JP2020077843A - RFeB system sintered magnet - Google Patents

RFeB system sintered magnet Download PDF

Info

Publication number
JP2020077843A
JP2020077843A JP2019154463A JP2019154463A JP2020077843A JP 2020077843 A JP2020077843 A JP 2020077843A JP 2019154463 A JP2019154463 A JP 2019154463A JP 2019154463 A JP2019154463 A JP 2019154463A JP 2020077843 A JP2020077843 A JP 2020077843A
Authority
JP
Japan
Prior art keywords
rfeb
sintered magnet
mass
coercive force
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019154463A
Other languages
Japanese (ja)
Other versions
JP7379935B2 (en
Inventor
通秀 中村
Michihide Nakamura
通秀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to US16/673,288 priority Critical patent/US11232890B2/en
Priority to DE102019129812.1A priority patent/DE102019129812A1/en
Priority to CN201911075229.0A priority patent/CN111145972B/en
Publication of JP2020077843A publication Critical patent/JP2020077843A/en
Application granted granted Critical
Publication of JP7379935B2 publication Critical patent/JP7379935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

To provide a RFeB system sintered magnet with high coercive force without using rare-earth elements Rand Ga that are expensive additional elements as much as possible.SOLUTION: A RFeB system sintered magnet 15 contains a rare earth element R of 28 to 33 mass%, Co of 0 to 2.5 mass%, Al of 0.3 to 0.7 mass%, B of 0.9 to 1.2 mass%, O of less than 1500 ppm, and the balance is Fe, and an RFeAl phase having a RFeAltype structure exists at the grain boundary, and coercive force is 16 kOe or more.SELECTED DRAWING: Figure 3

Description

本発明は、希土類元素(以下、「R」とする)、鉄(Fe)及び硼素(B)を主な構成元素とするRFeB系焼結磁石に関する。   The present invention relates to an RFeB-based sintered magnet containing a rare earth element (hereinafter referred to as “R”), iron (Fe), and boron (B) as main constituent elements.

RFeB系焼結磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系焼結磁石は、ハイブリッド自動車や電気自動車等の自動車用モータや産業機械用モータ等の各種モータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。   The RFeB system sintered magnet was discovered by Masato Sagawa in 1982, and has many magnetic properties such as residual magnetic flux density, which are far higher than those of permanent magnets. Therefore, RFeB sintered magnets are used in various products such as motors for automobiles such as hybrid cars and electric cars, motors for industrial machinery, speakers, headphones, permanent magnet type magnetic resonance diagnostic devices, etc. ..

初期のRFeB系焼結磁石は種々の磁気特性のうち保磁力iHcが比較的低いという欠点を有していたが、その後、RFeB系焼結磁石の内部にDyやTb等の重希土類元素RHを存在させることにより、保磁力が向上することが明らかになった。保磁力は磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力であるが、重希土類元素RHはこの磁化反転を妨げることにより、保磁力を増大させる効果を持つと考えられている。しかし、重希土類元素RHは高価且つ希少であるうえに、残留磁束密度を低下させる原因となるため、重希土類元素RHの含有量を増加させることは望ましくない。 Although the initial RFeB system sintered magnet had the drawback that the coercive force iHc was relatively low among various magnetic properties, after that, the heavy rare earth element R H such as Dy and Tb was formed inside the RFeB system sintered magnet. It was clarified that the coercive force is improved by the presence of. The coercive force is a force that withstands the reversal of the magnetization when a magnetic field in the opposite direction to the direction of the magnetization is applied to the magnet, but the heavy rare earth element R H increases the coercive force by preventing this reversal of the magnetization It is believed to have the effect of causing. However, since the heavy rare earth element R H is expensive and rare and causes a reduction in the residual magnetic flux density, it is not desirable to increase the content of the heavy rare earth element R H.

特許文献1には、重希土類元素RHを添加することなくRFeB系焼結磁石の保磁力を向上させるためにGa(ガリウム)を添加することが記載されている。一般に、RFeB系焼結磁石では、結晶粒界に飽和磁化が大きい強磁性体が存在すると、隣接する結晶粒間で磁気的な相互作用が生じ、逆磁界(磁化と反対方向の磁界)が印加された際に、ある結晶粒で磁化が反転すると、当該相互作用によって、隣接する結晶粒の磁化も反転してしまうため、保磁力が小さくなる。そのような飽和磁化が大きい強磁性体として、典型的には結晶粒に含有されなかったR及びFeから成るものが挙げられる。それに対して、RFeB系焼結磁石にGa(ガリウム)を添加すると、R6Fe13Gaで表される、飽和磁化が比較的小さい強磁性体が結晶粒界に生成され、より飽和磁化が大きい強磁性体が生成されることが抑制される。これにより、逆磁界が印加された際に、ある結晶粒で磁化が反転しても、隣接する結晶粒の磁化を反転させる磁気的な相互作用が弱くなるため、保磁力が向上する。 Patent Document 1 describes that Ga (gallium) is added to improve the coercive force of the RFeB-based sintered magnet without adding the heavy rare earth element R H. Generally, in a RFeB sintered magnet, when a ferromagnetic material with a large saturation magnetization exists at a crystal grain boundary, a magnetic interaction occurs between adjacent crystal grains and a reverse magnetic field (a magnetic field in the opposite direction to the magnetization) is applied. If the magnetization of a certain crystal grain is reversed at this time, the coercive force is reduced because the magnetization of the adjacent crystal grain is also reversed by the interaction. As such a ferromagnet having a large saturation magnetization, a ferromagnet which is typically not contained in crystal grains and which is composed of R and Fe can be mentioned. On the other hand, when Ga (gallium) is added to the RFeB-based sintered magnet, a ferromagnetic material represented by R 6 Fe 13 Ga having a relatively small saturation magnetization is generated at the crystal grain boundary, and the saturation magnetization is larger. Generation of a ferromagnetic material is suppressed. As a result, even when the magnetization of a certain crystal grain is reversed when a reverse magnetic field is applied, the magnetic interaction that reverses the magnetization of the adjacent crystal grain is weakened, so that the coercive force is improved.

特開2014-132628号公報JP 2014-132628 JP 国際公開WO2014/017249号International publication WO2014 / 017249

しかし、Gaもまた高価であるため、特許文献1に記載のようにRFeB系焼結磁石にGaを添加すると製造コストが高くなるという問題が生じる。   However, since Ga is also expensive, adding Ga to the RFeB-based sintered magnet as described in Patent Document 1 causes a problem that the manufacturing cost increases.

本発明が解決しようとする課題は、高価な添加元素である重希土類元素RHやGaをできる限り用いることなく、保磁力が高いRFeB系焼結磁石を提供することである。 The problem to be solved by the present invention is to provide an RFeB-based sintered magnet having a high coercive force without using the heavy rare earth elements R H and Ga which are expensive additive elements as much as possible.

上記課題を解決するために成された本発明に係るRFeB系焼結磁石は、
希土類元素Rを28〜33質量%、Co(コバルト)を0〜2.5質量%(従って、Coを含有しない場合もある)、Al(アルミニウム)を0.3〜0.7質量%、Bを0.9〜1.2質量%、O(酸素)を1500ppm未満含有し、残部がFeであり、
結晶粒界に、R6Fe14-xAlx型構造を有するRFeAl相が存在し、
保磁力が16kOe以上である
ことを特徴とする。
RFeB system sintered magnet according to the present invention made to solve the above problems,
Rare earth element R 28-33% by mass, Co (cobalt) 0-2.5% by mass (so it may not contain Co), Al (aluminum) 0.3-0.7% by mass, B 0.9-1.2% by mass , O (oxygen) less than 1500ppm, the balance is Fe,
At the grain boundary, there is an RFeAl phase having a R 6 Fe 14-x Al x type structure,
The coercive force is 16 kOe or more.

R6Fe14-xAlx型構造を有するRFeAl相は正方晶の結晶構造を有し、ここでxの値は0.5〜3.5の範囲内の値を取り得る。また、RFeAl相のうちFeの一部はCoに置換され得ると共に、後述のように本発明に係るRFeB系焼結磁石がCuを含有する場合にはRFeAl相のうちAlの一部はCuに置換され得る。さらに、格子欠陥が生じることにより、Rの個数とFe(Co)とAl(Cu)を合わせた原子の個数の比は6:14から多少ずれ得る。 The RFeAl phase having the R 6 Fe 14-x Al x type structure has a tetragonal crystal structure, and the value of x can take a value within the range of 0.5 to 3.5. Further, part of Fe in the RFeAl phase can be replaced with Co, and when the RFeB-based sintered magnet according to the present invention contains Cu as described later, part of Al in the RFeAl phase is replaced with Cu. Can be replaced. Further, due to the occurrence of lattice defects, the ratio of the number of R and the number of atoms of Fe (Co) and Al (Cu) combined can be slightly deviated from 6:14.

希土類元素RにはNdやPr等の軽希土類元素を好適に用いることができる。また、希土類元素Rとして重希土類元素RHを用いる必要はない。但し、本発明において、希土類元素Rの一部として重希土類元素RHを含むことは排除されない。 As the rare earth element R, a light rare earth element such as Nd or Pr can be preferably used. Further, it is not necessary to use the heavy rare earth element R H as the rare earth element R. However, in the present invention, inclusion of the heavy rare earth element R H as a part of the rare earth element R is not excluded.

本実施形態のRFeB系焼結磁石は上記の各元素の他に、(添加元素としてではなく)不可避的不純物としてGaを0.2質量%以下含有していてもよい。また、その他の不可避的不純物として、Cr(クロム)を0.1質量%以下、Mn(マンガン)を0.1質量%以下、Ni(ニッケル)を0.1質量%以下、N(窒素)を2000ppm以下、C(炭素)を2000ppm以下、それぞれ含有していてもよい。Nの含有率は1000ppm以下、Cの含有率は1000ppm以下であることが望ましい。   The RFeB sintered magnet of the present embodiment may contain 0.2 mass% or less of Ga as an unavoidable impurity (not as an additional element) in addition to the above-mentioned elements. As other inevitable impurities, Cr (chromium) is 0.1 mass% or less, Mn (manganese) is 0.1 mass% or less, Ni (nickel) is 0.1 mass% or less, N (nitrogen) is 2000ppm or less, C (carbon) ) Up to 2000 ppm, respectively. The N content is preferably 1000 ppm or less, and the C content is preferably 1000 ppm or less.

本発明に係るRFeB系焼結磁石は、
希土類元素Rを28〜33質量%、Coを0〜2.5質量%(従って、Coを含有しない場合もある)、Alを0.3〜0.7質量%、Bを0.9〜1.2質量%を含有し、残部がFeであるRFeB系磁石粉末を磁界中で配向させた後に焼結することによりRFeB系焼結体から成る基材を作製する基材作製工程と、
前記基材を700〜900℃の範囲内の温度である第1時効温度に加熱する第1時効処理工程と、
前記第1時効処理工程を行った後の前記基材を530〜580℃の範囲内の温度である第2時効温度に加熱する第2時効処理工程と
の各工程を、真空又は不活性ガス雰囲気中で行うことで、Oの含有率が1500ppm未満となるようにすることにより、製造することができる。
RFeB system sintered magnet according to the present invention,
Rare earth element R is 28 to 33 mass%, Co is 0 to 2.5 mass% (thus, Co may not be contained), Al is 0.3 to 0.7 mass%, B is 0.9 to 1.2 mass%, and the balance is A base material manufacturing step of manufacturing a base material made of an RFeB system sintered body by orienting a RFeB system magnet powder that is Fe in a magnetic field, and then sintering,
A first aging treatment step of heating the base material to a first aging temperature which is a temperature within a range of 700 to 900 ° C.,
Each step of heating the base material after the first aging treatment step to a second aging temperature which is a temperature within a range of 530 to 580 ° C. and a second aging treatment step is performed in a vacuum or an inert gas atmosphere. It is possible to manufacture by controlling the content of O to be less than 1500 ppm by carrying out in the inside.

前記第2時効温度は530〜560℃の範囲内の温度であることが好ましい。   The second aging temperature is preferably in the range of 530 to 560 ° C.

本発明に係るRFeB系焼結磁石では、Alを0.3〜0.7質量%含有するRFeB系磁石粉末を用いてRFeB系焼結体から成る基材を作製したうえで、第1時効処理工程で基材を700〜900℃の範囲内の温度に加熱し、さらに第2時効処理工程で530〜580℃の範囲内、好ましくは530〜560℃の範囲内の温度に加熱することで、結晶粒界にRFeAl相が生成される。なお、第1時効処理工程が終了した時点では、結晶粒界にはRFeAl相が生成されていない。RFeAl相は、Fe原子の一部がAl原子に置換されていることにより、Fe原子同士の磁気的相互作用が弱められるため、飽和磁化が小さい。   In the RFeB-based sintered magnet according to the present invention, after the RFeB-based magnet powder containing 0.3 to 0.7 mass% of Al is used to prepare a base material composed of the RFeB-based sintered body, the base material is subjected to the first aging treatment step. Is heated to a temperature in the range of 700 to 900 ° C., and further in the second aging treatment step to a temperature in the range of 530 to 580 ° C., preferably 530 to 560 ° C. RFeAl phase is generated. In addition, at the time when the first aging treatment step is completed, the RFeAl phase is not generated in the crystal grain boundaries. The RFeAl phase has a small saturation magnetization because some of the Fe atoms are replaced with Al atoms, which weakens the magnetic interaction between the Fe atoms.

但し、基材作製工程において、RFeB系磁石粉末の周囲に酸素が多く存在すると、RFeB系磁石粉末内に希土類酸化物が多く形成され、焼結工程において希土類酸化物が溶解する際、その希土類酸化物にAlが多く取り込まれてしまう。このように希土類酸化物にAlが多く取り込まれてしまうと、結晶粒界にRFeAl相が生成されない。そのため、本発明では、最終的に得られるRFeB系焼結磁石における、不純物としてのOの含有率が1500ppm未満となるようにする。Oの含有率は、1000ppm未満であることが望ましい。   However, when a large amount of oxygen exists around the RFeB-based magnet powder in the base material manufacturing process, a large amount of rare earth oxide is formed in the RFeB-based magnet powder, and when the rare earth oxide is dissolved in the sintering process, the rare earth oxide is oxidized. A lot of Al is taken into the object. When a large amount of Al is taken into the rare earth oxide in this way, the RFeAl phase is not generated at the crystal grain boundaries. Therefore, in the present invention, the content of O as an impurity in the finally obtained RFeB-based sintered magnet is set to be less than 1500 ppm. The O content is preferably less than 1000 ppm.

本発明に係るRFeB系焼結磁石において、結晶粒界にはRFeAl相以外のRリッチ相が存在し得る。Rリッチ相は、RFeB系焼結磁石の結晶粒を構成するR2Fe14Bよりも希土類元素の含有率が高いものをいう。Rリッチ相には例えば、希土類酸化物(R2O3)に、Fe、Co、Al、Gaのうちの1種又は2種以上が固溶したものが挙げられる。Rリッチ相に固溶したFeは強磁性を有するが、本発明に係るRFeB系焼結磁石では、結晶粒界にRFeAl相が形成されることによって結晶粒界中のFeがRFeAl相に取り込まれるため、Rリッチ相に固溶するFeの濃度を低くすることができ、それによりRリッチ相(に固溶したFe)の飽和磁化を小さくすることができる。このようにFeの濃度が低いRリッチ相は、第2時効処理工程で基材を530〜580℃で加熱することにより、結晶粒界の全体に亘って拡散する。特に、2個の結晶粒の間で隙間の小さいところにもRリッチ相を行き亘らせることができる。 In the RFeB system sintered magnet according to the present invention, an R-rich phase other than the RFeAl phase may exist in the crystal grain boundaries. The R-rich phase has a higher content of rare earth elements than R 2 Fe 14 B constituting the crystal grains of the RFeB system sintered magnet. Examples of the R-rich phase include a rare earth oxide (R 2 O 3 ) in which one or more of Fe, Co, Al, and Ga are solid-dissolved. Although Fe dissolved in the R-rich phase has ferromagnetism, in the RFeB system sintered magnet according to the present invention, Fe in the crystal grain boundary is incorporated into the RFeAl phase by forming the RFeAl phase in the crystal grain boundary. Therefore, the concentration of Fe that is solid-dissolved in the R-rich phase can be reduced, and thus the saturation magnetization of (the Fe that is solid-solved in) the R-rich phase can be reduced. As described above, the R-rich phase having a low Fe concentration diffuses throughout the grain boundaries by heating the base material at 530 to 580 ° C. in the second aging treatment step. In particular, the R-rich phase can be spread even in a small gap between two crystal grains.

このように、本発明に係るRFeB系焼結磁石では、飽和磁化が小さいRFeAl相(及びRリッチ相)が結晶粒界に存在することにより、当該RFeB系焼結磁石に逆磁界が印加された際にある結晶粒で磁化が反転しても、結晶粒界を介して隣接する結晶粒の磁化を反転させる作用が弱くなるため、16kOe以上という高い保磁力を得ることができる。しかも、重希土類元素RHやGaをできる限り用いることなく、それらよりも安価なAlを用いればよいため、コストを抑えることができる。 As described above, in the RFeB-based sintered magnet according to the present invention, the saturation magnetization of the RFeAl phase (and the R-rich phase) is small at the grain boundaries, so that an inverse magnetic field was applied to the RFeB-based sintered magnet. Even if the magnetization of a certain crystal grain is reversed, the action of reversing the magnetization of the adjacent crystal grain via the grain boundary is weakened, so that a high coercive force of 16 kOe or more can be obtained. Moreover, the heavy rare earth elements R H and Ga are not used as much as possible, and Al that is cheaper than them may be used, so that the cost can be suppressed.

RFeAl相のR6Fe14-xAlxにおけるxの値が0.5を下回ると、RFeAl相内のFeによる飽和磁化が大きくなるため、隣接する結晶粒の磁化を反転させる磁気的な相互作用が強くなってしまう。一方、xの値が3.5を上回ると、RFeAl相が取り込むFeの量が少なくなり、それに伴って結晶粒界中のRリッチ相に固溶するFeの量が多くなって該Rリッチ相の飽和磁化が大きくなるため、隣接する結晶粒の磁化を反転させる磁気的な相互作用が強くなってしまう。そのため、本発明に係るRFeB系焼結磁石では、RFeAl相のR6Fe14-xAlxにおけるxの値を0.5〜3.5の範囲内とすることが望ましい。 When the value of x in R 6 Fe 14-x Al x of the RFeAl phase is less than 0.5, the saturation magnetization due to Fe in the RFeAl phase increases, and the magnetic interaction that reverses the magnetization of adjacent crystal grains is strong. turn into. On the other hand, when the value of x exceeds 3.5, the amount of Fe taken in by the RFeAl phase decreases, and the amount of Fe dissolved in the R-rich phase in the grain boundaries increases accordingly, resulting in saturation of the R-rich phase. Since the magnetization becomes large, the magnetic interaction for reversing the magnetization of the adjacent crystal grains becomes strong. Therefore, in the RFeB-based sintered magnet according to the present invention, it is desirable that the value of x in R 6 Fe 14-x Al x of the RFeAl phase be within the range of 0.5 to 3.5.

本発明に係るRFeB系焼結磁石においてさらにCu(銅)を0.1〜0.5質量%含有し、CuとAlの含有率の合計が0.5質量%を超えており、Alの含有率がCuの含有率よりも大きいことが好ましい。これにより、粒界相の濡れ性が向上(最適化)し、第2時効処理工程において粒界相を均一に分散させることができるため、保磁力がより向上する。   The RFeB-based sintered magnet according to the present invention further contains Cu (copper) in an amount of 0.1 to 0.5 mass%, the total content of Cu and Al exceeds 0.5 mass%, and the content of Al is the content of Cu. Is preferably larger than. Thereby, the wettability of the grain boundary phase is improved (optimized), and the grain boundary phase can be uniformly dispersed in the second aging treatment step, so that the coercive force is further improved.

また、本発明に係るRFeB系焼結磁石は、さらにZrを0.05〜0.35質量%含有していることが好ましい。これにより、角型比を高くすることができる。ここで角型比は、磁化曲線の第2象限(減磁曲線)において、磁化が残留磁束密度Brの90%となるときの逆磁界Hk90と保磁力(磁化が0となるときの逆磁界)iHcの比Hk90/iHcで表される。角型比が高いほど、磁界の変動に伴う磁化の変動が小さく、変動磁界中で安定した特性を有することを意味する。 The RFeB system sintered magnet according to the present invention preferably further contains Zr in an amount of 0.05 to 0.35% by mass. Thereby, the squareness ratio can be increased. Here, the squareness ratio is the reverse magnetic field Hk90 when the magnetization is 90% of the residual magnetic flux density B r and the coercive force (the reverse magnetic field when the magnetization is 0) in the second quadrant (demagnetization curve) of the magnetization curve. ) IHc ratio is expressed as Hk90 / iHc. The higher the squareness ratio, the smaller the fluctuation of the magnetization due to the fluctuation of the magnetic field and the more stable the characteristics in the fluctuation magnetic field.

本発明によれば、高価な添加元素である重希土類元素RHやGaをできる限り用いることなく、保磁力が高いRFeB系焼結磁石を得ることができる。 According to the present invention, it is possible to obtain an RFeB-based sintered magnet having a high coercive force without using heavy rare earth elements R H and Ga which are expensive additive elements as much as possible.

本発明に係るRFeB系焼結磁石を製造する方法の一例を示す概略図。Schematic which shows an example of the method of manufacturing the RFeB system sintered magnet which concerns on this invention. 実施例1、2、及び比較例の試料に対する放射光X線回折測定の結果を示すグラフ(a)、並びにその部分拡大図(b)。The graph (a) which shows the result of the synchrotron radiation X-ray-diffraction measurement with respect to the sample of Examples 1, 2 and a comparative example, and its partial enlarged view (b). 合金3を用いて作製した本実施形態のRFeB系焼結磁石であって、第1時効温度(a)、第1時効処理工程における加熱時間(b)、第2時効温度(c)、及び第2時効処理工程における加熱時間(d)が異なる複数の試料について保磁力を測定した結果を示すグラフ。The RFeB-based sintered magnet of the present embodiment produced by using Alloy 3, comprising a first aging temperature (a), a heating time (b) in the first aging treatment step, a second aging temperature (c), and The graph which shows the result of having measured the coercive force about the several sample which the heating time (d) in a 2nd aging treatment process differs. 合金3を用いて作製した本実施形態のRFeB系焼結磁石であって、第2時効処理工程後の冷却速度が異なる複数の試料について保磁力を測定した結果を示すグラフ。6 is a graph showing the results of measuring the coercive force of a plurality of samples, which are RFeB-based sintered magnets of the present embodiment produced using alloy 3, and which have different cooling rates after the second aging treatment step.

図1〜図4を用いて、本発明に係るRFeB系焼結磁石の実施形態を説明する。   An embodiment of an RFeB-based sintered magnet according to the present invention will be described with reference to FIGS. 1 to 4.

(1) 組成
本実施形態のRFeB系焼結磁石は、全体の組成として、希土類元素Rを28〜33質量%、Coを0〜2.5質量%、Alを0.3〜0.7質量%、Bを0.9〜1.2質量%、Oを1500ppm未満含有し、残部としてFeを含有する。Coは含有していなくてもよい。希土類元素RにはNdやPr等の軽希土類元素を好適に用いることができる。また、希土類元素Rとして重希土類元素RHを用いる必要はない。但し、本実施形態のRFeB系焼結磁石は、希土類元素Rの一部として重希土類元素RHを含んでいてもよい。また、本実施形態のRFeB系焼結磁石は、これら各元素の他に、Cuを0.1〜0.5質量%、及び/又はZrを0.05〜0.35質量%含有していてもよい。Cuを含有する場合には、CuとAlの含有率の合計が0.5質量%を超え、且つAlの含有率がCuの含有率よりも大きいことが好ましい。また、これらの各元素の他に、本実施形態のRFeB系焼結磁石は上述の不可避的不純物も含有し得る。
(1) Composition The RFeB system sintered magnet of the present embodiment, as a whole composition, rare earth element R 28 ~ 33 mass%, Co 0 ~ 2.5 mass%, Al 0.3 ~ 0.7 mass%, B 0.9 ~. 1.2% by mass, containing less than 1500 ppm of O and Fe as the balance. Co may not be contained. As the rare earth element R, a light rare earth element such as Nd or Pr can be preferably used. Further, it is not necessary to use the heavy rare earth element R H as the rare earth element R. However, the RFeB system sintered magnet of the present embodiment may contain the heavy rare earth element R H as a part of the rare earth element R. Further, the RFeB system sintered magnet of the present embodiment may contain 0.1 to 0.5 mass% of Cu and / or 0.05 to 0.35 mass% of Zr in addition to these elements. When Cu is contained, it is preferable that the total content of Cu and Al exceeds 0.5 mass%, and the content of Al is larger than the content of Cu. In addition to these elements, the RFeB system sintered magnet of the present embodiment may also contain the above-mentioned unavoidable impurities.

本実施形態のRFeB系焼結磁石の結晶粒界は、RFeAl相を有し、さらにRリッチ相が存在し得る。RFeAl相の組成はR6Fe14-xAlx(0.5≦x≦3.5)で表される。Rリッチ相は、R2O3に、Fe、Co、Al、Gaのうちの1種又は2種以上が固溶したものが典型例として挙げられる。ここでRリッチ相に固溶するFeの濃度は、FeがRFeAl相に取り込まれることにより、従来のRFeB系焼結磁石の結晶粒界中のRリッチ相に固溶するFeの濃度よりも低くなる。 The crystal grain boundary of the RFeB system sintered magnet of the present embodiment has an RFeAl phase, and an R-rich phase may be present. The composition of the RFeAl phase is represented by R 6 Fe 14-x Al x (0.5 ≦ x ≦ 3.5). A typical example of the R-rich phase is one in which one or more of Fe, Co, Al, and Ga are solid-dissolved in R 2 O 3 . Here, the concentration of Fe dissolved in the R-rich phase is lower than the concentration of Fe dissolved in the R-rich phase in the grain boundaries of the conventional RFeB-based sintered magnet because Fe is incorporated into the RFeAl phase. Become.

(2) 製造方法
本実施形態のRFeB系焼結磁石は、以下に述べる方法で製造することができる。以下に述べる各工程は、真空中又は不活性ガス雰囲気中で行う。
(2) Manufacturing Method The RFeB system sintered magnet of the present embodiment can be manufactured by the method described below. Each process described below is performed in a vacuum or an inert gas atmosphere.

まず、製造しようとするRFeB系焼結磁石と同じ含有率で希土類元素R、Co(含有していなくてもよい)、Al、B及びFe、並びに必要であればCu及び/又はZrを含有するRFeB系合金塊11を、例えばストリップキャスト法により作製する。次に、このRFeB系合金塊11を水素ガスに晒して水素分子を吸蔵させる(図1(a))。これにより、RFeB系合金塊11が脆化する。このように脆化したRFeB系合金塊11を機械的に粉砕する粗粉砕を行うことにより、RFeB系粗粉12を作製する(図1(b))。さらに、RFeB系粗粉12をジェットミルによって粒径の中央値D50が3μm以下の粒度分布となるように微粉砕することにより、RFeB系磁石粉末13を作製する(図1(c))。作製されたRFeB系磁石粉末13の粒子中には、RFeB系合金塊11に吸蔵させた水素分子の一部が残存している。   First, it contains the rare earth elements R, Co (which may not be contained), Al, B and Fe, and, if necessary, Cu and / or Zr, at the same content as the RFeB sintered magnet to be produced. The RFeB-based alloy ingot 11 is produced by, for example, a strip casting method. Next, this RFeB alloy ingot 11 is exposed to hydrogen gas to occlude hydrogen molecules (FIG. 1 (a)). As a result, the RFeB-based alloy ingot 11 becomes brittle. RFeB-based coarse powder 12 is produced by carrying out coarse crushing in which the thus embrittled RFeB-based alloy ingot 11 is mechanically crushed (FIG. 1 (b)). Further, the RFeB-based coarse powder 12 is finely pulverized by a jet mill so that the median particle diameter D50 has a particle size distribution of 3 μm or less, thereby producing an RFeB-based magnet powder 13 (FIG. 1 (c)). In the produced particles of the RFeB-based magnet powder 13, some of the hydrogen molecules stored in the RFeB-based alloy ingot 11 remain.

次に、製造しようとするRFeB系焼結磁石に対応した形状を有する容器19にRFeB系磁石粉末13を収容し、容器19内のRFeB系磁石粉末13に磁界を印加することにより、該RFeB系磁石粉末13を配向させる(図1(d))。続いて、配向させたRFeB系磁石粉末13を容器19内に収容したままの状態で所定の焼結温度(900〜1050℃の範囲内の温度が好ましい)に加熱する(図1(e))ことにより、RFeB系磁石粉末13を焼結させる。これにより、RFeB系焼結体から成る基材14が得られる(図1(f))。ここまでの操作が上記基材作製工程に該当する。   Next, the RFeB-based magnet powder 13 is housed in a container 19 having a shape corresponding to the RFeB-based sintered magnet to be manufactured, and a magnetic field is applied to the RFeB-based magnet powder 13 in the container 19 to produce the RFeB-based magnet powder. The magnet powder 13 is oriented (FIG. 1 (d)). Then, the oriented RFeB-based magnet powder 13 is heated to a predetermined sintering temperature (a temperature in the range of 900 to 1050 ° C. is preferable) in a state of being housed in the container 19 (FIG. 1 (e)). Thus, the RFeB magnet powder 13 is sintered. As a result, the base material 14 made of the RFeB-based sintered body is obtained (FIG. 1 (f)). The operations up to this point correspond to the above-mentioned base material manufacturing step.

ここでRFeB系磁石粉末13の粒子中に含まれる水素分子は、焼結のための加熱によって外部に放出される。その際、RFeB系磁石粉末13中に不純物として存在する炭素と水素分子が反応してガス化する。これにより、RFeB系磁石粉末13から炭素を除去することができる。その際、水素分子と炭素が反応する前に水素分子がRFeB系磁石粉末13の粒子から脱離し難くするように、室温から焼結温度まで昇温する間の所定の温度(例えば450℃)までは不活性ガス雰囲気とし、その後、真空雰囲気中で焼結温度まで昇温することが好ましい。ここで真空雰囲気にすることは、水素分子と炭素が反応することで生成されるガスを除去することを目的としている。容器19には、上記焼結温度における耐熱性を有する材料から成るものを用いる。   Here, hydrogen molecules contained in the particles of the RFeB-based magnet powder 13 are released to the outside by heating for sintering. At that time, carbon and hydrogen molecules existing as impurities in the RFeB magnet powder 13 react with each other to be gasified. As a result, carbon can be removed from the RFeB magnet powder 13. At that time, in order to make it difficult for hydrogen molecules to be detached from the particles of the RFeB-based magnet powder 13 before the hydrogen molecules react with carbon, up to a predetermined temperature (for example, 450 ° C.) during the temperature rising from room temperature to the sintering temperature. Is preferably an inert gas atmosphere and then heated to the sintering temperature in a vacuum atmosphere. The vacuum atmosphere is intended to remove the gas generated by the reaction between hydrogen molecules and carbon. The container 19 is made of a material having heat resistance at the above sintering temperature.

RFeB系の焼結体を作製する際には、RFeB系磁石粉末を磁界中で配向させる間又は配向後に圧縮成形を行う(プレス法)のが一般的である。それに対して本実施形態では、RFeB系磁石粉末13を配向させる間及び配向後に圧縮成形を行うことなく、RFeB系磁石粉末13を焼結させる(PLP(press-less process)法)。PLP法では圧縮成形を行うためのプレス機を使用する必要がないため、作業空間を小さくすることができる。そのため、作業空間内を不活性ガス雰囲気や真空雰囲気にすることが容易である。そうすると、RFeB系磁石粉末13の粒径を小さく(粒子の表面積を大きく)しても、RFeB系磁石粉末13が酸化し難くなる。これにより、作製される基材の酸素含有量を少なくすることができるため、基材内に希土類酸化物が形成され難くなる。それによってAlが希土類酸化物に取り込まれ難くなるため、結晶粒界にRFeAl相を生成することができる。また、RFeB系磁石粉末13の粒径を小さくことによって、RFeB系磁石粉末13の平均粒径が、得られるRFeB系焼結磁石中の結晶粒の平均粒径に近くなると、RFeB系磁石粉末13の平均粒径を小さくするほどRFeB系焼結磁石中の結晶粒の平均粒径も小さくなり、それによってRFeB系焼結磁石の保磁力を高くすることができる。なお、本発明に係るRFeB系焼結磁石は、プレス法を用いて作製することも可能であるが、ここまでに述べたように基材の酸素含有量を少なくするためにPLP法を用いる方が望ましい。   When producing an RFeB-based sintered body, compression molding is generally performed (pressing method) while or after orienting the RFeB-based magnet powder in a magnetic field. On the other hand, in the present embodiment, the RFeB-based magnet powder 13 is sintered during the orientation of the RFeB-based magnet powder 13 and after the orientation without performing compression molding (PLP (press-less process) method). Since the PLP method does not require the use of a press machine for compression molding, the working space can be reduced. Therefore, it is easy to create an inert gas atmosphere or a vacuum atmosphere in the work space. Then, even if the particle size of the RFeB-based magnet powder 13 is reduced (the surface area of the particles is increased), the RFeB-based magnet powder 13 is less likely to be oxidized. As a result, the oxygen content of the produced base material can be reduced, so that rare earth oxides are less likely to be formed in the base material. As a result, it becomes difficult for Al to be taken into the rare earth oxide, so that the RFeAl phase can be generated at the grain boundaries. Further, by reducing the particle size of the RFeB-based magnet powder 13, when the average particle size of the RFeB-based magnet powder 13 becomes close to the average particle size of the crystal grains in the obtained RFeB-based sintered magnet, the RFeB-based magnet powder 13 The smaller the average particle size of, the smaller the average particle size of the crystal grains in the RFeB system sintered magnet, and thereby the coercive force of the RFeB system sintered magnet can be increased. The RFeB-based sintered magnet according to the present invention can be manufactured by using a pressing method, but as described above, it is preferable to use the PLP method in order to reduce the oxygen content of the base material. Is desirable.

上述のように基材14を作製し、一旦室温にした後、該基材14を700〜900℃の範囲内の温度である第1時効温度に加熱する(図1(g)、第1時効処理工程)。ここで第1時効温度に維持する時間は特に問わない。本発明者の実験によれば、第2時効温度に維持する時間が0分、すなわち第1時効温度に到達した瞬間に温度を下降させた場合であっても、次の第2時効処理工程を経て得られるRFeB系焼結磁石では保磁力が16kOeを上回る。   After the base material 14 is prepared as described above and once brought to room temperature, the base material 14 is heated to the first aging temperature which is a temperature within the range of 700 to 900 ° C. (FIG. 1 (g), first aging temperature). Processing step). Here, the time for maintaining the first aging temperature is not particularly limited. According to an experiment by the present inventor, even when the time for maintaining the second aging temperature is 0 minutes, that is, when the temperature is lowered at the moment when the first aging temperature is reached, the next second aging treatment step is performed. The coercive force of the resulting RFeB-based sintered magnet exceeds 16 kOe.

次に、第1時効処理工程を行った基材14を530〜580℃の範囲内、好ましくは530〜560℃の範囲内の温度である第2時効温度に加熱する(図1(h)、第2時効処理工程)。ここで第2時効温度に維持する時間は特に問わない。本発明者の実験によれば、第2時効温度に維持する時間が0分(第2時効温度に到達した瞬間に温度を下降させた場合)であっても、得られるRFeB系焼結磁石では保磁力が16kOeを上回る。その後、基材14を室温まで冷却する。   Next, the base material 14 subjected to the first aging treatment step is heated to a second aging temperature which is a temperature within the range of 530 to 580 ° C, preferably within the range of 530 to 560 ° C (Fig. 1 (h), Second aging treatment step). Here, the time for maintaining the second aging temperature is not particularly limited. According to the experiments by the present inventor, even if the time for maintaining the second aging temperature is 0 minutes (when the temperature is lowered at the moment when the second aging temperature is reached), the obtained RFeB-based sintered magnet is Coercive force exceeds 16kOe. Then, the base material 14 is cooled to room temperature.

以上の操作により、本実施形態のRFeB系焼結磁石15が得られる(図1(i))。   By the above operation, the RFeB system sintered magnet 15 of this embodiment is obtained (FIG. 1 (i)).

(3) 本実施形態のRFeB系焼結磁石の実施例
以下、本実施形態のRFeB系焼結磁石を製造した実施例を示す。
(3) Example of RFeB-based sintered magnet of this embodiment Hereinafter, an example of manufacturing the RFeB-based sintered magnet of this embodiment will be described.

表1に記載した組成(実測値)を有する6種のRFeB系合金塊(以下、合金1〜7とする)をそれぞれ、ストリップキャスト法で作製した。なお、表1中の「TRE」は全ての希土類元素の含有率の和(Total Rare-Earth)をいい、ここではNd(ネオジム)、Pr(プラセオジム)、Dy(ジスプロシウム)、Tb(テルビウム)の含有率の和である。なお、これら4種以外の希土類元素は、不可避的不純物として含有されるものを除いて、合金1〜7には含有されていない。なお、合金1〜7には表1で挙げた元素の他に不可避的不純物が含まれ得る。

Figure 2020077843
Six types of RFeB-based alloy ingots (hereinafter, referred to as alloys 1 to 7) having the compositions (measured values) described in Table 1 were produced by the strip casting method. In addition, "TRE" in Table 1 means the sum of the content rates of all rare earth elements (Total Rare-Earth), and here, Nd (neodymium), Pr (praseodymium), Dy (dysprosium), Tb (terbium) It is the sum of the content rates. In addition, rare earth elements other than these four kinds are not contained in alloys 1 to 7, except those contained as unavoidable impurities. The alloys 1 to 7 may contain inevitable impurities in addition to the elements listed in Table 1.
Figure 2020077843

これら合金1〜7についてそれぞれ、上述の条件で粗粉砕及び微粉砕を行うことによりRFeB系磁石粉末13を作製した。このRFeB系磁石粉末13を充填密度が3.4g/cm3となるようにRFeB系磁石粉末13を容器19に充填したうえで、該RFeB系磁石粉末13を磁界中で配向した。続いて、RFeB系磁石粉末13を容器19に充填したままで室温から、985℃〜995℃の間の焼結温度まで加熱したうえで4時間維持した後に室温まで冷却することにより、基材14を作製した。焼結の際、室温から450℃に達するまではアルゴンガス雰囲気とし、その後は真空雰囲気とした。各合金1〜7から得られた基材14をそれぞれ、800℃の第1時効温度で30分間加熱した後、540℃又は560℃(合金毎に表1に記載)である第2時効温度まで温度を低下させたうえで90分間維持し、その後急冷することにより、RFeB系焼結磁石15を得た。合金1〜7からそれぞれ作製した各RFeB系焼結磁石を、実施例1〜7の試料と呼ぶ。 RFeB-based magnet powder 13 was produced by coarsely pulverizing and finely pulverizing each of these alloys 1 to 7 under the above-mentioned conditions. The RFeB-based magnet powder 13 was filled in a container 19 so that the packing density was 3.4 g / cm 3 , and then the RFeB-based magnet powder 13 was oriented in a magnetic field. Subsequently, the RFeB-based magnet powder 13 is heated from room temperature with the container 19 being filled in the container 19 to a sintering temperature between 985 ° C. and 995 ° C., maintained for 4 hours, and then cooled to room temperature. Was produced. During the sintering, an argon gas atmosphere was used from room temperature to 450 ° C., and then a vacuum atmosphere was used. Each of the base materials 14 obtained from each of the alloys 1 to 7 is heated at a first aging temperature of 800 ° C. for 30 minutes and then heated to a second aging temperature of 540 ° C. or 560 ° C. (listed in Table 1 for each alloy). The temperature was lowered, the temperature was maintained for 90 minutes, and then rapidly cooled to obtain an RFeB-based sintered magnet 15. The respective RFeB-based sintered magnets produced from the alloys 1 to 7 are referred to as the samples of Examples 1 to 7.

併せて、比較例として、表1に記載した組成を有する合金1(比較例1)及び合金A(比較例2、3)を用いて、上記と同じ方法でRFeB系焼結磁石を作製した。第2時効温度は540℃(合金1を用いた試料)又は520℃(合金Aを用いた試料)とした。合金Aは、Alの含有率が0.16質量%であって、本発明のRFeB系焼結磁石の組成の範囲に含まれない。比較例1及び3では、実施例1〜7及び比較例2よりも、Oの含有率が多くなるようにした。ここでOの含有率は、RFeB系合金塊11の粉砕からRFeB系磁石粉末13の容器19への充填までの工程において製造環境を制御することによって調整することができる。   In addition, as a comparative example, an alloy 1 (comparative example 1) and an alloy A (comparative examples 2 and 3) having the compositions shown in Table 1 were used to produce an RFeB sintered magnet by the same method as described above. The second aging temperature was 540 ° C. (sample using alloy 1) or 520 ° C. (sample using alloy A). Alloy A has an Al content of 0.16 mass% and is not included in the composition range of the RFeB system sintered magnet of the present invention. In Comparative Examples 1 and 3, the O content was set to be higher than in Examples 1 to 7 and Comparative Example 2. Here, the O content can be adjusted by controlling the manufacturing environment in the steps from crushing the RFeB-based alloy ingot 11 to filling the container 19 with the RFeB-based magnet powder 13.

作製した実施例1〜7及び比較例1〜3の試料の組成を測定した結果を表2に示す。また、これら各試料の保磁力iHc及び角型比SQ、並びに角型比SQを求めるために測定したHk90の値を表3に示す。ここでHk90は磁化曲線の第2象限(減磁曲線)において、磁化が残留磁束密度Brの90%となるときの逆磁界の値である。角型比SQはHk90/iHcで求められる。

Figure 2020077843

Figure 2020077843
Table 2 shows the results obtained by measuring the compositions of the manufactured samples of Examples 1 to 7 and Comparative Examples 1 to 3. Table 3 shows the coercive force iHc and the squareness ratio SQ of each of these samples, and the value of Hk90 measured for obtaining the squareness ratio SQ. Here, Hk90 is the value of the reverse magnetic field when the magnetization becomes 90% of the residual magnetic flux density B r in the second quadrant (demagnetization curve) of the magnetization curve. The squareness ratio SQ is calculated by Hk90 / iHc.
Figure 2020077843

Figure 2020077843

実施例1〜7の試料はいずれも、表2に挙げた各元素の組成が本発明のRFeB系焼結磁石における組成の条件を満たしている。それに対して比較例1及び3の試料は、Oの含有率が本発明の要件(1500ppm未満)を満たしていない。また、比較例2及び3の試料は、Alの含有率が本発明の要件(0.3〜0.7質量%)を満たしていない。一方、比較例2及び3の試料は、Al及びO以外の元素の含有率が実施例2の試料のそれら元素の含有率とほぼ同じ値になっている。   In each of the samples of Examples 1 to 7, the composition of each element listed in Table 2 satisfies the composition conditions for the RFeB system sintered magnet of the present invention. On the other hand, the samples of Comparative Examples 1 and 3 do not satisfy the requirement of the present invention (less than 1500 ppm) for the O content. Further, in the samples of Comparative Examples 2 and 3, the Al content does not satisfy the requirements (0.3 to 0.7 mass%) of the present invention. On the other hand, in the samples of Comparative Examples 2 and 3, the content rates of elements other than Al and O are almost the same as the content rates of those elements in the sample of Example 2.

これら各実施例のうちDyを含有しない実施例1〜6の試料と比較例の試料の保磁力iHcを対比すると、実施例1〜6の試料ではいずれも16.0kOeを上回る16.8〜18.2kOeであるのに対して、比較例1〜3の試料ではいずれも16.0kOeを下回る14.5〜15.7kOeとなっている。特に、前述のようにAl及びO以外の元素の含有率が比較例2及び3とほぼ同じ値である実施例2の試料は、保磁力iHcが18.2kOeという、比較例2及び3よりも顕著に高い値を有している。   Comparing the coercive force iHc of the samples of Examples 1 to 6 not containing Dy and the samples of Comparative Examples among these Examples, it is 16.8 to 18.2 kOe which exceeds 16.0 kOe in all of the samples of Examples 1 to 6. On the other hand, in the samples of Comparative Examples 1 to 3, all are 14.5 to 15.7 kOe, which is lower than 16.0 kOe. In particular, the sample of Example 2 in which the contents of elements other than Al and O are almost the same as those in Comparative Examples 2 and 3 as described above is more remarkable than Comparative Examples 2 and 3 in which the coercive force iHc is 18.2 kOe. Has a high value.

また、実施例3〜5の試料は、Zrを0.08〜0.11質量%含有しており、角型比SQの値が他の試料(実施例1及び2、並びに比較例1〜3)よりも高く(94.6〜95.4%)なっている。実施例7の試料は、Dyを2.50質量%含有しており、保磁力iHcの値が他の試料よりも高くなっている。   Moreover, the samples of Examples 3 to 5 contain 0.08 to 0.11% by mass of Zr, and the squareness ratio SQ is higher than that of the other samples (Examples 1 and 2 and Comparative Examples 1 to 3). (94.6-95.4%). The sample of Example 7 contains 2.50% by mass of Dy and has a higher coercive force iHc value than the other samples.

次に、実施例1及び2、並びに比較例の試料につき、X線回折測定を行った結果を図2に示す。この測定では、あいちシンクロトン光センター(公益財団法人科学技術交流センター)の放射光X線回折測定を用い、波長0.09nmの放射光で測定を行った。図2(a)には、各試料の測定結果を2θが10〜70°の範囲で試料毎に示し、図2(b)には横軸(2θ)及び縦軸(強度)を部分的に拡大し、3つの試料のデータを重ねて示している。図2(b)に矢印で示した箇所には、実施例1及び2には現れており、比較例には現れていないピークが3つ存在する。これら3つのピークは、国際回折データセンター(International Centre for Diffraction Data:ICDD)が運営する粉末回折データベース「PDF」(Powder Diffraction File)に収録されているNd6Fe11Al3(R6Fe14-xAlxにおいてR=Nd, x=3)のX線回折パターン(PDF#01-078-9291)とよく一致している。このデータは、実施例1及び2の試料には、R6Fe14-xAlxと同じ結晶構造を有する相、すなわちRFeAl相が含まれていることを意味している。 Next, FIG. 2 shows the results of X-ray diffraction measurement performed on the samples of Examples 1 and 2 and Comparative Example. In this measurement, the synchrotron radiation X-ray diffraction measurement of the Aichi Synchroton Light Center (Science and Technology Exchange Center) was used, and the synchrotron radiation with a wavelength of 0.09 nm was used. 2 (a) shows the measurement results of each sample in the range of 2θ of 10 to 70 °, and FIG. 2 (b) partially shows the horizontal axis (2θ) and the vertical axis (intensity). Enlarged and overlayed data for three samples. At the location indicated by the arrow in FIG. 2B, there are three peaks that appear in Examples 1 and 2 but not in Comparative Example. These three peaks are Nd 6 Fe 11 Al 3 (R 6 Fe 14- contained in the powder diffraction database “PDF” (Powder Diffraction File) operated by the International Center for Diffraction Data (ICDD). x Al x is in good agreement with the X-ray diffraction pattern (PDF # 01-078-9291) of R = Nd, x = 3). This data means that the samples of Examples 1 and 2 contain a phase having the same crystal structure as R 6 Fe 14-x Al x , that is, the RFeAl phase.

次に、実施例2の試料につき、波長分散型X線分光法(WDX)を用いて、結晶粒界中で任意に選択し、R, Fe及びAlの3種の元素を全て含む測定点において、それら3種並びにCo及びCuの組成比を求めた。その結果を表4に示す。

Figure 2020077843
Next, with respect to the sample of Example 2, using wavelength-dispersive X-ray spectroscopy (WDX), it was arbitrarily selected in the grain boundaries, and at the measurement points containing all three elements of R, Fe and Al. The composition ratios of these three kinds and Co and Cu were obtained. The results are shown in Table 4.
Figure 2020077843

これら6個の測定点では、R原子の組成比と、Fe, Co, Al及びCuの4種の原子の組成比の和との比が6:14に近い値となっており、RFeAl相が形成されていると考えられる。   At these six measurement points, the ratio of the composition ratio of R atoms and the sum of the composition ratios of four atoms of Fe, Co, Al and Cu is close to 6:14, and the RFeAl phase is It is considered to have been formed.

このように結晶粒界にRFeAl相が形成されることにより、Rリッチ相に固溶するFeの量が少なくなる。そして、RFeAl相の飽和磁化が小さいこと、及びRリッチ相に固溶するFeの量が少ないことにより、結晶粒同士の磁気的相互作用が小さくなるため、本実施形態のRFeB系焼結磁石は保磁力が高くなる。   By thus forming the RFeAl phase at the crystal grain boundary, the amount of Fe dissolved in the R-rich phase is reduced. And, since the saturation magnetization of the RFeAl phase is small, and the amount of Fe dissolved in the R-rich phase is small, the magnetic interaction between the crystal grains becomes small, so the RFeB-based sintered magnet of the present embodiment is High coercive force.

次に、合金3から得られたRFeB系磁石粉末を用いて作製された基材14に対して、第1時効処理工程及び第2時効処理工程における温度及び加熱時間が異なる複数の条件で試料を作製し、保磁力を測定した。以下、その結果を述べる。   Next, for the base material 14 produced using the RFeB-based magnet powder obtained from the alloy 3, samples were prepared under a plurality of conditions in which the temperature and the heating time in the first aging treatment step and the second aging treatment step were different. It was produced and the coercive force was measured. The results will be described below.

図3(a)に、第1時効温度が700℃、800℃、900℃という異なる3つの条件で作製した試料の、第1時効処理工程の後(第2時効処理工程の前)の保磁力と、得られたRFeB系焼結磁石(第2時効処理工程の後)の保磁力を示す。これら3つの試料では、第1時効処理工程での加熱時間は30分間、第2時効温度は560℃、第2時効処理工程での加熱時間は30分間に統一した。この実験の結果、得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第1時効温度が上記範囲内ではその値に関わらずほぼ同じであった。   Fig. 3 (a) shows the coercive force after the first aging treatment step (before the second aging treatment step) of the samples prepared under the three different conditions of the first aging temperature of 700 ° C, 800 ° C, and 900 ° C. And the coercive force of the obtained RFeB-based sintered magnet (after the second aging treatment step). For these three samples, the heating time in the first aging treatment step was 30 minutes, the second aging temperature was 560 ° C., and the heating time in the second aging treatment step was 30 minutes. As a result of this experiment, the coercive force of each of the obtained RFeB-based sintered magnets exceeded 16 kOe, and the first aging temperature was almost the same regardless of the value within the above range.

図3(b)に、第1時効処理工程での加熱時間が0〜540分の範囲内で異なる6つの条件で作製した試料の、第1時効処理工程の後の保磁力と、得られたRFeB系焼結磁石の保磁力を示す。これら6つの試料では、第1時効温度は800℃、第2時効温度は560℃、第2時効処理工程での加熱時間は30分間に統一した。得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第1時効処理工程での加熱時間が上記範囲内ではその値に関わらずほぼ同じであった。   In FIG. 3 (b), the coercive force after the first aging treatment step of the samples prepared under the six conditions different in the heating time in the first aging treatment step within the range of 0 to 540 minutes was obtained. The coercive force of the RFeB system sintered magnet is shown. For these six samples, the first aging temperature was 800 ° C, the second aging temperature was 560 ° C, and the heating time in the second aging treatment step was 30 minutes. The coercive force of each of the obtained RFeB-based sintered magnets exceeded 16 kOe, and the heating time in the first aging treatment step was almost the same regardless of the value within the above range.

図3(c)に、第2時効温度が530〜580℃の範囲内で異なる6つの条件で作製した試料の、第1時効処理工程の後の保磁力と、得られたRFeB系焼結磁石の保磁力を示す。これら6つの試料では、第1時効温度は800℃、第1時効処理工程での加熱時間は30分間、第2時効処理工程での加熱時間は30分間に統一した。この実験の結果、得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第2時効温度が上記範囲内では当該温度が高いほど保磁力が大きくなった。   Fig. 3 (c) shows the coercive force after the first aging treatment and the obtained RFeB-based sintered magnets of the samples prepared under the six different conditions in the second aging temperature range of 530 to 580 ° C. Shows the coercive force of. For these six samples, the first aging temperature was 800 ° C., the heating time in the first aging treatment step was 30 minutes, and the heating time in the second aging treatment step was 30 minutes. As a result of this experiment, the coercive force of each of the obtained RFeB system sintered magnets exceeded 16 kOe, and the coercive force increased as the temperature increased in the second aging temperature range.

図3(d)に、第2時効処理工程での加熱時間が0〜540分の範囲内で異なる6つの条件で作製した試料の、第1時効処理工程の後の保磁力と、得られたRFeB系焼結磁石の保磁力を示す。これら6つの試料では、第1時効温度は800℃、第1時効処理工程での加熱時間は30分間、第2時効温度は560℃に統一した。得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第2時効処理工程での加熱時間が上記範囲内ではその値に関わらずほぼ同じであった。   In FIG. 3 (d), the coercive force after the first aging treatment step of the samples prepared under the six conditions different in the heating time in the second aging treatment step within the range of 0 to 540 minutes was obtained. The coercive force of the RFeB system sintered magnet is shown. For these six samples, the first aging temperature was 800 ° C, the heating time in the first aging treatment step was 30 minutes, and the second aging temperature was 560 ° C. The coercive force of each of the obtained RFeB system sintered magnets exceeded 16 kOe, and the heating time in the second aging treatment step was almost the same regardless of the value within the above range.

以上、図3に示した実験結果より、本実施形態のRFeB系焼結磁石における保磁力の大きさには作製時の第1時効処理工程及び第2時効処理工程における加熱時間、並びに第1時効温度はほとんど影響を与えないこと、及び第2時効温度を調整することによって保磁力をより向上させることができることがわかる。   As described above, from the experimental results shown in FIG. 3, the magnitude of the coercive force in the RFeB system sintered magnet of the present embodiment shows that the heating time in the first aging treatment step and the second aging treatment step at the time of production, and the first aging treatment. It can be seen that the temperature has almost no effect and that the coercive force can be further improved by adjusting the second aging temperature.

次に、合金3から得られたRFeB系磁石粉末を用いて作製された基材14に対して、第1時効温度を800℃、第1時効処理工程の加熱時間を30分間、第2時効温度を540℃、第2時効処理工程の加熱時間(540℃に維持した時間)を30分間として時効処理を行い、その後第2時効温度から100℃まで冷却する際の冷却速度が異なる複数の例についてRFeB系焼結磁石の試料を作製した。併せて、比較例として、合金3から得られたRFeB系磁石粉末を用いて作製された基材14に対して、第1時効処理工程を行うことなく、第2時効処理工程を行った場合について、同様に冷却速度が異なる複数のRFeB系焼結磁石の試料を作製した。それらのRFeB系焼結磁石の試料につき、保磁力を測定した結果を図4に示す。その結果、比較例の試料ではいずれも保磁力が16kOeを下回ったのに対して、第1時効処理工程と第2時効処理工程の双方を行った本実施例の試料ではいずれも保磁力が16kOeを上回った。本実施例の試料のうち、第2時効温度から100℃までの冷却速度が最も遅い(3℃/分)試料は、当該冷却速度が5℃/分以上である他の試料よりもやや保磁力が低くなった。すなわち、第2時効温度から100℃までの冷却速度は5℃/分以上とすることが好ましい。   Next, for the base material 14 produced using the RFeB-based magnet powder obtained from the alloy 3, the first aging temperature is 800 ° C., the heating time of the first aging treatment step is 30 minutes, and the second aging temperature is Aging temperature is 540 ° C and the heating time of the second aging treatment step (time kept at 540 ° C) is 30 minutes, then the aging treatment is performed and then the cooling rate when cooling from the second aging temperature to 100 ° C is different. A sample of RFeB system sintered magnet was prepared. At the same time, as a comparative example, the case where the second aging treatment step is performed without performing the first aging treatment step on the base material 14 manufactured using the RFeB-based magnet powder obtained from the alloy 3 Similarly, a plurality of RFeB system sintered magnet samples with different cooling rates were prepared. FIG. 4 shows the results of measuring the coercive force of these RFeB system sintered magnet samples. As a result, the coercive force of each of the samples of the comparative examples was below 16 kOe, whereas the coercive force of each of the samples of this example in which both the first aging treatment step and the second aging treatment step were performed was 16 kOe. Exceeded. Among the samples of this example, the sample having the slowest cooling rate from the second aging temperature to 100 ° C. (3 ° C./min) had a coercive force slightly higher than that of the other samples having the cooling rate of 5 ° C./min or more. Became lower. That is, the cooling rate from the second aging temperature to 100 ° C. is preferably 5 ° C./minute or more.

11…RFeB系合金塊
12…RFeB系粗粉
13…RFeB系磁石粉末
14…基材
15…RFeB系焼結磁石
19…容器
11 ... RFeB-based alloy ingot 12 ... RFeB-based coarse powder 13 ... RFeB-based magnet powder 14 ... Base material 15 ... RFeB-based sintered magnet 19 ... Container

Claims (3)

希土類元素Rを28〜33質量%、Coを0〜2.5質量%、Alを0.3〜0.7質量%、Bを0.9〜1.2質量%、Oを1500ppm未満含有し、残部がFeであり、
結晶粒界に、R6Fe14-xAlx型構造を有するRFeAl相が存在し、
保磁力が16kOe以上である
ことを特徴とするRFeB系焼結磁石。
The rare earth element R is 28 to 33 mass%, Co is 0 to 2.5 mass%, Al is 0.3 to 0.7 mass%, B is 0.9 to 1.2 mass%, O is contained at less than 1500 ppm, and the balance is Fe.
At the grain boundary, there is an RFeAl phase having a R 6 Fe 14-x Al x type structure,
An RFeB-based sintered magnet having a coercive force of 16 kOe or more.
さらにCuを0.1〜0.5質量%含有し、CuとAlの含有率の合計が0.5質量%を超えており、Alの含有率がCuの含有率よりも大きいことを特徴とする請求項1に記載のRFeB系焼結磁石。   Furthermore, 0.1-0.5 mass% of Cu is contained, the total of the content rates of Cu and Al exceeds 0.5 mass%, and the content rate of Al is larger than the content rate of Cu. RFeB system sintered magnet. さらにZrを0.05〜0.35質量%含有していることを特徴とする請求項1又は2に記載のRFeB系焼結磁石。   The RFeB system sintered magnet according to claim 1 or 2, further containing 0.05 to 0.35 mass% of Zr.
JP2019154463A 2018-11-06 2019-08-27 RFeB sintered magnet Active JP7379935B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/673,288 US11232890B2 (en) 2018-11-06 2019-11-04 RFeB sintered magnet and method for producing same
DE102019129812.1A DE102019129812A1 (en) 2018-11-06 2019-11-05 Sintered RFeB MAGNET AND METHOD FOR THE PRODUCTION THEREOF
CN201911075229.0A CN111145972B (en) 2018-11-06 2019-11-06 RFeB sintered magnet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018208615 2018-11-06
JP2018208615 2018-11-06

Publications (2)

Publication Number Publication Date
JP2020077843A true JP2020077843A (en) 2020-05-21
JP7379935B2 JP7379935B2 (en) 2023-11-15

Family

ID=70724413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154463A Active JP7379935B2 (en) 2018-11-06 2019-08-27 RFeB sintered magnet

Country Status (1)

Country Link
JP (1) JP7379935B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286175A (en) * 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet and its manufacturing method
WO2009004994A1 (en) * 2007-06-29 2009-01-08 Tdk Corporation Rare earth magnet
JP2012199270A (en) * 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
JP2014027268A (en) * 2012-06-22 2014-02-06 Tdk Corp Sintered magnet
WO2014156592A1 (en) * 2013-03-25 2014-10-02 インターメタリックス株式会社 Sintered magnet production method
WO2015030231A1 (en) * 2013-09-02 2015-03-05 日立金属株式会社 Method of producing r-t-b sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286175A (en) * 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet and its manufacturing method
WO2009004994A1 (en) * 2007-06-29 2009-01-08 Tdk Corporation Rare earth magnet
JP2012199270A (en) * 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
JP2014027268A (en) * 2012-06-22 2014-02-06 Tdk Corp Sintered magnet
WO2014156592A1 (en) * 2013-03-25 2014-10-02 インターメタリックス株式会社 Sintered magnet production method
WO2015030231A1 (en) * 2013-09-02 2015-03-05 日立金属株式会社 Method of producing r-t-b sintered magnet

Also Published As

Publication number Publication date
JP7379935B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US9892831B2 (en) R-Fe—B sintered magnet and making method
CN107871582B (en) R-Fe-B sintered magnet
EP3076406B1 (en) Making method of a r-fe-b sintered magnet
CN109964290B (en) Method for producing R-T-B sintered magnet
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
WO2017018291A1 (en) Method for producing r-t-b system sintered magnet
EP2484464B1 (en) Powder for magnetic member, powder compact, and magnetic member
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
CN109935432B (en) R-T-B permanent magnet
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
US11600413B2 (en) R—Fe—B sintered magnet and production method therefor
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP2015119130A (en) Rare earth magnet
JP2008127648A (en) Method for producing rare earth anisotropic magnet powder
JP6142793B2 (en) Rare earth magnets
JP2012079796A (en) Alloy material for r-t-b based rare-earth permanent magnet, production method of r-t-b based rare-earth permanent magnet, and motor
JP2015135935A (en) Rare earth based magnet
JP2015005550A (en) Rare earth magnet powder
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
CN111145972B (en) RFeB sintered magnet and method for producing same
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP4260087B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2022037085A (en) Rare earth-iron-boron based sintered magnet
JP7379935B2 (en) RFeB sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7379935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150