁石の焼結温度以下の温度で真空あるいは不活性ガス中において1分〜10時間の表面拡散熱処理を施すことにより、粒界相成分を当該磁石体の被研削加工面に拡散させて薄膜層を被着することを特徴とする永久磁石材料の製造方法。A sintered magnet body made of an R-Fe-B-based composition (R is one or more kinds selected from rare earth elements including Y) and having a specific surface area of 6 mm -1 or more is ground inside the magnet. By subjecting the surface diffusion heat treatment for 1 minute to 10 hours in a vacuum or an inert gas at a temperature equal to or higher than the melting start temperature of the existing R-rich grain boundary phase and equal to or lower than the sintering temperature of the magnet, the grain boundary phase component A permanent magnet material, wherein the thin film layer is applied by diffusing the thin film layer to the ground surface of the magnet body. R−Fe−B系組成(RはYを含む希土類元素から選ばれる1種又は2種以上)からなり、比表面積が6mm−1以上に研削加工された焼結磁石体を、前記表面拡散処理後に前記粒界相の溶融開始温度未満で真空あるいは不活性ガス中において1分〜10時間の時効処理を施すことを特徴とする請求項1記載の永久磁石材料の製造方法。A sintered magnet body having an R-Fe-B composition (R is one or more selected from rare earth elements including Y) and having a specific surface area of 6 mm -1 or more is subjected to the surface diffusion treatment. 2. The method for producing a permanent magnet material according to claim 1, wherein an aging treatment is performed for 1 minute to 10 hours in a vacuum or an inert gas at a temperature lower than the melting start temperature of the grain boundary phase. R−Fe−B系組成(RはYを含む希土類元素から選ばれる1種又は2種以上)からなり、比表面積が6mm−1以上に研削加工された焼結磁石体を、前記表面拡散処理前にアルカリ、酸あるいは有機溶剤のいずれか1種以上により洗浄することを特徴とする請求項1又は2記載の永久磁石材料の製造方法。A sintered magnet body having an R-Fe-B composition (R is one or more selected from rare earth elements including Y) and having a specific surface area of 6 mm -1 or more is subjected to the surface diffusion treatment. 3. The method for producing a permanent magnet material according to claim 1, wherein the substrate is washed with at least one of an alkali, an acid, and an organic solvent. R−Fe−B系組成(RはYを含む希土類元素から選ばれる1種又は2種以上)からなり、比表面積が6mm−1以上に研削加工された焼結磁石体の表面劣化層を、前記表面拡散処理前にショットブラストで除去することを特徴とする請求項1又は2記載の永久磁石材料の製造方法。The surface-deteriorated layer of the sintered magnet body, which is composed of an R-Fe-B-based composition (R is one or more selected from rare earth elements including Y) and has a specific surface area of 6 mm -1 or more, 3. The method for manufacturing a permanent magnet material according to claim 1, wherein the material is removed by shot blasting before the surface diffusion treatment.
JP2003067615A 2003-03-13 2003-03-13 Process for producing permanent magnet material Pending JP2004281493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067615A JP2004281493A (en) 2003-03-13 2003-03-13 Process for producing permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067615A JP2004281493A (en) 2003-03-13 2003-03-13 Process for producing permanent magnet material

Publications (1)

Publication Number Publication Date
JP2004281493A true JP2004281493A (en) 2004-10-07

Family

ID=33285171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067615A Pending JP2004281493A (en) 2003-03-13 2003-03-13 Process for producing permanent magnet material

Country Status (1)

Country Link
JP (1) JP2004281493A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287865A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing permanent magnet material
JP2009038197A (en) * 2007-08-01 2009-02-19 Ulvac Japan Ltd Manufacturing method of sintered body, and neodymium iron boron-based sintered magnet manufactured by the method
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
KR101149036B1 (en) 2010-04-29 2012-05-24 엘지이노텍 주식회사 Imbeded printed circuit board member eqipped with electronic parts and imbeded printed circuit board using the same and manufacturing method of imbeded printed circuit board
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2014209560A (en) * 2013-03-29 2014-11-06 大同特殊鋼株式会社 Method for manufacturing rare earth-iron-boron based magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287865A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing permanent magnet material
US7922832B2 (en) 2006-04-14 2011-04-12 Shin-Etsu Chemical Co., Ltd. Method for preparing permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
JP2009038197A (en) * 2007-08-01 2009-02-19 Ulvac Japan Ltd Manufacturing method of sintered body, and neodymium iron boron-based sintered magnet manufactured by the method
KR101149036B1 (en) 2010-04-29 2012-05-24 엘지이노텍 주식회사 Imbeded printed circuit board member eqipped with electronic parts and imbeded printed circuit board using the same and manufacturing method of imbeded printed circuit board
JP2014209560A (en) * 2013-03-29 2014-11-06 大同特殊鋼株式会社 Method for manufacturing rare earth-iron-boron based magnet

Similar Documents

Publication Publication Date Title
JP4450239B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP4831074B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4702546B2 (en) Rare earth permanent magnet
KR101353186B1 (en) Method for Preparing Rare Earth Permanent Magnet Material
KR101084340B1 (en) Functionally graded rare earth permanent magnet
JP4753030B2 (en) Method for producing rare earth permanent magnet material
KR101353238B1 (en) Method for Preparing Rare Earth Permanent Magnet Material
JP4702549B2 (en) Rare earth permanent magnet
KR101353131B1 (en) Method for Preparing Permanent Magnet Material
JP4702547B2 (en) Functionally graded rare earth permanent magnet
JP6090589B2 (en) Rare earth permanent magnet manufacturing method
KR20060102480A (en) Rare earth permanent magnet
JP4702548B2 (en) Functionally graded rare earth permanent magnet
JP4730545B2 (en) Method for producing rare earth permanent magnet material
JP2004281493A (en) Process for producing permanent magnet material
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
JP4730546B2 (en) Rare earth permanent magnet manufacturing method
JP2004281492A (en) Permanent magnet material
JPS61139638A (en) Manufacture of sintered permanent magnet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Effective date: 20071220

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A02 Decision of refusal

Effective date: 20080723

Free format text: JAPANESE INTERMEDIATE CODE: A02