JP2014209560A - Method for manufacturing rare earth-iron-boron based magnet - Google Patents

Method for manufacturing rare earth-iron-boron based magnet Download PDF

Info

Publication number
JP2014209560A
JP2014209560A JP2014016932A JP2014016932A JP2014209560A JP 2014209560 A JP2014209560 A JP 2014209560A JP 2014016932 A JP2014016932 A JP 2014016932A JP 2014016932 A JP2014016932 A JP 2014016932A JP 2014209560 A JP2014209560 A JP 2014209560A
Authority
JP
Japan
Prior art keywords
rfeb
magnetization
base material
magnet
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014016932A
Other languages
Japanese (ja)
Other versions
JP6372088B2 (en
Inventor
佳朋 梶並
Yoshitomo Kajinami
佳朋 梶並
早人 橋野
Hayato Hashino
早人 橋野
哲也 下村
Tetsuya Shimomura
哲也 下村
雄介 登澤
Yusuke Tozawa
雄介 登澤
純平 日南田
Jumpei Hinata
純平 日南田
成康 齊藤
Nariyasu Saito
成康 齊藤
隼人 松山
Hayato Matsuyama
隼人 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014016932A priority Critical patent/JP6372088B2/en
Priority to DE102014004513.7A priority patent/DE102014004513A1/en
Priority to CN201410124530.7A priority patent/CN104078179A/en
Publication of JP2014209560A publication Critical patent/JP2014209560A/en
Application granted granted Critical
Publication of JP6372088B2 publication Critical patent/JP6372088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To provide a RFeB based magnet which is high in magnetization properties.SOLUTION: A method for manufacturing a RFeB based magnet including, as a rare earth element R, a light rare earth element Rconsisting of at least one element of a group consisting of Nd and Pr comprises: a before-magnetization base material-preparation step in which a before-magnetization base material of the RFeB based magnet is prepared from powder of a raw material alloy of the RFeB based magnet having an average grain diameter of smaller than 5 μm; a grain boundary diffusion treatment step in which the before-magnetization base material is heated to a given temperature with a deposit left adhering to the surface of the before-magnetization base material, provided that the deposit includes a heavy rare earth element Rconsisting of at least one element of a group consisting of Tb, Dy and Ho; a precise processing step in which a precisely processed body is prepared by shaping, by means of machining, the before-magnetization base material into a finished product form; and a post-precise-processing heating step in which the precisely processed body is heated to a temperature of 200-900°C.

Description

本発明は、R2Fe14B(Rは希土類元素)を主相とするRFeB系磁石の製造方法に関し、特に希土類元素Rが、Nd及びPrから構成される群のうちの少なくとも1種である軽希土類元素RLであるRFeB系の焼結磁石又は熱間塑性加工磁石の製造方法に関する。 The present invention relates to a method for producing an RFeB-based magnet whose main phase is R 2 Fe 14 B (R is a rare earth element), and in particular, the rare earth element R is at least one of the group consisting of Nd and Pr. The present invention relates to a method for producing an RFeB-based sintered magnet or hot plastic working magnet that is a light rare earth element RL .

RFeB系磁石は、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりも高いという特長を有する。そのため、RFeB系磁石はハイブリッド自動車や電気自動車向けのモータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、高級スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。   RFeB magnets have a feature that many magnetic properties such as residual magnetic flux density are higher than those of conventional permanent magnets. For this reason, RFeB magnets are used in various products such as motors for hybrid and electric vehicles, motors for electric bicycles, industrial motors, voice coil motors such as hard disks, high-end speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. Is used.

初期のRFeB系磁石は、種々の磁気特性のうち、保磁力HcJが比較的低いという欠点を有していた。この欠点を改善する方法として、Rが軽希土類元素RLである場合において、(1)原料の合金にTb、Dy及びHoから構成される群の中の少なくとも1種である重希土類元素RHを添加することによって主相の結晶磁気異方性を高める方法、(2)重希土類元素RHを含まない主相系合金と重希土類元素RHを添加した粒界相系合金の2種類の出発合金の粉末を混合したものを原料として用いる方法(二合金法)、(3)RLFeB系の焼結体又は熱間塑性加工体の表面に、重希土類元素RHを含有させた粉末等を付着させたうえで加熱することにより、焼結体の粒界を通して主相粒子に重希土類元素RHを導入する粒界拡散法が知られている。これらの方法の中で特に、(3)の粒界拡散法は、保磁力低下の影響が大きい主相粒子の表面付近にRHを留め、保磁力低下にさほど影響を及ぼさない主相粒子の内部にまでは重希土類元素RHを導入しないため、高価且つ希少な重希土類元素RHの使用量を他の方法よりも抑えることができるうえに、重希土類元素RHの増加に伴う残留磁束密度Brの低下を抑えることができる点で優れている。 Early RFeB-based magnets had the disadvantage of a relatively low coercive force H cJ among various magnetic properties. As a method for improving this drawback, when R is a light rare earth element R L , (1) a heavy rare earth element R H which is at least one of the group consisting of Tb, Dy, and Ho in the alloy of the raw material increasing the magnetocrystalline anisotropy of the major phase by adding method, (2) two heavy rare-earth element R H not containing a main phase alloy and the grain boundary phase alloy with the addition of heavy rare-earth element R H in A method using a mixture of starting alloy powders as a raw material (two-alloy method), (3) R L FeB-based sintered body or powder containing heavy rare earth element R H on the surface of a hot plastic processed body A grain boundary diffusion method is known in which heavy rare earth elements RH are introduced into the main phase particles through the grain boundaries of the sintered body by heating them after attaching them. Among these methods, in particular, the grain boundary diffusion method (3) retains RH near the surface of the main phase particles that are greatly affected by the decrease in coercive force, and does not significantly affect the decrease in coercive force. Since heavy rare earth elements RH are not introduced into the interior, the amount of expensive and rare heavy rare earth elements RH can be suppressed as compared to other methods, and the residual magnetic flux accompanying the increase in heavy rare earth elements RH. It is excellent in that the decrease in density Br can be suppressed.

また、重希土類元素RHを用いる方法以外に、保磁力HcJを高める方法として、特許文献1や非特許文献1に記載の方法が知られている。特許文献1に記載の方法はRFeB系磁石の焼結体を作製した後に所定の温度で熱処理を行うものであり、非特許文献1に記載の方法はRFeB系磁石を構成する個々の結晶粒を微細化するものである。特に、非特許文献1に記載の結晶粒微細化法は、残留磁束密度Brを低下させることなく保磁力HcJを高めることができる点で優れている。これは、結晶粒が小さくなるほど単磁区が形成され易くなることによると考えられている。すなわち、磁石全体の磁化とは反対方向の磁界が印加されると、結晶粒内に複数の磁区が存在する場合には磁壁が移動することによってスムーズに磁化が反転してゆくため、そのような磁界に抗する指標である保磁力は低くなる。それに対して、単磁区の場合には磁壁が存在しないため、磁化の反転が生じ難く、保磁力が高くなる。非特許文献1には、平均粒径DAVEが約7.0μmのNdFeB(R=Nd)系焼結磁石よりも、DAVEが約1.8〜1.9μmであるNdFeB系焼結磁石や、DAVEが約2μmである熱間塑性加工磁石の方が保磁力が高い、ということが記載されている。RFeB系磁石を構成する個々の結晶粒を小さくするためには、第一次的にはその原料となるRFeB系合金の粉末の粒径を小さくしておかなければならない。 In addition to methods using heavy rare earth elements R H , methods described in Patent Document 1 and Non-Patent Document 1 are known as methods for increasing the coercive force H cJ . The method described in Patent Document 1 is to heat-treat at a predetermined temperature after producing a sintered body of an RFeB-based magnet, and the method described in Non-Patent Document 1 is to separate individual crystal grains constituting the RFeB-based magnet. It is to be miniaturized. In particular, grain refining method described in Non-Patent Document 1 is excellent in that it is possible to increase the coercive force H cJ without decreasing the remanence B r. This is believed to be due to the fact that single magnetic domains are more easily formed as the crystal grains become smaller. That is, when a magnetic field in the opposite direction to the magnetization of the entire magnet is applied, the magnetization is smoothly reversed by moving the domain wall when there are a plurality of magnetic domains in the crystal grains. The coercive force, which is an index against the magnetic field, becomes low. On the other hand, in the case of a single magnetic domain, since there is no domain wall, magnetization reversal hardly occurs and the coercive force is increased. Non-Patent Document 1, than the average particle diameter D AVE of about 7.0μm NdFeB (R = Nd) based sintered magnet, and NdFeB sintered magnet D AVE is about 1.8~1.9Myuemu, is D AVE It is described that a hot plastic working magnet of about 2 μm has a higher coercive force. In order to reduce the individual crystal grains constituting the RFeB-based magnet, first, the particle size of the RFeB-based alloy powder as the raw material must be reduced.

特開昭61-140108号公報JP-A-61-140108 特開2007-266199号公報JP 2007-266199 A 国際公開WO2006/004014号International Publication WO2006 / 004014 特開平11-329810号公報Japanese Patent Laid-Open No. 11-329810

小林久理眞 他4名、「希土類磁石の保磁力発現機構における磁区構造と微構造の相互作用の役割」、電気学会研究会資料. MAG, マグネティックス研究会、一般社団法人電気学会、2012年12月6日、MAG-12-140Hisashi Kobayashi and 4 others, “Role of interaction between magnetic domain structure and microstructure in the coercivity development mechanism of rare earth magnets”, IEEJ Technical Report. MAG, Magnetics Technical Association, The Institute of Electrical Engineers of Japan, 2012 December 6, MAG-12-140

RFeB系磁石では、上記の粒界拡散法と結晶粒微細化法を併用することにより、保磁力を十分に高めることができる。しかし、磁石を自動車用モータ等に組み込んで使用するためには、単に保磁力を高めるだけではなく、着磁特性も高める必要がある。以下、その理由を説明する。
RFeB系焼結磁石を製造する際には、焼結工程においてキュリー温度(約310℃)よりも高い温度(通常、1000℃以上)に加熱する。また、RFeB系熱間塑性加工磁石を製造する際にも、成形すると共に結晶粒を配向させるために、約800℃に加熱した状態で塑性加工を行う。このような加熱を伴う工程を経て得られた焼結体や熱間塑性加工体は、全体では磁化が消失している。そのため、これら焼結体や熱間塑性加工体を磁石として使用するためには、磁界を印加することにより、それらを磁化させる処理を行わねばならない。このような処理を「着磁」と呼ぶ。
In the RFeB magnet, the coercive force can be sufficiently increased by using both the grain boundary diffusion method and the crystal grain refining method. However, in order to use a magnet incorporated in an automobile motor or the like, it is necessary not only to increase the coercive force but also to increase the magnetization characteristics. The reason will be described below.
When manufacturing an RFeB-based sintered magnet, it is heated to a temperature (usually 1000 ° C. or higher) higher than the Curie temperature (about 310 ° C.) in the sintering process. Also, when manufacturing an RFeB-based hot plastic working magnet, plastic working is performed in a state heated to about 800 ° C. in order to form and to orient the crystal grains. Magnetization has disappeared as a whole in the sintered body and hot plastic processed body obtained through such a process involving heating. Therefore, in order to use these sintered bodies and hot plastic processed bodies as magnets, a process of magnetizing them must be performed by applying a magnetic field. Such a process is called “magnetization”.

着磁特性は、着磁処理後における残留磁束密度の、完全に着磁した場合に得られるべき残留磁束密度に対する比で定義される着磁率により示される。着磁率は着磁処理時に用いる磁界の強度に依存するが、本発明では強度が20kOe((20×106/4π)A/m)である磁界を用いて着磁処理を行った場合の着磁率を着磁特性の指標として用いる。その理由は、RFeB系磁石を用いた製品(例えばモータ)のメーカ(本段落において「製品メーカ」と呼ぶ)の多くが用いる着磁装置の最大磁界強度が20kOe程度であるためである。ここで製品メーカが用いる着磁装置が問題となるのは、着磁後のRFeB系磁石は強力な磁化を有することから取り扱いが難しく、多くの場合、製品メーカは着磁前の焼結体や熱間塑性加工体を仕入れ、それらを製品に組み込んだ後に着磁処理を行うためである。 The magnetization characteristic is indicated by the magnetization rate defined by the ratio of the residual magnetic flux density after the magnetization process to the residual magnetic flux density that should be obtained when the magnetic flux is completely magnetized. Although the magnetization rate depends on the strength of the magnetic field used during the magnetization process, in the present invention, the magnetization is performed when the magnetization process is performed using a magnetic field having a strength of 20 kOe ((20 × 10 6 / 4π) A / m). Magnetic susceptibility is used as an index of magnetization characteristics. The reason is that the maximum magnetic field strength of the magnetizing device used by many manufacturers of products (for example, motors) using RFeB magnets (referred to as “product manufacturers” in this paragraph) is about 20 kOe. The problem with the magnetizing device used by the product manufacturer is that the magnetized RFeB magnet has strong magnetization and is difficult to handle. This is because magnetizing treatment is performed after purchasing hot plastic workpieces and incorporating them into the product.

磁石としてはもちろん保磁力という特性が重要であるものの、実用上は前述のとおり、着磁性も重要な特性である。本発明者は、両特性を共に高める研究を進めるうちに、上記のように保磁力を高めるための処理を行うことにより、着磁特性が低下することを発見した。本発明が解決しようとする課題は、保磁力を高めるための処理を行ったものにおいて、20kOe程度の比較的弱い磁界でも十分に着磁することができるRFeB系磁石を提供することである。   As a magnet, of course, the coercive property is important, but as mentioned above, magnetism is also an important property for practical use. The present inventor has discovered that the magnetization characteristics are lowered by performing the process for increasing the coercive force as described above while researching to improve both characteristics. The problem to be solved by the present invention is to provide an RFeB-based magnet that can be sufficiently magnetized even with a relatively weak magnetic field of about 20 kOe in a case where processing for increasing the coercive force is performed.

本発明者が行った前記研究の成果によると、保磁力を高めるための処理を行った場合に着磁特性が低下する原因は、保磁力が高い、すなわち磁化が反転しにくい、という特性が、着磁の際には、磁石全体として磁化を1方向に揃えるべく磁界を印加しても各結晶粒の磁化の向きが変わりにくいというデメリットになることにあると考えられる。   According to the results of the above research conducted by the present inventors, the cause of the decrease in the magnetization characteristics when processing for increasing the coercive force is that the coercive force is high, that is, the characteristic that magnetization is difficult to reverse, When magnetizing, it is considered that there is a demerit that even if a magnetic field is applied so that the magnetization of the entire magnet is aligned in one direction, the magnetization direction of each crystal grain is hardly changed.

そこで本発明者は、保磁力を向上させるために結晶粒の微細化及び粒界拡散処理を行いつつ、着磁特性低下の要因を除去することにより、保磁力が高く且つ着磁特性の良好なRFeB系磁石を得ることができると考え、本発明を成すに到った。   Therefore, the present inventor performs high-coercivity and good magnetization characteristics by removing the cause of deterioration of the magnetization characteristics while performing grain refinement and grain boundary diffusion treatment in order to improve the coercivity. It was considered that an RFeB magnet could be obtained, and the present invention was achieved.

すなわち、上記課題を解決するために成された本発明に係るRFeB系磁石の製造方法は、希土類元素RとしてNd及びPrから構成される群のうちの少なくとも1種である軽希土類元素RLを含有するRFeB系磁石を製造する方法であって、
平均粒径が5μm未満である、RFeB系磁石の原料合金の粉末からRFeB系磁石の着磁前基材を作製する着磁前基材作製工程と、
前記着磁前基材の表面に、Tb、Dy及びHoから構成される群のうちの少なくとも1種である重希土類元素RHを含有する付着物を付着させた状態で所定温度に加熱する粒界拡散処理工程と、
前記粒界拡散処理工程後の前記着磁前基材を機械加工によって最終製品の形状に成形することにより精加工体を作製する精加工工程と、
前記精加工体を200〜900℃の温度に加熱する精加工後加熱工程と
を行うことを特徴とする。
That is, the RFeB-based magnet manufacturing method according to the present invention, which has been made to solve the above-described problems, includes a light rare earth element RL that is at least one of the group consisting of Nd and Pr as the rare earth element R. A method for producing a contained RFeB-based magnet,
An average particle size of less than 5 μm, a pre-magnetization base material preparation step for preparing a pre-magnetization base material of an RFeB-based magnet from a raw material alloy powder of an RFeB-based magnet,
Particles that are heated to a predetermined temperature in a state where a deposit containing a heavy rare earth element RH , which is at least one of the group consisting of Tb, Dy, and Ho, is adhered to the surface of the base before magnetization. A field diffusion treatment process;
A precision processing step of producing a precision processed body by forming the base material before magnetization after the grain boundary diffusion treatment step into a shape of a final product by machining;
And a heating step after the fine processing for heating the precision processed body to a temperature of 200 to 900 ° C.

従来、RFeB系焼結磁石やRFeB系熱間塑性加工磁石を製造する際には、1000℃以上の温度で焼結又は800℃程度の温度で熱間塑性加工処理を行った後に、保磁力を高めるためにそれらの温度よりも低い温度で「時効処理」と呼ばれる熱処理を行い(例えば特許文献2参照)、その後に機械加工(精加工)を行うことによって最終製品の形状に成形し、最後に(あるいはこの段階で出荷したうえで、出荷先において)着磁処理が行われている。また、従来は、精加工の後に加熱すると、温度によっては、表面にスケールが生成されることや寸法精度が低下することなどの問題が発生することが懸念されていたため、一般的には、精加工の後には熱処理が行われていなかった。本発明者は、このような従来の製造方法を検討した結果、着磁特性の低下は、保磁力を高めることだけではなく、精加工により成形体の表面に加工歪みが導入されることによっても生じていることを見出した。そして、本発明者は、精加工の後に200〜900℃の温度に加熱する精加工後加熱工程を行うことにより、加工歪みを除去することができ、それにより着磁特性を改善することができることを見出した。   Conventionally, when manufacturing RFeB-based sintered magnets and RFeB-based hot plastic working magnets, the coercive force is applied after sintering at a temperature of 1000 ° C or higher or hot plastic working at a temperature of about 800 ° C. In order to increase the temperature, a heat treatment called “aging treatment” is performed at a temperature lower than those temperatures (see, for example, Patent Document 2), and then machining (fine processing) is performed to form a final product shape. Magnetization processing is performed (or at the shipping destination after shipping at this stage). Conventionally, there has been a concern that heating after precision processing may cause problems such as the generation of scale on the surface and reduced dimensional accuracy depending on the temperature. No heat treatment was performed after processing. As a result of studying such a conventional manufacturing method, the present inventor has found that the decrease in magnetization characteristics is not only due to an increase in coercive force, but also due to the introduction of processing strain on the surface of the molded body by precision processing. I found out that it was happening. And this inventor can remove a process distortion by performing the heating process after precise processing heated to the temperature of 200-900 degreeC after precise processing, and can improve a magnetization characteristic by it. I found.

精加工後加熱工程における加熱温度を200℃未満とすると、加工歪みを十分に除去することができない。また、加熱温度が900℃を超えると、主相粒子が成長して径が大きくなるため、保磁力が低下してしまう。そのため、精加工後加熱工程における加熱温度は200〜900℃とする。   If the heating temperature in the post-precision processing heating step is less than 200 ° C., the processing strain cannot be removed sufficiently. On the other hand, when the heating temperature exceeds 900 ° C., the main phase particles grow and the diameter increases, so that the coercive force decreases. Therefore, the heating temperature in the heating step after the fine processing is set to 200 to 900 ° C.

本発明において、RFeB系磁石の原料合金の粉末における前記平均粒径は、レーザー式粉末粒度分布測定装置により測定される粒径の中央値で定める。
本発明において「RFeB系磁石の着磁前基材」とは、焼結処理や熱間塑性加工処理により得られ、R2Fe14Bを主相とする焼結体や熱間塑性加工体であって、未だ着磁処理が行われていないものをいう。
本発明において前記粒界拡散処理工程で行う処理は、従来よりRFeB系磁石を作製する際に行われている粒界拡散処理と同様のものである。前記粒界拡散処理工程における前記所定温度は、典型的には800〜1000℃であるが、この温度範囲には限定されず、従来の粒界拡散処理で用いられている温度であれば本発明にも適用される。
In the present invention, the average particle diameter of the raw material alloy powder of the RFeB magnet is determined by the median particle diameter measured by a laser type powder particle size distribution measuring apparatus.
In the present invention, the “substrate before magnetizing the RFeB-based magnet” is obtained by a sintering process or a hot plastic working process, and is a sintered body or hot plastic processed body having R 2 Fe 14 B as a main phase. This means that the magnetizing process has not yet been performed.
In the present invention, the treatment performed in the grain boundary diffusion treatment step is the same as the grain boundary diffusion treatment conventionally performed when producing an RFeB magnet. The predetermined temperature in the grain boundary diffusion treatment step is typically 800 to 1000 ° C., but is not limited to this temperature range, and may be any temperature used in conventional grain boundary diffusion treatment. Also applies.

なお、着磁処理は、前記精加工後加熱工程の後で行う。   The magnetizing process is performed after the heating process after the fine processing.

本発明において、前記精加工後加熱工程における加熱温度を400℃〜560℃とすることが望ましい。これにより、精加工後加熱工程における加熱が時効処理を兼ねる、すなわち着磁特性を高めるだけではなく保磁力も高めることができる。従って、別途時効処理を行う必要がなく、工程を簡素化することができる。また、加熱処理を複数回行うと、RFeB系焼結磁石やRFeB系熱間塑性加工磁石内において主相粒子の表面に形成されている、主相よりも希土類元素の含有量が多い希土類リッチ相が主相粒子の表面から剥離し、それにより保磁力が低下するという「過時効」が生じるのに対して、上記のように精加工後加熱工程の加熱を時効処理と兼ねることにより、時効処理に相当する加熱を1回のみとすることができ、保磁力の低下を防止することができる。   In the present invention, it is desirable that the heating temperature in the post-precision processing heating step is 400 ° C. to 560 ° C. Thereby, the heating in the heating step after the fine processing also serves as an aging treatment, that is, not only the magnetization characteristics but also the coercive force can be increased. Therefore, it is not necessary to perform an aging treatment separately, and the process can be simplified. In addition, when heat treatment is performed multiple times, a rare earth-rich phase with a higher rare earth element content than the main phase is formed on the surface of the main phase particles in the RFeB sintered magnet or RFeB hot plastic working magnet. Is peeled off from the surface of the main phase particles, thereby reducing the coercive force, whereas the aging treatment is performed by combining the heating in the heating step after fine processing with the aging treatment as described above. The heating corresponding to can be performed only once, and the reduction of the coercive force can be prevented.

前記着磁前基材作製工程において、前記原料合金の粉末に対して圧縮成形を行うことなく、該粉末をモールドに充填し、該モールド内の該粉末に対して磁界を印加することにより該粉末を配向し、該モールド内の該粉末を所定の焼結温度に加熱することにより、前記着磁前基材(RFeB系磁石の焼結体)を作製することが望ましい。このように原料合金の粉末に対して圧縮成形を行うことなくRFeB系磁石の焼結体を作製する方法はPLP(Pressless process)法と呼ばれる。PLP法の詳細は特許文献3に記載されている。PLP法によれば、プレス機を用いる必要がないため、原料合金の粉末が酸化することを防止するために不活性ガス雰囲気にすべき空間を小さくすることができる。そのため、PLP法は平均粒径5μm未満という粒径の小さい粉末を容易に取り扱うことができ、保磁力の向上に寄与する。また、PLP法は、粉末に圧力を印加しないことにより、配向時に粉末の粒子が磁界によるトルクによって回動しやすくなるため、残留磁束密度を高めることにも寄与する。   In the pre-magnetization base material preparation step, the powder is filled by filling the powder in the mold without compressing the raw alloy powder and applying a magnetic field to the powder in the mold. It is desirable to produce the base before magnetization (sintered body of RFeB magnet) by orienting and heating the powder in the mold to a predetermined sintering temperature. A method for producing a sintered body of an RFeB-based magnet without performing compression molding on the raw material alloy powder in this way is called a PLP (Pressless process) method. Details of the PLP method are described in Patent Document 3. According to the PLP method, since it is not necessary to use a press machine, it is possible to reduce the space to be in an inert gas atmosphere in order to prevent the raw alloy powder from being oxidized. Therefore, the PLP method can easily handle a powder with a small average particle size of less than 5 μm and contributes to an improvement in coercive force. In addition, the PLP method contributes to increasing the residual magnetic flux density because the powder particles are easily rotated by the torque generated by the magnetic field during orientation by not applying pressure to the powder.

本発明により、RFeB系焼結磁石やRFeB系熱間塑性加工磁石の加工歪みを除去することで、保磁力を高めるための処理を行ったRFeB系磁石において20kOe程度の比較的弱い磁界でも十分に着磁することができるようになる。   According to the present invention, by removing the processing strain of the RFeB-based sintered magnet or RFeB-based hot plastic working magnet, the RFeB-based magnet that has been processed to increase the coercive force can be used with a relatively weak magnetic field of about 20 kOe. It becomes possible to magnetize.

本発明に係るRFeB系磁石の製造方法の一実施形態の概略を示すフローチャート。The flowchart which shows the outline of one Embodiment of the manufacturing method of the RFeB type magnet which concerns on this invention. 本発明に係るRFeB系磁石の製造方法の一実施例により製造されたRFeB系磁石、及び比較例のRFeB系磁石について測定した着磁率を示すグラフ。The graph which shows the magnetization rate measured about the RFeB type magnet manufactured by one Example of the manufacturing method of the RFeB type magnet which concerns on this invention, and the RFeB type magnet of the comparative example. 本発明に係るRFeB系磁石の製造方法の他の実施例により製造されたRFeB系磁石、及び比較例のRFeB系磁石について測定した着磁率を示すグラフ。The graph which shows the magnetization rate measured about the RFeB type magnet manufactured by the other Example of the manufacturing method of the RFeB type magnet which concerns on this invention, and the RFeB type magnet of the comparative example. 粒径の異なる原料合金から製造された、本実施例及び比較例のRFeB系磁石について測定した着磁率を示すグラフ。The graph which shows the magnetization rate measured about the RFeB type magnet of the present Example and comparative example manufactured from the raw material alloy from which a particle size differs. 本実施例及び比較例のRFeB系磁石について行ったX線回折測定(X線の波長≒0.179nm)の結果を示すグラフ。The graph which shows the result of the X-ray-diffraction measurement (wavelength of X-ray ≒ 0.179nm) performed about the RFeB type | system | group magnet of a present Example and a comparative example. 図5のグラフの2θ=72°付近を拡大した図。The figure which expanded 2 (theta) = 72 degree vicinity of the graph of FIG.

図1〜図6を用いて、本発明に係るRFeB系磁石の製造方法の実施形態を説明する。
本実施形態では、図1に示すように、(1)着磁前基材作製工程、(2)粒界拡散処理工程、(3)精加工工程、(4)精加工後加熱工程、(5)着磁工程の順で各工程を実施することにより、RFeB系磁石を製造する。以下、各工程を詳しく説明する。
1 to 6, an embodiment of a method for manufacturing an RFeB magnet according to the present invention will be described.
In this embodiment, as shown in FIG. 1, (1) pre-magnetization base material preparation step, (2) grain boundary diffusion treatment step, (3) fine processing step, (4) post-fine processing heating step, (5 ) RFeB magnets are manufactured by performing each step in the order of the magnetizing step. Hereinafter, each process will be described in detail.

(1)着磁前基材作製工程
この工程では、RFeB系焼結磁石やRFeB系熱間塑性加工磁石における従来の製造方法において、着磁前に行われている工程をそのまま用いることができる。RFeB系焼結磁石の着磁前基材の作製には、旧来より行われているプレス法と、上記PLP法のいずれも用いることができるが、上述の理由によりPLP法を用いることが望ましい。RFeB系熱間塑性加工磁石の着磁前基材の作製には、例えば特許文献4に記載の方法を用いることができる。なお、着磁前基材では、作製時にRFeB系磁石のキュリー温度(約310℃)よりも高温まで加熱されているため、残留磁化は発生しない。
(1) Substrate preparation step before magnetization In this step, the steps performed before magnetization in the conventional manufacturing method for RFeB sintered magnets and RFeB hot plastic working magnets can be used as they are. For producing the base material before magnetizing the RFeB-based sintered magnet, both the conventional press method and the above PLP method can be used, but it is desirable to use the PLP method for the above-mentioned reasons. For example, the method described in Patent Document 4 can be used to prepare the base material before magnetizing the RFeB hot plastic working magnet. In addition, since the base material before magnetization is heated to a temperature higher than the Curie temperature (about 310 ° C.) of the RFeB magnet at the time of production, no residual magnetization is generated.

プレス法では、原料であるRFeB系の合金粉末をモールドに充填した後、プレス機で圧力を印加することにより、最終製品に近い形状の成形体を作製する。このプレス機での成形の前又は成形と同時に、合金粉末に磁界を印加することにより、合金粉末を配向させる。その後、成形体を所定の焼結温度(1000〜1100℃)に加熱することにより、着磁前基材が得られる。   In the pressing method, a RFeB-based alloy powder as a raw material is filled in a mold, and then a pressure is applied by a press to produce a molded body having a shape close to the final product. The alloy powder is oriented by applying a magnetic field to the alloy powder before or simultaneously with the molding by the press. Then, a base material before magnetization is obtained by heating a molded object to predetermined sintering temperature (1000-1100 degreeC).

PLP法では、最終製品に近い形状のモールドにRFeB系の合金粉末を充填した後、圧力を印加することなく磁界を印加することにより合金粉末を配向させ、合金粉末をモールドに入れたまま圧力を印加することなく焼結温度に加熱することにより、着磁前基材が得られる。このPLP法では、プレス機を用いた成形を行わないことから、無酸素雰囲気下での作業が容易になるため、プレス法の場合よりも粒径の小さい合金粉末を容易に取り扱うことができ、それにより保磁力を高めることができる。また、プレス法よりも低い900〜1000℃という焼結温度であっても着磁前基材を得ることができる。   In the PLP method, an RFeB-based alloy powder is filled in a mold having a shape close to the final product, and then the alloy powder is oriented by applying a magnetic field without applying pressure, and the pressure is applied while the alloy powder remains in the mold. By heating to the sintering temperature without applying, a base material before magnetization is obtained. In this PLP method, since molding using a press machine is not performed, work in an oxygen-free atmosphere becomes easy, so alloy powder having a smaller particle diameter than the case of the press method can be handled easily. Thereby, the coercive force can be increased. Moreover, the base material before magnetization can be obtained even at a sintering temperature of 900 to 1000 ° C., which is lower than that of the pressing method.

着磁前基材には、RFeB系の焼結体や熱間塑性加工体をそのまま用いてもよいが、希土類元素RがNdやPr等の軽希土類元素の場合には、上述の粒界拡散法による処理を施した焼結体や熱間塑性加工体を用いることにより、保磁力を高めることができる。   As the base material before magnetization, an RFeB-based sintered body or a hot plastic processed body may be used as it is, but when the rare earth element R is a light rare earth element such as Nd or Pr, the above-mentioned grain boundary diffusion is used. The coercive force can be increased by using a sintered body or a hot plastic processed body that has been treated by the method.

(2) 粒界拡散処理工程
粒界拡散処理工程においても、従来の粒界拡散処理をそのまま用いることができる。具体的には、着磁前基材の表面に、Tb、Dy及びHoのうちのいずれか1種又は複数種(重希土類元素RH)を含有する付着物を付着させ、所定温度に加熱する。付着物は重希土類元素RHの単体(金属)であってもよいし、他の元素との合金や化合物であってもよい。また、付着物には、粉体、粉体をグリースや液体等に混入させたもの、箔状にしたものなど、種々の形態のものを用いることができる。前記所定温度は、典型的には上述のように800〜1000℃であるが、この温度範囲には限定されない。
(2) Grain boundary diffusion treatment process Also in the grain boundary diffusion treatment process, the conventional grain boundary diffusion treatment can be used as it is. Specifically, an adhering material containing one or more of Tb, Dy, and Ho (heavy rare earth element R H ) is attached to the surface of the base material before magnetization and heated to a predetermined temperature. . The deposit may be a single element (metal) of heavy rare earth element RH , or may be an alloy or compound with another element. In addition, as the deposit, various forms such as powder, powder mixed with grease or liquid, and foil can be used. The predetermined temperature is typically 800 to 1000 ° C. as described above, but is not limited to this temperature range.

(3)精加工工程
上記の各方法(焼結法であるプレス法及びPLP法、並びに熱間塑性加工)ではいずれも、最終製品に近い形状の着磁前基材を得ることができるものの、最終製品で要求される精度の寸法には合致せず、正確な形状にはならない。また、粒界拡散処理のために着磁前基材の表面に付着させた付着物が残存することによっても、形状の狂いが生じる。そのため、粒界拡散処理工程を行った着磁前基材を、機械加工によって最終製品の形状にする。機械加工には、単純に切断するという方法を取ることもできるが、より精度の高い加工面を形成するためには切削加工を行うことが望ましい。また、高精度の加工が必要な面のみを切削加工し、その他の面は切断により形成してもよい。例えば、板状磁石において、板の表裏2面のみを切削によって高精度に加工し、4つの側面では切断を行ってもよい。
なお、この精加工工程の前に、着磁前基材を加熱する時効処理を行ってもよいが、この段階では時効処理を行わずに、次に述べる精加工後加熱工程のみを行う方が望ましい。
(3) Precision processing step Although each of the above methods (press method and PLP method which are sintering methods, and hot plastic processing) can obtain a pre-magnetization base material having a shape close to the final product, It does not meet the accuracy dimensions required for the final product and does not have an accurate shape. In addition, a shape deviation also occurs due to the remaining deposits adhered to the surface of the substrate before magnetization for the grain boundary diffusion treatment. Therefore, the base material before magnetization that has undergone the grain boundary diffusion treatment step is formed into a final product shape by machining. For machining, a simple cutting method can be used, but it is desirable to perform cutting in order to form a machined surface with higher accuracy. Alternatively, only the surface that requires high-precision processing may be cut and the other surfaces may be formed by cutting. For example, in a plate-like magnet, only the front and back surfaces of the plate may be processed with high precision by cutting, and the four side surfaces may be cut.
Before this fine processing step, an aging treatment for heating the pre-magnetization substrate may be performed, but at this stage, it is preferable to perform only the post-fine processing heating step described below without performing the aging treatment. desirable.

(4)精加工後加熱工程
次に、上記精加工工程によって得られた精加工体を加熱する(精加工後加熱工程)。これにより、精加工の際に生じた加工歪みを除去することができる。前述のように、加熱温度は200〜900℃であり、400〜560℃とすることが望ましい。加熱時間は特に問わないが、10分未満であると充分に加工歪みを除去することができず、24時間を超えて加熱を行ってもそれ以上は加工歪みを除去する効果が得られない。そのため、加熱時間は10分〜24時間とすることが望ましい。
(4) Heating step after fine processing Next, the fine processed body obtained by the above-described fine processing step is heated (heating step after fine processing). Thereby, the process distortion which arose during the precision process can be removed. As described above, the heating temperature is 200 to 900 ° C, and preferably 400 to 560 ° C. The heating time is not particularly limited, but if it is less than 10 minutes, the processing strain cannot be sufficiently removed, and even if heating is performed for more than 24 hours, the effect of removing the processing strain is not obtained any more. Therefore, the heating time is desirably 10 minutes to 24 hours.

本実施形態において、精加工工程の前には時効処理を行わず、精加工後加熱工程において400℃〜560℃に加熱することが望ましい。これにより、加工歪みの除去と時効処理を同時に行うことができる。これにより、単に製造工程を簡素化するだけでなく、過時効を防止して保磁力を向上させる効果も奏する。   In this embodiment, it is desirable not to perform the aging treatment before the fine processing step, and to heat to 400 ° C. to 560 ° C. in the heating step after the fine processing. Thereby, removal of a process distortion and an aging treatment can be performed simultaneously. This not only simplifies the manufacturing process, but also has the effect of preventing overaging and improving coercivity.

また、精加工体が酸化することを防止するため、精加工後加熱工程は真空又は不活性ガス雰囲気中で行うことが望ましい。   In order to prevent the finely processed body from being oxidized, it is desirable to perform the heating process after the fine processing in a vacuum or an inert gas atmosphere.

(5)着磁工程
精加工後加熱工程を経た精加工体に、1方向に磁界を印加することにより、精加工体を着磁させる。これにより、RFeB系焼結磁石、あるいはRFeB系熱間塑性加工磁石が完成する。本実施形態では、精加工後に加熱を行うことによって着磁特性が向上するため、着磁の際に印加する磁界は、通常と同様に20kOe程度あればよい。もちろん、より着磁率を高めるために、20kOeよりも強い磁界で着磁させてもよい。また、RFeB系磁石の製造業者は着磁工程を行わずに、RFeB系磁石を用いた製品(モータなど)の製造業者が着磁工程を行ってもよい。
(5) Magnetization process The fine processed body is magnetized by applying a magnetic field in one direction to the fine processed body that has undergone the heating process after the fine processing. Thereby, the RFeB system sintered magnet or the RFeB system hot plastic working magnet is completed. In this embodiment, since the magnetization characteristics are improved by heating after precision processing, the magnetic field applied during magnetization may be about 20 kOe as usual. Of course, in order to further increase the magnetization rate, the magnetic field may be magnetized with a magnetic field stronger than 20 kOe. Further, the manufacturer of the RFeB-based magnet may perform the magnetizing step without performing the magnetizing step, and the manufacturer of the product (such as a motor) using the RFeB-based magnet may perform the magnetizing step.

以下、本発明の方法を用いて実際にRFeB系磁石を作製した例を示す。
(a)本実施例のRFeB系磁石の作製方法
(a-1) 着磁前基材作製工程
本実施例では、着磁前基材には、PLP法により作製した焼結体を用いた。具体的は、以下の方法により着磁前基材を作製した。
まず、ストリップキャスト法によりNd:26.6重量%、Pr:4.7重量%、Fe:65.5重量%、Co:1.9重量%、B:1.0重量%、Al:0.2重量%、Cu:0.1重量%という組成を有する原料合金片を作製し、該原料合金片を水素解砕した後、ジェットミルを用いて微粉砕した。これにより、平均粒径が(i)3μm、(ii)4μmの原料合金粉末を作製した。以下、(i)の粉末を「3μm粉末」、(ii)の粉末を「4μm粉末」と呼ぶ。
Hereinafter, an example in which an RFeB magnet was actually produced using the method of the present invention will be shown.
(a) Production method of RFeB magnet of this example
(a-1) Pre-magnetization base material preparation step In this example, a sintered body prepared by the PLP method was used as the pre-magnetization base material. Specifically, the base material before magnetization was produced by the following method.
First, Nd: 26.6 wt%, Pr: 4.7 wt%, Fe: 65.5 wt%, Co: 1.9 wt%, B: 1.0 wt%, Al: 0.2 wt%, Cu: 0.1 wt% by strip casting method A raw material alloy piece was prepared, and the raw material alloy piece was hydrogen crushed and then finely pulverized using a jet mill. As a result, raw material alloy powders having an average particle diameter of (i) 3 μm and (ii) 4 μm were produced. Hereinafter, the powder of (i) is referred to as “3 μm powder”, and the powder of (ii) is referred to as “4 μm powder”.

得られた各原料合金粉末を、内部が89mm×62mm×6.5mmの直方体であるモールドに充填した後、原料合金粉末を圧縮成形することなく、5.5Tの磁界により配向させた。その後、原料合金粉末をモールドに入れたまま(圧力を印加することなく)、1010℃に加熱することにより、板状のRFeB系焼結体を得た。続いて、RFeB系焼結体を、大きさが約72mm×50mm、厚みが約2.3mmになるように加工(なお、この加工は精加工ではない)することにより、着磁前基材を得た。以下、3μm粉末から作製した着磁前基材を「3μm基材」、4μm粉末から作製した着磁前基材を「4μm基材」と呼ぶ。   Each of the obtained raw material alloy powders was filled into a mold having a rectangular parallelepiped with an inside of 89 mm × 62 mm × 6.5 mm, and then the raw material alloy powder was oriented by a 5.5 T magnetic field without compression molding. Thereafter, the raw material alloy powder was heated to 1010 ° C. while being put in the mold (without applying pressure) to obtain a plate-like RFeB-based sintered body. Subsequently, the pre-magnetization base material is obtained by processing the RFeB-based sintered body to a size of approximately 72 mm x 50 mm and a thickness of approximately 2.3 mm (this process is not a precision process). It was. Hereinafter, the pre-magnetization base material prepared from 3 μm powder is referred to as “3 μm base material”, and the pre-magnetization base material prepared from 4 μm powder is referred to as “4 μm base material”.

(a-2) 粒界拡散処理工程
この着磁前基材の表面に、Tb-Ni-Al合金を含有する粉末を付着させたうえで、875℃に加熱する粒界拡散処理を行った。
(a-2) Grain boundary diffusion treatment step After the powder containing the Tb-Ni-Al alloy was adhered to the surface of the substrate before magnetization, the grain boundary diffusion treatment was performed by heating to 875 ° C.

一部の3μm基材及び4μm基材に対しては、次の精加工工程を行う前に、520℃に加熱することにより時効処理を行った。   Some 3 μm base materials and 4 μm base materials were subjected to an aging treatment by heating to 520 ° C. before performing the next precision processing step.

(a-3) 精加工工程
各基材において、表裏2つの板面に対して切削加工を行った後、ワイヤカッターで厚み方向に切断することにより側面(4面)を形成することにより、板面の大きさ6.0mm×6.0mm、厚み2.0mmの精加工体を得た。
(a-3) Precise processing step After cutting the front and back two plate surfaces in each base material, by cutting in the thickness direction with a wire cutter, the side surfaces (four surfaces) are formed. A precision processed body having a surface size of 6.0 mm × 6.0 mm and a thickness of 2.0 mm was obtained.

(a-4) 精加工後加熱工程
得られた精加工体を、Arガス雰囲気中において200〜520℃の範囲内のいずれかの温度に加熱した。時効処理を行っていない3μm基材から得られた精加工体では、精加工後加熱工程における加熱温度を520℃とした(以下、「実施例1」と呼ぶ)。また、時効処理を行った3μm基材から得られた精加工体では、500℃、400℃、300℃、200℃という異なる4種類の温度で精加工後加熱を行った(以下、「実施例2」(500℃)、「実施例3」(同400℃)、「実施例4」(300℃)及び「実施例5」(200℃)とする)。4μm基材から得られた精加工体では、500℃で精加工後加熱を行った(以下、「実施例6」とする)。なお、本実施例では加熱温度を上記温度範囲内としたが、本発明では900℃程度まで加熱してもよい。
(a-4) Heating step after fine processing The obtained fine processed body was heated to any temperature within a range of 200 to 520 ° C. in an Ar gas atmosphere. In the finely processed body obtained from the 3 μm base material not subjected to the aging treatment, the heating temperature in the heating step after the fine processing was set to 520 ° C. (hereinafter referred to as “Example 1”). In addition, the precision processed body obtained from the aging-treated 3 μm base material was heated after precision processing at four different temperatures of 500 ° C., 400 ° C., 300 ° C. and 200 ° C. (hereinafter referred to as “Examples”). 2 ”(500 ° C.),“ Example 3 ”(400 ° C.),“ Example 4 ”(300 ° C.), and“ Example 5 ”(200 ° C.)). The precision processed body obtained from the 4 μm base material was heated after precision processing at 500 ° C. (hereinafter referred to as “Example 6”). In this embodiment, the heating temperature is within the above temperature range, but in the present invention, the heating temperature may be up to about 900 ° C.

(a-5) 着磁(磁界の印加)工程
精加工体を2枚重ねて1組とした試料に対して空心コイルを用いて、50kOe以下の範囲内の印加磁界で着磁を行った。具体的には、ある1組の試料に対し、印加磁界が小さい方から順に各磁界での着磁を行い、着磁が終了する度に、フラックスメータを用いて磁束を求めた。ここで、印加磁界が50kOeのときの試料を完全着磁とみなし、「(それぞれの印加磁界における磁束)/(印加磁界が50kOeであるときの磁束)×100」を、その磁界における着磁率として求めた。磁束の測定は、電子磁気工業株式会社製のフラックスメータを用いて行った。
(a-5) Magnetization (application of magnetic field) Steps were performed with a magnetic field within a range of 50 kOe or less, using an air-core coil on a sample consisting of two precision workpieces stacked together. Specifically, a set of samples was magnetized with each magnetic field in order from the smallest applied magnetic field, and the magnetic flux was obtained using a flux meter each time the magnetization was completed. Here, the sample when the applied magnetic field is 50 kOe is considered to be completely magnetized, and “(magnetic flux at each applied magnetic field) / (magnetic flux when the applied magnetic field is 50 kOe) × 100” is defined as the magnetization rate in the magnetic field. Asked. The magnetic flux was measured using a flux meter manufactured by Electron Magnetic Industry Co., Ltd.

(b)本実施例により得られたRFeB系磁石の特性
上記実施例1〜6の試料につき、保磁力、及び印加磁界が20kOeである場合の着磁率の測定結果を、上述した各試料の作製条件と合わせて表1に示す。表1には合わせて、後述の比較例1〜3の試料についても作製条件、並びに着磁率及び保磁力の測定結果を示す。実施例1〜6については、精加工後加熱を行う前と行った後の保磁力を示す。保磁力は、精加工体を2枚重ねて1組とした試料に対して、パルスコイル励磁型JH[BH]トレーサ(東英工業株式会社製)を用いて測定した。

Figure 2014209560
(b) Characteristics of RFeB-based magnets obtained in this example For the samples of Examples 1 to 6, the measurement results of the coercive force and the magnetization rate when the applied magnetic field is 20 kOe are shown in It shows in Table 1 together with conditions. Table 1 also shows the manufacturing conditions and the measurement results of the magnetization rate and the coercive force for samples of Comparative Examples 1 to 3 described later. Examples 1 to 6 show the coercive force before and after heating after precision processing. The coercive force was measured using a pulse coil excitation type JH [BH] tracer (manufactured by Toei Kogyo Co., Ltd.) on a sample obtained by stacking two precision processed bodies into one set.
Figure 2014209560

以下、表1の測定結果について説明する。
(b-1) 精加工後加熱工程の有無による比較
実施例1の試料と、以下に述べるように精加工後加熱工程を行っていない2つの試料(比較例1及び2)につき、着磁率を測定した結果を比較する。ここで、比較例1の試料は、精加工工程の前に520℃で時効処理を行った3μm基材であり、比較例2の試料は、時効処理を行っていない3μm基材である。実施例1と比較例1は、いずれも520℃で加熱を行っているが、加熱を行ったのが精加工工程の後(実施例1)であるか、精加工工程の前(比較例1)であるか、という点で相違する。
Hereinafter, the measurement results in Table 1 will be described.
(b-1) Comparison by presence / absence of heating process after fine processing For the sample of Example 1 and two samples (Comparative Examples 1 and 2) that have not been subjected to the heating process after fine processing as described below, the magnetization rate is calculated. Compare the measured results. Here, the sample of Comparative Example 1 is a 3 μm base material that has been subjected to an aging treatment at 520 ° C. before the fine processing step, and the sample of Comparative Example 2 is a 3 μm base material that has not been subjected to an aging treatment. Both Example 1 and Comparative Example 1 were heated at 520 ° C., but the heating was performed after the precision processing step (Example 1) or before the precision processing step (Comparative Example 1). ) Is different.

測定結果を図2のグラフに示す。このグラフより、比較例1及び比較例2よりも実施例1の方が、同じ強度の磁界で比較すると着磁率をより高くすることができ、同じ着磁率で比較するとより弱い磁界で着磁させることができることがわかる。例えば、実施例1では、通常の着磁装置で得られる20kOeという強度の磁界を印加したときに98%以上の着磁率が得られるのに対して、比較例1及び比較例2ではいずれも、磁界の強度が20kOeのときには着磁率が95%以下となり、98%以上の着磁率を得るためには30kOe以上という強い磁界が必要となる。   The measurement results are shown in the graph of FIG. From this graph, it is possible to make the magnetization rate higher in Example 1 than in Comparative Example 1 and Comparative Example 2 when compared with a magnetic field of the same strength, and magnetize with a weaker magnetic field when compared with the same magnetization rate. You can see that For example, in Example 1, when a magnetic field having a strength of 20 kOe obtained with a normal magnetizing apparatus is applied, a magnetization rate of 98% or more is obtained, whereas in Comparative Example 1 and Comparative Example 2, both are obtained. When the strength of the magnetic field is 20 kOe, the magnetization rate is 95% or less, and in order to obtain a magnetization rate of 98% or more, a strong magnetic field of 30 kOe or more is required.

(b-2) 精加工後加熱工程における加熱温度の相違
精加工後加熱工程における加熱温度が異なる実施例2〜5の試料につき、着磁率を測定した結果を、図3のグラフを用いて比較する。図3には、比較例1の試料の着磁率も併せて示す。実施例2〜5のいずれも、比較例1よりも、同じ強度の磁界で比較すると着磁率をより高くすることができ、同じ着磁率で比較するとより弱い磁界で着磁させることができた。特に、実施例2及び3では、磁界の強度が20kOeのときに、98%以上という高い着磁率が得られた。また、加熱温度が200℃である実施例5においても、実施例2〜4ほどではないが、比較例1と比較して着磁率の向上が見られた。
(b-2) Difference in heating temperature in the heating process after the fine processing The results of measuring the magnetization rate of the samples of Examples 2 to 5 having different heating temperatures in the heating process after the fine processing are compared using the graph of FIG. To do. FIG. 3 also shows the magnetization rate of the sample of Comparative Example 1. In any of Examples 2 to 5, when compared with a magnetic field having the same strength as in Comparative Example 1, the magnetization rate could be increased, and when compared with the same magnetization rate, magnetization could be performed with a weaker magnetic field. In particular, in Examples 2 and 3, a high magnetization rate of 98% or more was obtained when the magnetic field strength was 20 kOe. Further, in Example 5 where the heating temperature was 200 ° C., although not as much as in Examples 2 to 4, an improvement in the magnetic permeability was observed as compared with Comparative Example 1.

(b-3) 原料合金粉末の粒径による比較
次に、精加工後加熱工程における加熱温度が等しく(500℃)、原料合金の粒径が異なる実施例2(粒径3μm)及び実施例6(粒径4μm)につき、着磁率を測定した結果を、図4のグラフを用いて比較する。このグラフには併せて、比較例1、及び精加工工程の前に時効処理を行い、精加工工程には加熱処理を行っていない4μm基材(比較例3)の試料の着磁率を測定した結果も示す。実施例6と実施例2を比較すると、原料合金の粒径が大きい実施例6の方が、各磁界における着磁率が高くなっている。これは、実施例6の方が、原料合金の粒径が大きいことにより、最終的に得られたRFeB系焼結磁石の粒径も大きくなっていることによると考えられる。また、実施例2の方が比較例1よりも着磁率が高く、また実施例6の方が比較例3よりも着磁率が高くなっており、本発明の方法により、粒径に依らずに着磁率を向上することが確認できた。
(b-3) Comparison by raw material alloy powder particle size Next, Example 2 (particle size 3 μm) and Example 6 in which the heating temperature in the heating step after fine processing is equal (500 ° C.) and the particle size of the raw material alloy is different The results of measuring the magnetization rate for (particle size 4 μm) are compared using the graph of FIG. In addition to this graph, the magnetic susceptibility of a sample of a 4 μm base material (Comparative Example 3) that was subjected to aging treatment before Comparative Example 1 and the precision processing step and not subjected to heat treatment in the precision processing step was measured. Results are also shown. When Example 6 and Example 2 are compared, the magnetization rate in each magnetic field is higher in Example 6 in which the particle diameter of the raw material alloy is larger. This is considered to be due to the fact that in Example 6, the particle diameter of the RFeB-based sintered magnet finally obtained is larger due to the larger particle diameter of the raw material alloy. In addition, the magnetization rate of Example 2 is higher than that of Comparative Example 1, and the magnetization rate of Example 6 is higher than that of Comparative Example 3. By the method of the present invention, the magnetization rate does not depend on the particle size. It was confirmed that the magnetization rate was improved.

(b-4) 保磁力
実施例1〜6ではいずれも、23.6〜25.6kOeという高い保磁力が得られている。また、精加工後加熱を行う前と行った後では保磁力が変化していない。このように、本実施例では精加工後加熱によって、高い保磁力を維持しつつ着磁率を向上させることができた。
(b-4) Coercive force In each of Examples 1 to 6, a high coercive force of 23.6 to 25.6 kOe was obtained. In addition, the coercive force does not change before and after heating after precision processing. Thus, in this example, the magnetization rate could be improved while maintaining a high coercive force by heating after fine processing.

(b-5) X線回折測定
実施例1と比較例2の試料につき、X線回折測定(2θスキャン)を行った結果を図5に示すと共に、得られたピークのうちの1つ(2θ=72°付近のもの)を拡大して図6に示す。測定に用いたX線はCo-Kα線である。Co-Kα線は、Co原子のL殻からK殻に電子が遷移する際に生じるX線であり、L殻の縮退が解けていることにより、波長が0.1789nmであるCo-Kα1線と、波長が0.1793nmであるCo-Kα2線という、2種の波長のX線が混合した状態で生じる。図6に示すように、実施例1ではCo-Kα1線とCo-Kα2線による2つのピークが重なりつつも、ピークトップが分離しているが、比較例2ではピークトップの分離が見られない。また、ピークの半値全幅は、実施例1では0.36°であるのに対して、比較例2では実施例1よりも広い0.66°である。これらの結果は、比較例2よりも実施例1の方が、RFeB系磁石を構成する個々の微結晶における結晶構造の欠陥や歪みが少ないことを意味している。このX線回折測定のデータは、本発明の方法で行う精加工後加熱工程により、前述の通り、加工歪みを除去できることを裏付けている。
(b-5) X-ray diffraction measurement For the samples of Example 1 and Comparative Example 2, the results of X-ray diffraction measurement (2θ scan) are shown in FIG. 5 and one of the obtained peaks (2θ FIG. 6 shows an enlarged view of a region around = 72 °. The X-ray used for the measurement is a Co—Kα ray. Co-K [alpha rays, X-rays produced when electrons transition to K-shell from the L shell of Co atoms, by degeneration of L shell is melted, the Co-K [alpha 1 line wavelength is 0.1789nm occurs in a state in which the wavelength is called Co-K [alpha 2 line is 0.1793Nm, X-ray of the two wavelengths are mixed. As shown in FIG. 6, in Example 1, the peak tops are separated while the two peaks of the Co—Kα 1 line and the Co—Kα 2 line overlap, but in Comparative Example 2, the peak tops are separated. I can't. Further, the full width at half maximum of the peak is 0.36 ° in Example 1, whereas it is 0.66 ° which is wider in Example 2 than in Example 1. These results indicate that Example 1 has fewer crystal structure defects and distortions in the individual microcrystals constituting the RFeB magnet than Comparative Example 2. The data of this X-ray diffraction measurement supports that the processing distortion can be removed as described above by the heating step after fine processing performed by the method of the present invention.

なお、上記実施例では原料合金粉末には平均粒径が3μm及び4μmのものを用いたが、本発明ではこれらの平均粒径に限定されない。平均粒径が5μm未満であれば、3μm未満の場合や4μmを超える場合であっても、高い保磁力を有するRFeB系磁石の基材が得られ、そのような基材に対して本実施例と同様の精加工後加熱を行うことにより、保磁力及び着磁特性が共に高いRFeB系磁石を得ることができる。   In the above examples, raw material alloy powders having an average particle diameter of 3 μm and 4 μm were used, but the present invention is not limited to these average particle diameters. If the average particle size is less than 5 μm, even if it is less than 3 μm or more than 4 μm, an RFeB-based magnet base material having a high coercive force can be obtained. RFeB magnets having both high coercive force and high magnetization characteristics can be obtained by performing post-precision heating similar to the above.

Claims (6)

希土類元素RとしてNd及びPrから構成される群のうちの少なくとも1種である軽希土類元素RLを含有するRFeB系磁石を製造する方法であって、
平均粒径が5μm未満である、RFeB系磁石の原料合金の粉末からRFeB系磁石の着磁前基材を作製する着磁前基材作製工程と、
前記着磁前基材の表面に、Tb、Dy及びHoから構成される群のうちの少なくとも1種である重希土類元素RHを含有する付着物を付着させた状態で所定温度に加熱する粒界拡散処理工程と、
前記粒界拡散処理工程後の前記着磁前基材を機械加工によって最終製品の形状に成形することにより精加工体を作製する精加工工程と、
前記精加工体を200〜900℃の温度に加熱する精加工後加熱工程と
を行うことを特徴とするRFeB系磁石の製造方法。
A method for producing an RFeB-based magnet containing a light rare earth element RL that is at least one of the group consisting of Nd and Pr as the rare earth element R,
An average particle size of less than 5 μm, a pre-magnetization base material preparation step for preparing a pre-magnetization base material of an RFeB-based magnet from a raw material alloy powder of an RFeB-based magnet,
Particles that are heated to a predetermined temperature in a state where a deposit containing a heavy rare earth element RH , which is at least one of the group consisting of Tb, Dy, and Ho, is adhered to the surface of the base before magnetization. A field diffusion treatment process;
A precision processing step of producing a precision processed body by forming the base material before magnetization after the grain boundary diffusion treatment step into a shape of a final product by machining;
A method for producing an RFeB-based magnet, comprising performing a heating step after fine processing for heating the fine processed body to a temperature of 200 to 900 ° C.
前記精加工後加熱工程において前記精加工体を400℃〜560℃に加熱することを特徴とする請求項1に記載のRFeB系磁石の製造方法。   The method for producing an RFeB-based magnet according to claim 1, wherein the finely processed body is heated to 400 ° C to 560 ° C in the heating step after the fine processing. 前記精加工後加熱工程を真空又は不活性ガス雰囲気中で行うことを特徴とする請求項1又は2に記載のRFeB系磁石の製造方法。   The method for producing an RFeB magnet according to claim 1 or 2, wherein the heating step after the fine processing is performed in a vacuum or an inert gas atmosphere. 前記精加工工程において切削加工を行うことを特徴とする請求項1〜3のいずれかに記載のRFeB系磁石の製造方法。   The RFeB magnet manufacturing method according to claim 1, wherein cutting is performed in the precision machining step. 前記着磁前基材作製工程において、前記原料合金の粉末に対して圧縮成形を行うことなく、該粉末をモールドに充填し、該モールド内の該粉末に対して磁界を印加することにより該粉末を配向し、該モールド内の該粉末を所定の焼結温度に加熱することにより、前記着磁前基材を作製することを特徴とする請求項1〜4のいずれかに記載のRFeB系磁石の製造方法。   In the pre-magnetization base material preparation step, the powder is filled by filling the powder in the mold without compressing the raw alloy powder and applying a magnetic field to the powder in the mold. The RFeB magnet according to any one of claims 1 to 4, wherein the pre-magnetization base material is produced by orienting and heating the powder in the mold to a predetermined sintering temperature. Manufacturing method. 前記焼結温度が900℃以上1000℃以下であることを特徴とする請求項5に記載のRFeB系磁石の製造方法。   The method for producing an RFeB magnet according to claim 5, wherein the sintering temperature is 900 ° C or higher and 1000 ° C or lower.
JP2014016932A 2013-03-29 2014-01-31 Method for producing RFeB magnet Active JP6372088B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014016932A JP6372088B2 (en) 2013-03-29 2014-01-31 Method for producing RFeB magnet
DE102014004513.7A DE102014004513A1 (en) 2013-03-29 2014-03-28 Method for producing a magnet based on RFeB
CN201410124530.7A CN104078179A (en) 2013-03-29 2014-03-28 RFeB-based magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013074340 2013-03-29
JP2013074340 2013-03-29
JP2014016932A JP6372088B2 (en) 2013-03-29 2014-01-31 Method for producing RFeB magnet

Publications (2)

Publication Number Publication Date
JP2014209560A true JP2014209560A (en) 2014-11-06
JP6372088B2 JP6372088B2 (en) 2018-08-15

Family

ID=51519890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016932A Active JP6372088B2 (en) 2013-03-29 2014-01-31 Method for producing RFeB magnet

Country Status (3)

Country Link
JP (1) JP6372088B2 (en)
CN (1) CN104078179A (en)
DE (1) DE102014004513A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575545B1 (en) * 2014-12-02 2015-12-08 현대자동차주식회사 Split type and incomplete split type non-magnetized permanent magnet and manufacturing method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140108A (en) * 1984-12-12 1986-06-27 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet
JPH0237702A (en) * 1988-07-27 1990-02-07 Hitachi Metals Ltd R-fe-b-m sintered magnet
US4968347A (en) * 1988-11-22 1990-11-06 The United States Of America As Represented By The United States Department Of Energy High energy product permanent magnet having improved intrinsic coercivity and method of making same
JPH06244046A (en) * 1993-02-18 1994-09-02 Seiko Epson Corp Manufacture of permanent magnet
JPH09139307A (en) * 1996-02-16 1997-05-27 Sumitomo Special Metals Co Ltd Anticorrosion permanent magnet
JP2004281493A (en) * 2003-03-13 2004-10-07 Shin Etsu Chem Co Ltd Process for producing permanent magnet material
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
WO2006004014A1 (en) * 2004-07-01 2006-01-12 Intermetallics Co., Ltd. Production method for magnetic-anisotropy rare-earth sintered magnet and production device therefor
JP2007180374A (en) * 2005-12-28 2007-07-12 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET
WO2009004794A1 (en) * 2007-07-02 2009-01-08 Hitachi Metals, Ltd. R-fe-b type rare earth sintered magnet and process for production of the same
JP2010135529A (en) * 2008-12-04 2010-06-17 Shin-Etsu Chemical Co Ltd Nd BASED SINTERED MAGNET, AND METHOD OF MANUFACTURING THE SAME
WO2011024936A1 (en) * 2009-08-28 2011-03-03 インターメタリックス株式会社 NdFeB SINTERED MAGNET PRODUCTION METHOD AND PRODUCTION DEVICE, AND NdFeB SINTERED MAGNET PRODUCED WITH SAID PRODUCTION METHOD
JP2011233554A (en) * 2010-04-23 2011-11-17 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678741B2 (en) 1998-05-19 2011-04-27 大同特殊鋼株式会社 Anisotropic magnet material
JP2007266199A (en) * 2006-03-28 2007-10-11 Tdk Corp Manufacturing method of rare earth sintered magnet
JP5687621B2 (en) * 2009-07-10 2015-03-18 インターメタリックス株式会社 NdFeB sintered magnet and manufacturing method thereof
CN102039410B (en) * 2009-10-14 2014-03-26 三环瓦克华(北京)磁性器件有限公司 Sintering ageing technology for increasing coercive force of sintered neodymium-iron-boron magnet
JP5768624B2 (en) 2011-09-26 2015-08-26 富士通株式会社 Relay device and relay method
JP2014016932A (en) 2012-07-11 2014-01-30 Bridgestone Corp Card case

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140108A (en) * 1984-12-12 1986-06-27 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet
JPH0237702A (en) * 1988-07-27 1990-02-07 Hitachi Metals Ltd R-fe-b-m sintered magnet
US4968347A (en) * 1988-11-22 1990-11-06 The United States Of America As Represented By The United States Department Of Energy High energy product permanent magnet having improved intrinsic coercivity and method of making same
JPH06244046A (en) * 1993-02-18 1994-09-02 Seiko Epson Corp Manufacture of permanent magnet
JPH09139307A (en) * 1996-02-16 1997-05-27 Sumitomo Special Metals Co Ltd Anticorrosion permanent magnet
JP2004281493A (en) * 2003-03-13 2004-10-07 Shin Etsu Chem Co Ltd Process for producing permanent magnet material
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
WO2006004014A1 (en) * 2004-07-01 2006-01-12 Intermetallics Co., Ltd. Production method for magnetic-anisotropy rare-earth sintered magnet and production device therefor
JP2007180374A (en) * 2005-12-28 2007-07-12 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET
WO2009004794A1 (en) * 2007-07-02 2009-01-08 Hitachi Metals, Ltd. R-fe-b type rare earth sintered magnet and process for production of the same
JP2010135529A (en) * 2008-12-04 2010-06-17 Shin-Etsu Chemical Co Ltd Nd BASED SINTERED MAGNET, AND METHOD OF MANUFACTURING THE SAME
WO2011024936A1 (en) * 2009-08-28 2011-03-03 インターメタリックス株式会社 NdFeB SINTERED MAGNET PRODUCTION METHOD AND PRODUCTION DEVICE, AND NdFeB SINTERED MAGNET PRODUCED WITH SAID PRODUCTION METHOD
JP2011233554A (en) * 2010-04-23 2011-11-17 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet

Also Published As

Publication number Publication date
DE102014004513A1 (en) 2014-10-02
CN104078179A (en) 2014-10-01
JP6372088B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6274216B2 (en) R-T-B system sintered magnet and motor
JP4415980B2 (en) High resistance magnet and motor using the same
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP5687621B2 (en) NdFeB sintered magnet and manufacturing method thereof
JP5455056B2 (en) Method for producing rare earth permanent magnet material
WO2015020181A1 (en) R-t-b-based sintered magnet and motor
TW201739929A (en) Grain boundary engineering of sintered magnetic alloys and the compositions derived therefrom
JP6186363B2 (en) NdFeB-based sintered magnet
EP2767992B1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
EP3118971B1 (en) Rotary electrical machine and vehicle
JP2016152246A (en) Rare earth based permanent magnet
JP2017183710A (en) R-t-b based permanent magnet
JP6500387B2 (en) Method of manufacturing high coercivity magnet
JP6399307B2 (en) R-T-B sintered magnet
CN108064407B (en) Permanent magnet, rotating electrical machine, and vehicle
JP6642184B2 (en) RTB based sintered magnet
JP6372088B2 (en) Method for producing RFeB magnet
JP2015135935A (en) Rare earth based magnet
EP3118863A1 (en) Permanent magnet
JP6645306B2 (en) RTB based sintered magnet
JP2016149397A (en) R-t-b-based sintered magnet
EP3276640B1 (en) Permanent magnet, motor and dynamo
JP6255977B2 (en) Rare earth magnets
JP2020077843A (en) RFeB system sintered magnet
CN114694907A (en) Rare earth magnet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150