JPH0237702A - R-fe-b-m sintered magnet - Google Patents
R-fe-b-m sintered magnetInfo
- Publication number
- JPH0237702A JPH0237702A JP63187622A JP18762288A JPH0237702A JP H0237702 A JPH0237702 A JP H0237702A JP 63187622 A JP63187622 A JP 63187622A JP 18762288 A JP18762288 A JP 18762288A JP H0237702 A JPH0237702 A JP H0237702A
- Authority
- JP
- Japan
- Prior art keywords
- surface layer
- layer
- corrosion resistance
- present
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 claims abstract description 21
- 238000005260 corrosion Methods 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims abstract description 21
- 239000002344 surface layer Substances 0.000 claims abstract description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052692 Dysprosium Inorganic materials 0.000 abstract description 2
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 2
- 229910052771 Terbium Inorganic materials 0.000 abstract description 2
- 229910001122 Mischmetal Inorganic materials 0.000 abstract 1
- 229910052777 Praseodymium Inorganic materials 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は希土類元素の添加量を特定範囲に選択し、且つ
表面層を改質して、磁気特性を高く保持したまま耐蝕性
を顕著に改善した高性能なR−Fe−B−M系焼結磁石
に関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention selects the amount of rare earth elements added within a specific range and modifies the surface layer to significantly improve corrosion resistance while maintaining high magnetic properties. The present invention relates to an improved high performance R-Fe-BM based sintered magnet.
〔従来の技術]
近年、S m Co基磁石に代わって高価でかつ原料供
給に不安のあるSm、Co1Iれした希土類(以下Rと
略記する。)・鉄・はう素糸(以下R−Fe−B系と略
記する。)永久磁石への期待は大きく新素材として注目
されている。[Prior Art] In recent years, Sm, Co1I rare earth (hereinafter abbreviated as R), iron, and thread (hereinafter R-Fe) have been used instead of SmCo-based magnets, which are expensive and have concerns about raw material supply. (Abbreviated as -B series.) There are great expectations for permanent magnets, and they are attracting attention as a new material.
このR−Fe−B基磁石の磁性はRFeB(原子百分比
に換算するとR=12.Fe=82.B=6%)で表わ
せられる金属間化合物によって発生することが知られて
いる(特開昭59−222564号公報参照)。It is known that the magnetism of this R-Fe-B-based magnet is generated by an intermetallic compound represented by RFeB (R = 12. Fe = 82. B = 6% when converted to atomic percentage) (Japanese Patent Application Laid-Open No. 59-222564).
そして、公知の基本的なR−Fe−B基磁石はJノに子
百分比で8〜30%のR,2〜20%のほう素。The known basic R--Fe--B based magnet contains 8 to 30% R and 2 to 20% boron in terms of molecular percentage.
残部が鉄である組成範囲からなる(特公昭61−342
42号公報参照)。しかして、該公報の実施例から磁気
特性の優れた代表的組成はNd=14、Fe=79.B
==7at%であり、他の磁気特性の優れた組成も大体
この辺の組成である。Consisting of a composition range in which the balance is iron (Special Publication No. 61-342)
(See Publication No. 42). According to the examples of the publication, a typical composition with excellent magnetic properties is Nd=14, Fe=79. B
==7at%, and other compositions with excellent magnetic properties also have compositions around this range.
即ち、従来の焼結磁石はRの量を必要以上に多くしてき
たが、その理由はRとして多用されるNdがFeと共晶
をNd=約70a t%で形成し低融点(640℃)と
なる性質があることを利用して液相焼結によってち密な
焼結体を得る為である。In other words, in conventional sintered magnets, the amount of R has been increased more than necessary, but the reason is that Nd, which is often used as R, forms a eutectic with Fe at Nd = about 70at%, which has a low melting point (640°C). This is to obtain a dense sintered body by liquid phase sintering, taking advantage of the property that
また、Rは活性で酸素との親和力か高い為に。Also, R is active and has a high affinity for oxygen.
鋳塊からの粉砕、成形、焼結過程において酸化損失があ
り、その分余計に補填する必要があったからである。ま
た、酸化によって生成したR酸化物は磁気特性を低下す
るため好ましくなかった。This is because there was oxidation loss during the process of crushing, forming, and sintering the ingot, and it was necessary to compensate for this loss. Further, the R oxide produced by oxidation was undesirable because it deteriorated the magnetic properties.
更に、R−Fe−B基磁石を工業用途の磁性材料として
みた場合に、加工変質層による磁気特性の劣化が指摘さ
れていた。即ち、近年のコンピュータ機器等における磁
気回路の高性能、小型化に伴い、高磁気特性を有するR
−Fe−B基磁石が脚光を浴びてきた訳であるが、かか
る要求に応じるべく磁石を薄くしたり、表面の凹凸や歪
みを除去するため、或いは表面酸化層を除去するため、
更には磁気回路に組み込む為に、磁石体の全面あるいは
一部を切削加工する必要があった。Furthermore, when an R-Fe-B-based magnet is considered as a magnetic material for industrial use, it has been pointed out that the magnetic properties deteriorate due to a processed damaged layer. That is, with the high performance and miniaturization of magnetic circuits in computer equipment, etc. in recent years, R
-Fe-B based magnets have been in the spotlight, but in order to meet these demands, in order to make the magnet thinner, remove surface irregularities and distortions, or remove the surface oxidation layer,
Furthermore, in order to incorporate it into a magnetic circuit, it was necessary to cut the entire surface or a part of the magnet body.
従って、加工により残留する加工変質層が磁気特性を劣
化するという問題点が指摘された。そこで、硬質粉末を
加圧気体とともに噴射し表面層を除去し、清浄表面を得
た直後、A1蒸着膜を被着する発明がなされた(特開昭
61−270308号公報)。注意しなければならない
には、該発明による時は、加工変質層を除去するだけで
は足りず、直後に蒸着工程を必須とする点である。Therefore, it has been pointed out that the process-altered layer remaining after processing deteriorates the magnetic properties. Therefore, an invention was made in which hard powder is injected together with pressurized gas to remove the surface layer, and immediately after obtaining a clean surface, an A1 vapor deposited film is deposited (Japanese Patent Application Laid-Open No. 61-270308). It should be noted that in accordance with the invention, it is not enough to simply remove the process-affected layer, and a vapor deposition step is required immediately afterward.
あるいは、研削加工面にNdを主成分とする体心立方晶
からなる蒸着層を被覆する発明がなされたく特開昭61
−264157号公報)。しかるに、該発明は磁気特性
の改善には効果があるものの、磁石表面のR蒸着層が酸
化して磁気特性が再び劣化するという問題点があり、更
に金属層または合金層の酸化防止層を必要とした(特開
昭62−188745号公報)。Alternatively, it would be desirable to have an invention in which the ground surface is coated with a deposited layer consisting of body-centered cubic crystals containing Nd as a main component.
-264157). However, although this invention is effective in improving magnetic properties, there is a problem in that the R deposited layer on the magnet surface oxidizes and the magnetic properties deteriorate again, and an oxidation prevention layer such as a metal layer or an alloy layer is required. (Japanese Unexamined Patent Publication No. 188745/1983).
しかし、前述の蒸着層を必須とする諸発明には本質的の
工業上の利用性が限定されるという欠点があった。蒸着
という工程は、高真空の容器内で行なわれる反応である
ため処理できる材料には必然的に大きさの制限をともな
い、また均一に付着させることが難しいからである。However, the various inventions that require the above-mentioned vapor deposited layer have the disadvantage that their essential industrial applicability is limited. This is because the vapor deposition process is a reaction carried out in a high-vacuum container, so there are inevitably restrictions on the size of the materials that can be processed, and it is difficult to deposit them uniformly.
従って、工業的に磁気特性と磁気特性の両方を簡mに満
足させる発明は見あたらなかった。Therefore, no invention has been found that easily satisfies both magnetic properties on an industrial scale.
但し、磁気特性だけではあるが、加工変質層を500〜
900℃の時効処理で除去しようとする発明は従来もな
されていた(特開昭61−140108号公報)、この
処理によ?て減磁曲線の角形性が改良されたと該公報に
記載されている。However, although it is only the magnetic property, the process-altered layer is 500~
There has been an invention in the past that attempts to remove it by aging treatment at 900°C (Japanese Patent Application Laid-Open No. 140108/1983), but what can be done by this treatment? The publication states that the squareness of the demagnetization curve was improved by
[発明が解決しようとする問題点]
しかし、前記の特開昭61−140108号公報には磁
石の組成が全く記載されておらず、磁気特性の向上効果
について実施例が見られるものの、耐蝕性について何等
記載されていない。従って、発明の構成が不明確である
が、後述のごとく本発明者の研究によると、かかる構成
を取る場合にはRリッチ層が表面に層を形成し、耐蝕性
が極端に低下することが容易に予想され、前記の特開昭
61−264157号公報記載の発明と同様、表面に酸
化防止被覆を形成する必要がある。[Problems to be Solved by the Invention] However, the composition of the magnet is not described in the above-mentioned Japanese Patent Application Laid-open No. 61-140108, and although there are examples of the effect of improving magnetic properties, the corrosion resistance is There is nothing written about it. Therefore, although the structure of the invention is unclear, according to research by the present inventors as described later, when such a structure is adopted, an R-rich layer is formed on the surface, resulting in an extremely low corrosion resistance. This is easily predicted, and as in the invention described in JP-A-61-264157, it is necessary to form an anti-oxidation coating on the surface.
Rが酸素に選択酸化され、そこを起点に腐食が磁石本体
に深く進行するからである。This is because R is selectively oxidized to oxygen, and corrosion progresses deep into the magnet body starting from there.
従って1本発明は簡mな構成で耐蝕性を顕著に改善する
とともに磁気特性も優れたR−Fe−B系焼結磁石を提
供することにある。Accordingly, one object of the present invention is to provide an R--Fe--B based sintered magnet that has a simple structure, significantly improved corrosion resistance, and excellent magnetic properties.
〔問題点を解決する手段]
このような問題点を解決するために本発明は、原子百分
比で2〜28%のBと、所定組成箱間のR(但しRはY
を含む希土類元素の少なくとも一種)と、残部Fe−(
一部をcoを含む添加元素Mで置換できる)とから実質
的になるR−Fe−B−M系焼結磁石において。[Means for Solving the Problems] In order to solve these problems, the present invention provides B of 2 to 28% in atomic percentage and R between a predetermined composition box (wherein R is Y).
at least one rare earth element containing
In the R-Fe-B-M system sintered magnet, the R-Fe-B-M system sintered magnet consists essentially of the following:
前記Rの含有量が8〜20%、表面層の残留応力がlo
kg/mm”以下であって表面層にRリッチ層が実質的
に存在しないことにより耐蝕性を改善したことを特徴と
するR−Fe−B−M系焼結磁石を提供するものである
。The content of R is 8 to 20%, and the residual stress of the surface layer is lo
The object of the present invention is to provide an R-Fe-B-M based sintered magnet characterized by improved corrosion resistance due to the fact that the corrosion resistance is less than "kg/mm" and there is substantially no R-rich layer in the surface layer.
即ち、本発明者は第一に、Rの組成範囲として8〜30
a t%が適当と考えられてきた従来のR−Fe−B基
磁石の組成において、原子百分比で8〜15%に限定す
ることによって耐蝕性が顕著に向上することを見出した
ものである。That is, the present inventor first determined that the composition range of R is 8 to 30.
It has been discovered that in the composition of conventional R-Fe-B-based magnets, where at% has been considered appropriate, corrosion resistance can be significantly improved by limiting the composition to 8 to 15% in terms of atomic percentage.
本発明に於ける成分の限定理由はR以外は従来公知のも
の(例えば特開昭59−132104号公報参照)と変
わりない。即ち、2〜28%のB、50%以下のGo、
所定の添加元素を含有することができる。所定の添加元
素としてはAt、Ti、v、Cr、Mn、Zr、Hf、
Nb、Ta。The reasons for limiting the components in the present invention, except for R, are the same as those conventionally known (for example, see JP-A-59-132104). That is, 2 to 28% B, 50% or less Go,
It can contain predetermined additional elements. Predetermined additive elements include At, Ti, v, Cr, Mn, Zr, Hf,
Nb, Ta.
Mo、Ge、Sb、Sn、Bi、Ni、W等の公知の添
加元素を添加することは本発明の効果に何等悪影響を与
えない。Addition of known additive elements such as Mo, Ge, Sb, Sn, Bi, Ni, and W does not have any adverse effect on the effects of the present invention.
本発明においてRはYを含む一種又は二種以上のものが
使用できるが、磁気特性から特にNd。In the present invention, one or more types of R including Y can be used, but Nd is particularly preferred due to its magnetic properties.
Prを主体とし、原価低減の目的でCe又はミツシュメ
タルで一部置換してもよく、耐熱性を要求される用途に
はDy、Tb等の重Rの一部置換ができる。Mainly composed of Pr, it may be partially replaced with Ce or Mitsushi metal for the purpose of cost reduction, and heavy R such as Dy and Tb may be partially replaced for applications requiring heat resistance.
本発明においてRが原子百分比で8%未満のときは保磁
力が1 k Oe未満となり好ましくなく、20%を越
えるときは耐蝕性が著しく低下するので好ましくない。In the present invention, if R is less than 8% in atomic percentage, the coercive force will be less than 1 k Oe, which is undesirable, and if it exceeds 20%, the corrosion resistance will be significantly reduced, which is not preferred.
その理由は未だ明らかではないが、粒界における塊状の
希土類に富んだ相の出現と関係があるものと考えられる
。この塊状のR富化相は低融点であり、インゴットの鋳
造時のデンドライト結晶の樹枝間へのトラップ(捕捉)
による樹枝状偏析や、焼結時の液相焼結時に残留するも
のと考えられる。本発明者の研究によるとR含有量が2
0%を越えるときはRリッチな塊状物が急に増加する傾
向が見られた。The reason for this is not yet clear, but it is thought to be related to the appearance of massive rare earth-rich phases at grain boundaries. This massive R-enriched phase has a low melting point and is trapped between the dendrite crystals during ingot casting.
This is thought to be due to dendritic segregation caused by the sintering process, or residual during liquid phase sintering during sintering. According to the research of the present inventor, the R content is 2
When it exceeds 0%, there is a tendency for R-rich lumps to increase suddenly.
本発明において、熱処理温度は共晶点の温度未満ではそ
の効果を発揮できず、焼結温度を越える場合は結晶粒の
粗大化を招き好ましくない。In the present invention, if the heat treatment temperature is lower than the eutectic point temperature, the effect cannot be exhibited, and if it exceeds the sintering temperature, the crystal grains become coarsened, which is not preferable.
一般に、加工後のR−Fe−B基磁石の表面には第1図
に断面の模式図を示す通り約10〜30μmの加工変質
層が存在する。そして、熱処理を施すと第2図に示す通
り、600〜700℃付近で残留応力は50kg/mm
”からIQkg/mm”に減少すると共に、表面層のN
dの特性X線ピーク強度が急激に上昇することがわかる
。この時、表面層には第1図(b)に示す通り、Ndリ
ッチな相が観察される。粉末冶金で周知の低融点金属の
「汗かきノ現象に類似している。なお、Ndの融点は8
40℃であるが、前述の通りFeとの共晶組成では融点
が640℃にまで低下する性質があるからである。Generally, on the surface of an R--Fe--B based magnet after processing, there is a processing-affected layer of about 10 to 30 .mu.m, as shown in the schematic cross-sectional view of FIG. After heat treatment, the residual stress is 50 kg/mm at around 600-700℃ as shown in Figure 2.
” to IQkg/mm” and the N in the surface layer
It can be seen that the characteristic X-ray peak intensity of d increases rapidly. At this time, an Nd-rich phase is observed in the surface layer, as shown in FIG. 1(b). This is similar to the "sweating phenomenon" of low-melting metals, which is well known in powder metallurgy.The melting point of Nd is 8
This is because the melting point is 40°C, but as described above, the melting point decreases to 640°C in the eutectic composition with Fe.
従って、熱処理によって、加工による残留応力は解放さ
れるものの、このRリッチ相によって耐蝕性は激減する
。Rは酸素との親和力が極めて大きいためである。Therefore, although the residual stress due to processing is released by heat treatment, the corrosion resistance is drastically reduced due to this R-rich phase. This is because R has an extremely high affinity with oxygen.
そこで、本発明においては表面層のRリッチ層を除去す
る必要がある。その方法は、従来公知の手段を用いるこ
とができる。例えば、パフ研磨、電解研磨1機械的ブラ
ッシング、酸洗等が用いることができる。酸洗する場合
には2%HN O,m液が特に好ましい。H2SO4の
ような強い酸を用いる場合は腐食が激し過ぎて好ましく
ない。Therefore, in the present invention, it is necessary to remove the R-rich layer on the surface layer. As the method, conventionally known means can be used. For example, puff polishing, electrolytic polishing 1 mechanical brushing, pickling, etc. can be used. In the case of pickling, a 2% HN O, m solution is particularly preferred. If a strong acid such as H2SO4 is used, corrosion will be too severe and this is not preferred.
また1本発明においてはRの含有量を必要最小限に限定
していることから、S化損失を極力低減する為に酸化を
防止し得る製造法が好ましい。例えば、水素を吸蔵させ
て粉砕しやすくした水素粉砕粉の使用、不活性ガス中で
の作業等が必要である。減圧による脱酸素も使用できる
。Furthermore, in the present invention, since the content of R is limited to the necessary minimum, a manufacturing method that can prevent oxidation is preferred in order to reduce the S conversion loss as much as possible. For example, it is necessary to use hydrogen pulverized powder that absorbs hydrogen to make it easier to crush, and to work in an inert gas atmosphere. Deoxygenation by vacuum can also be used.
更に、本発明で得られた磁石体に本願出願人が既に出願
している化成皮膜と樹脂皮膜の積層皮膜を施すことによ
り耐蝕性は更に向上する(特願昭62−239424号
)。Furthermore, the corrosion resistance can be further improved by applying a laminated coating of a chemical conversion coating and a resin coating to the magnet body obtained by the present invention (Japanese Patent Application No. 62-239424), which has already been filed by the applicant.
以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.
[実施例]
(実施例1)
原子%でNd 14%、88%、Nb1.2%、残部
Feなる組成の合金をアーク溶解により作製した6得ら
れたインゴットをスタンプミル及びディスクミルにて粗
粉砕し32メツシユ以下に調整後、ジェットミルで微粉
砕した。粉砕媒体は窒素ガスであり、粉砕粒度は3 、
5 p m (F、S、S、S)である。ここでF、S
、S、SはF 1scher社の5ub−3ieveS
izer測定装置(空気透過法)による粒径を示す。[Example] (Example 1) An alloy having a composition of 14% Nd, 88% Nb, 1.2% Nb, and the balance Fe was prepared by arc melting in atomic %.The obtained ingot was roughened using a stamp mill and a disk mill. After pulverizing and adjusting to 32 mesh or less, it was finely pulverized with a jet mill. The grinding medium is nitrogen gas, and the grinding particle size is 3,
5 p m (F, S, S, S). Here F, S
, S, S are F1scher's 5ub-3ieveS
The particle size is shown using an Izer measuring device (air permeation method).
得られた微粉砕粉を15kOeの磁場中でWl、磁場成
形(加圧方向と磁場方向が直交)した。成形圧力は2ト
ン/cm2である。得られた成形体をアルゴン雰囲気中
で1100°Cで1時間焼結し、焼結後アルゴン気流中
で急冷した。The obtained finely pulverized powder was subjected to magnetic field molding in a magnetic field of 15 kOe (the direction of pressure and the direction of the magnetic field were perpendicular). The molding pressure is 2 tons/cm2. The obtained compact was sintered at 1100° C. for 1 hour in an argon atmosphere, and after sintering, it was rapidly cooled in an argon stream.
次に、得られた永久磁石体から22 x 15 x 4
m重の試験片を切り出し、加工変質層を改質するため
に800℃で1時間アルゴン雰囲気中で熱処理した。次
いで、表面層のNdリッチ層を除去するために、2%H
NO,水溶液に5分間浸漬し酸洗した。比較例として、
熱処理したままのものを。Next, from the obtained permanent magnet body, 22 x 15 x 4
A test piece of m weight was cut out and heat treated at 800° C. for 1 hour in an argon atmosphere in order to modify the process-affected layer. Next, in order to remove the Nd-rich layer on the surface layer, 2% H
It was immersed in NO, aqueous solution for 5 minutes and pickled. As a comparative example,
The one that has been heat treated.
以下本発明によるものと同様に処理した。Thereafter, the same treatment as that according to the present invention was carried out.
次にエポキシ系樹脂を水溶液中で酸との反応により正イ
オン化させ、永久磁石を陰極にして5US316材を陽
極に、温度28℃、電圧150V、3分の条件で永久磁
石にエポキシ樹脂を電気的に付着させ熱硬化により架橋
反応を起こさせて凝固塗着(電着塗装)させた。この時
の塗膜厚さは20μmであった。比較例の場合も同様に
電着塗装した。Next, the epoxy resin is positively ionized by reaction with an acid in an aqueous solution, and the epoxy resin is electrically connected to the permanent magnet at a temperature of 28°C and a voltage of 150V for 3 minutes using a permanent magnet as a cathode and a 5US316 material as an anode. A crosslinking reaction was caused by heat curing, resulting in solidified coating (electrodeposition coating). The coating film thickness at this time was 20 μm. In the case of the comparative example, electrodeposition coating was performed in the same manner.
こうして得られた永久磁石を恒温恒湿槽の中に入れて、
試験前後で外観、テーピング剥離テスト、酸化増量の測
定及び耐溶剤試験を行なった。ここで、テーピング剥離
テストとは幅18mmの特定のセロファンテープを貼り
付けた後はがした時のの皮膜の剥離状態を目視a察する
試験方法であり、酸化増量は80℃、90%RHで60
0時間保持した時の型破変化(含水及び酸化による重量
の増加)を測定する試験である。測定には電子天秤を用
い、耐湿試験後30℃、 40%RHにて2時間、更に
大気中に1時間放置後、重にを測定した。耐溶剤試験は
塗装後、1.1.I トリクロルエタン及びIPA(イ
ソプロピルアルコール)を使用し、30℃にて24時間
浸漬した後の外観目視、及び400回(200往復)の
ラビングテスト(往復摩擦試験)を行なった。Place the permanent magnet obtained in this way in a constant temperature and humidity chamber,
Appearance, taping peel test, oxidation weight gain measurement, and solvent resistance test were conducted before and after the test. Here, the taping peel test is a test method in which a specific cellophane tape with a width of 18 mm is attached and peeled off, and the peeling state of the film is visually observed.
This test measures the change in mold breaking (increase in weight due to water content and oxidation) when held for 0 hours. An electronic balance was used for the measurement, and after the humidity test, the weight was measured at 30° C. and 40% RH for 2 hours, and then left in the air for 1 hour. Solvent resistance test was performed after painting, 1.1. I Using trichloroethane and IPA (isopropyl alcohol), the appearance was visually inspected after immersion at 30° C. for 24 hours, and a rubbing test (reciprocating friction test) was performed 400 times (200 reciprocations).
その結果1本発明によると外観、テーピング剥離テスト
、耐溶剤試験及びラビングテストの結果は極めて良好で
あった。600時間保持後の酸化を歌も比較例の場合が
0.94g/cm”にも達したのに比べ、0.07mg
/cm2という顕著な耐蝕効果があった。Results 1 According to the present invention, the results of appearance, taping peel test, solvent resistance test, and rubbing test were extremely good. The oxidation level after 600 hours of storage reached 0.07 mg, compared to 0.94 g/cm'' in the comparative example.
There was a remarkable corrosion resistance effect of /cm2.
(実施例2)
実施例1の組成においてNdの含有量を7〜21at%
まで変化(合計で100%になるようにFe9.を調整
する。)して、Nd含有量と耐蝕性の関係を調べた。熱
処理、表面処理は実施例1と同様とした。但し、ここで
耐蝕性の評価は120℃、2気圧のP CT (Pre
ssure Cooker Te5t)試験で評価した
。評価基準はPCT試験をした後、目視で腐食が発生す
るまでの耐久時間とした。結果を磁気特性と併せて第1
表に示す通り、Ndの含有量が8at%未満では磁気特
性が十分ではなく、20%を越える場合にはPCT試験
の耐久時間が著しく劣化する。好ましくは10〜15%
の範囲が磁気特性と耐蝕性の両方を十分満足する。(Example 2) In the composition of Example 1, the Nd content was 7 to 21 at%.
(Fe9. was adjusted so that the total amount was 100%), and the relationship between Nd content and corrosion resistance was investigated. The heat treatment and surface treatment were the same as in Example 1. However, the evaluation of corrosion resistance here is based on P CT (Pre
It was evaluated using the Sure Cooker Te5t) test. The evaluation standard was the durability time until corrosion occurred visually after the PCT test. Combine the results with the magnetic properties and
As shown in the table, when the Nd content is less than 8 at%, the magnetic properties are not sufficient, and when it exceeds 20%, the durability time of the PCT test is significantly deteriorated. Preferably 10-15%
The range satisfies both magnetic properties and corrosion resistance.
第1表
[発明の効果]
本発明によれば従来不十分であったR−Fa−B系永久
磁石の耐蝕性が良好な磁気特性を保持したまま著しく改
善された。Table 1 [Effects of the Invention] According to the present invention, the corrosion resistance of R-Fa-B permanent magnets, which had been insufficient in the past, was significantly improved while maintaining good magnetic properties.
第1図は本発明にかかる加工変質層の様子を模式的に示
した図、第2図は熱処理による表面層の残留応力、Nd
、tの変化を示す図である。
r面の汚書(内容に変更を+、)
第1図
加
工
前
加
工
後
加工後熱処理Figure 1 is a diagram schematically showing the state of the process-affected layer according to the present invention, and Figure 2 is a diagram showing the residual stress in the surface layer due to heat treatment, Nd
, t is a diagram showing changes in t. Scratch writing on r side (changed in content) Fig. 1 Heat treatment before processing and after processing
Claims (1)
但しRはYを含む希土類元素の少なくとも一種)と、残
部Fe(一部をCoを含む添加元素Mで置換できる)と
から実質的になるR−Fe−B−M系焼結磁石において
、 前記Rの含有量が8〜20%、表面層の残留応力が10
kg/mm^2以下であって表面層にRリッチ層が実質
的に存在しないことにより耐蝕性を改善したことを特徴
とするR−Fe−B−M系焼結磁石。[Claims] B in an atomic percentage of 2 to 28% and R in a predetermined composition range (
However, in the R-Fe-B-M system sintered magnet, which is substantially composed of R (at least one kind of rare earth element containing Y) and the remainder Fe (part of which can be replaced by an additional element M containing Co), the above-mentioned R content is 8-20%, residual stress in surface layer is 10
kg/mm^2 or less and has improved corrosion resistance due to the substantial absence of an R-rich layer in the surface layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63187622A JP2721187B2 (en) | 1988-07-27 | 1988-07-27 | RF lower e-BM sintered magnet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63187622A JP2721187B2 (en) | 1988-07-27 | 1988-07-27 | RF lower e-BM sintered magnet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0237702A true JPH0237702A (en) | 1990-02-07 |
JP2721187B2 JP2721187B2 (en) | 1998-03-04 |
Family
ID=16209331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63187622A Expired - Fee Related JP2721187B2 (en) | 1988-07-27 | 1988-07-27 | RF lower e-BM sintered magnet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2721187B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007283267A (en) * | 2006-04-20 | 2007-11-01 | Kansai Electric Power Co Inc:The | Gas separation process and device |
JP2014209560A (en) * | 2013-03-29 | 2014-11-06 | 大同特殊鋼株式会社 | Method for manufacturing rare earth-iron-boron based magnet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270309A (en) * | 1985-05-23 | 1986-11-29 | Sumitomo Special Metals Co Ltd | Working method for permanent magnet material |
-
1988
- 1988-07-27 JP JP63187622A patent/JP2721187B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270309A (en) * | 1985-05-23 | 1986-11-29 | Sumitomo Special Metals Co Ltd | Working method for permanent magnet material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007283267A (en) * | 2006-04-20 | 2007-11-01 | Kansai Electric Power Co Inc:The | Gas separation process and device |
JP2014209560A (en) * | 2013-03-29 | 2014-11-06 | 大同特殊鋼株式会社 | Method for manufacturing rare earth-iron-boron based magnet |
Also Published As
Publication number | Publication date |
---|---|
JP2721187B2 (en) | 1998-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1467385B1 (en) | Rare earth element sintered magnet and method for producing rare earth element sintered magnet | |
US8394450B2 (en) | Process for producing magnet | |
JP5226520B2 (en) | Manufacturing method of NdFeB sintered magnet | |
US8557057B2 (en) | Rare earth permanent magnet and its preparation | |
KR20170058295A (en) | R-(Fe,Co)-B SINTERED MAGNET AND MAKING METHOD | |
JP6019695B2 (en) | Rare earth permanent magnet manufacturing method | |
WO2005015580A1 (en) | R-t-b sintered magnet and rare earth alloy | |
JP4179973B2 (en) | Manufacturing method of sintered magnet | |
EP0255939A2 (en) | Rare earth magnet and rare earth magnet alloy powder having high corrosion resistance | |
JP4003067B2 (en) | Rare earth sintered magnet | |
JP4003066B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP5024531B2 (en) | How to use rare earth sintered magnets | |
JP3683260B2 (en) | Rare earth permanent magnet | |
EP0386286B1 (en) | Rare earth iron-based permanent magnet | |
JPS63217601A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
WO2006054617A1 (en) | Rare earth sintered magnet | |
JPH0237702A (en) | R-fe-b-m sintered magnet | |
JPH0529119A (en) | High corrosion-resistant rare earth magnet | |
JP3914557B2 (en) | Rare earth sintered magnet | |
JP2720039B2 (en) | Rare earth magnet material with excellent corrosion resistance | |
JP2004281492A (en) | Permanent magnet material | |
JP4296442B2 (en) | Method for preventing hydrogen embrittlement of rare earth sintered magnets | |
JPH0475303B2 (en) | ||
JPH1068052A (en) | R-tm-b series sintered magnetic alloy high in corrosion resistance | |
JPH04206805A (en) | Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |