JP4003066B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
JP4003066B2
JP4003066B2 JP2002373630A JP2002373630A JP4003066B2 JP 4003066 B2 JP4003066 B2 JP 4003066B2 JP 2002373630 A JP2002373630 A JP 2002373630A JP 2002373630 A JP2002373630 A JP 2002373630A JP 4003066 B2 JP4003066 B2 JP 4003066B2
Authority
JP
Japan
Prior art keywords
magnet
hydrogen
sintered magnet
rare earth
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002373630A
Other languages
Japanese (ja)
Other versions
JP2003257768A (en
Inventor
一晃 榊
匡樹 笠嶋
隆二 浜田
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002373630A priority Critical patent/JP4003066B2/en
Publication of JP2003257768A publication Critical patent/JP2003257768A/en
Application granted granted Critical
Publication of JP4003066B2 publication Critical patent/JP4003066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素雰囲気に長時間晒されるモーター等に用いられるR2Fe14B系焼結磁石の製造方法に関する。
【0002】
【従来の技術】
希土類元素と遷移金属の金属間化合物においては、水素が結晶格子間に侵入する、即ち、合金中に水素を吸蔵、放出する特性を持っており、その特性はいろいろな分野で利用されている。その例としては、LaNi5に代表とされる水素吸蔵合金による水素電池が挙げられ、また、希土類焼結磁石においても、R2Fe1 4B系合金の粉砕方法として、更にR2Fe14B系ボンド磁石の製造方法(HDDR 特開平3−129702号公報)として利用されている。
【0003】
しかしながら、合金中又は磁石中に水素を吸蔵、放出させた場合、水素脆性を引き起こしてしまう。そのため、水素雰囲気中において、希土類焼結磁石を用いたモーター等を使用した場合、希土類焼結磁石が水素脆化を引き起こし、素材にワレ、クラックもしくは粉化が起こるという問題が生じている。
【0004】
現在、希土類焼結磁石には、R2Fe14B系、SmCo5系、Sm2Co17系等の種類がある。一般に、水素に対しては、2−17型結晶構造よりも1−5型結晶構造、1−5型結晶構造よりも2−7型結晶構造の方がプラトー圧は低い、即ち、レアアースリッチ(以下、Rリッチと称す)な合金のほうが水素吸蔵されやすい傾向にあり、水素脆化しやすい。
【0005】
2Fe14B系磁石は、磁石中にRリッチ相を有するため、0.1MPa以下の圧力の水素雰囲気下で、容易に水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じる。通常、R2Fe14B系磁石は、耐食性向上のためメッキ、樹脂コーティングなどの表面処理がなされているが、水素脆化を防止する手段とはなっていない。この問題を解決する方法として、R2Fe14B系磁石の表面処理膜に水素吸蔵合金を含有させる方法を提案した。この方法により作製されたR2Fe14B系磁石は、0.1MPa以下の圧力の水素雰囲気下においては、水素脆性を引き起こさないものの、それを超える圧力の水素雰囲気下においては、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じると考えられる。
【0006】
SmCo5系磁石も、R2Fe14B系磁石と同様に、Rリッチ相を有すると共に、主相であるSmCo5相のプラトー圧が約0.3MPaである。このことから、0.3MPaを超える圧力の水素雰囲気中では、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じる。
【0007】
Sm2Co17系磁石は、主相が2−17相であり、R2Fe14B系、SmCo5系に比べRリッチではないことと、Rリッチ相を含有しないため、水素脆性を引き起こしにくい。しかしながら、1MPaを超える圧力の水素雰囲気中では、他の希土類焼結磁石と同様に、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じることがわかっている。
【0008】
耐水素脆性を向上させるためには、Sm2Co17系磁石を焼結磁石とし、切断及び/又は研磨して表面を加工後、酸素分圧10-6〜152torrの雰囲気において熱処理すればよいことが分かっている(特開2002−118009号公報)。そうすることにより、磁石表面にCo及び/又はCo、Fe中にSm23が微細に分散している層を存在させていれば、3MPaを超える高圧水素雰囲気下においても水素脆性は起こさない。しかし、Sm2Co17系磁石及びCo及び/又はCo、Fe中にSm23が微細に分散している層は、硬く、欠け易いため、製品組み立て等、取扱いの際、チッピング等を引き起こす場合がある。チッピング等を引き起こした希土類焼結磁石は、磁気特性には、ほとんど影響はないものの、耐水素性皮膜が欠け落ちた部分が存在するため、耐水素脆性は大きく低下し、表面層のない場合と同等になってしまう。従って、1MPaを超える圧力の水素雰囲気中では、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が起こるため、そのような雰囲気中では、使用することができない。
【0009】
上記問題は、Sm2Co17系磁石の機械的強度の脆さに起因するものである。つまり、素材として、機械的強度が強いものがよいことは明らかであり、Sm2Co17系磁石よりR2Fe14B系磁石の方が機械的強度は強く、更に通常、耐酸化性皮膜を有しているため、チッピング等の可能性は低く、R2Fe14B系磁石に耐水素性皮膜を被覆できれば有効であると考えられる。
【0010】
また、R2Fe14B系磁石は、Sm2Co17系磁石に比べ、耐食性が劣っている及び温度特性に劣っている等の欠点があるものの、主要元素が、高価なSm、Coではなく、安価なNd、Feであることから、原材料費が安価なだけでなく、現在量産されている最高磁気特性においても、Sm2Co17系磁石の32MGOeに対し、R2Fe14B系磁石の50MGOeの最大エネルギー積のように優れているという利点がある。即ち、R2Fe14B系磁石は、耐食性向上のための表面処理が施されていれば、常温において、極めて優れた永久磁石材料であり、そのため、優れた温度特性を必要としない場合又は150℃以上の温度がかからない場合であれば、通常、磁気回路の小型化、高効率化のためには、Sm2Co17系磁石ではなく、R2Fe14B系磁石が使われることが多い。つまり、磁気特性においても、Sm2Co17系磁石よりもR2Fe14B系磁石が耐水素性を有すれば、非常に有効であることは明らかである。
【0011】
【特許文献1】
特開2002−118009号公報
【特許文献2】
特開平3−129702号公報
【0012】
【発明が解決しようとする課題】
本発明は、このような問題を解決したR2Fe14B系焼結磁石の製造方法を提供するものである。即ち、従来の希土類焼結磁石の様に、水素雰囲気下で、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じるという問題を解決するR2Fe14B系焼結磁石の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、焼結、時効後の焼結磁石を表面加工後、金属メッキを施し、更に最適な熱処理をすることで、磁石体表面に耐水素性に優れた層を形成するという、高圧の水素雰囲気中でも水素脆性を引き起こさない希土類焼結磁石の製造方法を見い出した。このことから、水素雰囲気に長時間晒されるモーター等に好適に用いられるR2Fe14B系焼結磁石が得られることを知見し、本発明をなすに至った。
【0014】
即ち、本発明は、前記問題を解決する方法として下記(1)、(2)の希土類焼結磁石の製造方法を提供するものである。
(1)R(Rは、Nd、Pr、Dy、Tb及びHoから選択される1種又は2種以上の希土類元素)を20〜35重量%、Coを15重量%以下、Bを0.2〜8重量%、添加物としてNi、Nb、Al、Ti、Zr、Cr、V、Mn、Mo、Si、Sn、Ga、Cu及びZnから選ばれる少なくとも1種の元素を8重量%以下、残部Fe及び不可避的不純物からなる合金を溶解、鋳造し、粉砕、微粉砕、磁場中成形、焼結、熱処理を順次行って焼結磁石とし、更に該焼結磁石を切断及び/又は研磨して表面を加工後、銅メッキを施し、その上にニッケルメッキを施す多層メッキを行い、その後、酸素分圧が10-4Pa〜50kPaである、アルゴン、窒素、空気又は低圧真空雰囲気下において、200〜700℃で3〜50時間熱処理して0.1〜100μmの厚さのメッキ金属の酸化物層を形成することを特徴とする水素雰囲気中で耐水素性を有する希土類焼結磁石の製造方法、
(2)多層メッキ後の熱処理を200〜600℃の条件で行う(1)記載の希土類焼結磁石の製造方法。
【0015】
以下に、本発明の詳細を説明する。
本発明におけるR2Fe14B系焼結磁石合金組成の主成分は、R(Rは、Nd、Pr、Dy、Tb又はHoから選択される1種又は2種以上の希土類元素)を20〜35重量%、Coを0重量%を超え15重量%以下、Bを0.2〜8重量%、添加物としてNi、Nb、Al、Ti、Zr、Cr、V、Mn、Mo、Si、Sn、Ga、Cu及びZnから選ばれる少なくとも1種の元素を0重量%を超え8重量%以下、残部Fe及び不可避的不純物からなる。前記Rの含有量が、20重量%未満であると保磁力が著しく減少し、また、35重量%を超えると残留磁束密度が著しく減少する。
【0016】
本発明のR2Fe14B系磁石合金は、上記組成範囲の原料をアルゴン等の非酸化性雰囲気中において、高周波溶解により溶解、鋳造する。
【0017】
次に、前記R2Fe14B系磁石合金を粗粉砕し、次いで特に限定はしないが、好ましくは平均粒径1〜10μmに微粉砕する。この粗粉砕は、例えば、不活性ガス雰囲気中で、ジョークラッシャー、ブラウンミル、ピンミル及び水素吸蔵等により行うことができる。また、前記微粉砕は、アルコール、ヘキサン等を溶媒に用いた湿式ボールミルやアトライター、不活性ガス雰囲気中による乾式ボールミル、不活性ガス気流によるジェットミル等により行うことができる。
【0018】
次に、前記微粉砕粉を、好ましくは10kOe以上、特に15kOe以上の磁場を印可することが可能な磁場中プレス機等により、好ましくは200kg/cm2以上2000kg/cm2未満の圧力により圧縮成形する。続いて、得られた圧縮成形体を、熱処理炉により、高真空中又はアルゴンなどの非酸化性雰囲気ガス中で、1000〜1200℃において、1〜2時間、焼結を行う。
【0019】
続いて、真空中又はアルゴンなどの非酸化性雰囲気ガス中で、焼結温度よりも低い温度で、好ましくは400〜700℃の温度で熱処理を施し、切断及び/又は研磨して表面の加工仕上げを行う。この際、特に限定されるものではないが、希土類焼結磁石体に面取りがなされていることが望ましい。
【0020】
この表面加工後、前記希土類焼結磁石体に金属メッキ層を形成する。ここで、金属メッキ層は、多層になればなる程耐食性が向上するが、製造上のコストがかかること、効率性が悪くなること、磁気特性の低下などから2〜5層の金属メッキ層とすることができる。ただ、これは、用途が要求する耐食性やその他の条件により選択することが好ましい。前記金属メッキの金属は、Cu、Niからなり、メッキ厚さは、1〜100μm、特に1〜50μmが好ましい。好ましい具体例としては、下層にCuが形成され、更にNiを形成した多層メッキがよく、Cu−Ni、Cu−Ni−Ni等が挙げられる。この金属メッキを施す前処理として、特に限定されるものではないが、前記希土類焼結磁石体をアルカリ脱脂、酸洗浄、水洗することが望ましい。メッキの成膜方法としては、特に限定されるものではないが、電解メッキ法が望ましい。また、前記希土類焼結磁石体をメッキ液に浸漬する方法は、バレル法又は引っ掛け治具法のいずれでもよく、希土類焼結磁石体の寸法及び形状によって適当に選択される。
【0021】
なお、電解メッキ液としては、公知の組成のメッキ液を使用し、そのメッキ液に応じた公知の条件でメッキすることができるが、特にpH2〜12のメッキ液が好適である。また、組成の異なる金属を2層以上積層する場合は、最上層に対して直下層の腐食電位が貴となるようにすればよいが、Niを2層メッキする場合のように、皮膜中の硫黄含有量を変えることで電位を制御する方法では、上層の硫黄含有量は約0.03%以下とし、下層には硫黄を含まないようにするとよい。その他の組み合わせでは、特に限定されるものではないが、例えば、最上層にNi、直下層にCuを組み合わせるなどの例が挙げられる。
【0022】
上記方法により金属メッキを施した後、酸素分圧が10-4Pa〜50kPa、好ましくは10-4Pa〜30kPaである、アルゴン、窒素、空気又は低圧真空雰囲気下において、〜50時間、200〜700℃、好ましくは200〜600℃で熱処理する。前記熱処理時間は、10分未満では、耐水素性に優れた層の形成が十分でない、あるいは、ばらつきが多くなるため適当ではなく、また、50時間を超える熱処理は、効率的ではないことと、耐水素性に優れた層が厚くなることにより磁気特性を劣化させる原因となることがあるため適当ではない。前記熱処理温度は、80℃未満では、耐水素性に優れた希土類焼結磁石を得るために長時間の処理が必要となり、効率的ではなく、また、700℃を超える温度では、耐水素性に優れた層の形成は成されるものの、希土類焼結磁石と金属メッキが反応し、磁気特性の劣化が生じる。ちなみに、上記耐水素性に優れた層は、メッキ金属の酸化物層であり、0.1〜100μmの厚さがあることが好ましく、更に好ましくは0.1〜20μmである。
【0023】
次いで、希土類焼結磁石体表面に樹脂塗装(吹き付け塗装、電着塗装、粉体塗装あるいはディッピング塗装等のいわゆる樹脂塗装)を施すこともできる。樹脂塗装による皮膜は、耐水素性を有していないが、希土類焼結磁石が用いられたモーターなどが使用される雰囲気により耐酸性を有する必要があることや、モーターなどに希土類焼結磁石が組み込まれる際、表面層に傷をつけないため成されることとなる。なお、樹脂塗装の樹脂は、特に限定されるものではないが、アクリル系、エポキシ系、フェノール系、シリコーン系、ポリエステル系及びポリウレタン系樹脂等が望ましい。
【0024】
【実施例】
次に本発明の実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。
【0025】
[実施例1]
2Fe14B系磁石合金は、Nd:28.0重量%、Dy:4.0重量%、Co:3.5重量%、B:1.0重量%、Cu:0.2重量%、Al:0.4重量%、残部Feの組成になるように配合し、アルゴンガス雰囲気中で、アルミナルツボを使用して高周波溶解炉で溶解し、鋳型鋳造することにより作製した。
【0026】
次に、前記R2Fe14B系磁石合金を、ジョークラッシャー、ブラウンミルで約500μm以下に粗粉砕後、窒素気流によるジェットミルにより平均粒径約3μmに微粉砕を行った。得られた微粉砕粉を、磁場中プレス機により10kOeの磁場中にて1.2t/cm2の圧力で成形した。得られた成形体は熱処理炉を用い、アルゴン雰囲気中で、1070℃、2時間焼結した後、冷却し、更に600℃、1時間、アルゴン雰囲気中で熱処理を行い、焼結磁石を作製した。得られた焼結磁石から、5×5×5mmに磁石を切り出した。
【0027】
次に、前記焼結磁石に電解Cuメッキ(5μm)、電解Niメッキ(5μm)、電解Niメッキ(10μm)を順次施した。この場合、ピロリン酸銅60g/L、ピロリン酸カリウム240g/L、シュウ酸カリウム30g/Lで調整したメッキ浴を用い、浴温度40℃、電流密度1.5A/dm2の条件で電解Cuメッキを行い、次いで、塩化Ni40g/L、硫酸Ni270g/L、ホウ酸30g/Lで調整したメッキ浴を用い、浴温度50℃、電流密度2.0A/dm2の条件で、電解Niメッキを施し、更に前記Niメッキと同様な条件で電解Niを施した。その後、300℃、50時間、空気中(酸素分圧20kPa)の熱処理を施し、室温まで冷却し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得た。ここで得られた水素ガス試験用試料は、Vibrating Sample Magnetometer(以下、VSMと称す)により磁気特性の測定を行った。
【0028】
前記水素ガス試験用試料をそれぞれ耐圧容器に入れ、水素、10MPa、25℃、1日の条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察し、更にVSMにより磁気特性の測定を行った。
【0029】
[実施例2]
実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出した。前記磁石に対し、実施例1と同様な条件で電解Cuメッキ(5μm)、電解Niメッキ(5μm)、電解Niメッキ(10μm)を順次施し、その後、250℃、3時間、真空中(酸素分圧10-2Pa)の熱処理を施し、室温まで徐冷し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察し、更にVSMにより磁気特性の測定を行った。
【0030】
[比較例1]
実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察した。
【0031】
[比較例2]
実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出した。前記磁石に対し、実施例1と同様な条件で、電解Cuメッキ(5μm)、電解Niメッキ(5μm)、電解Niメッキ(10μm)を順次施し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察した。
【0032】
[比較例3,4]
実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出した。前記磁石に対し、実施例1と同様な条件で電解Cuメッキ(5μm)、電解Niメッキ(5μm)、電解Niメッキ(10μm)を順次施し、その後、50℃、12時間、空気中(酸素分圧20kPa)[比較例3]、及び、800℃、12時間、空気中(酸素分圧20kPa)[比較例4]の熱処理を施し、室温まで徐冷し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察し、更にVSMにより磁気特性の測定を行った。
【0033】
【表1】

Figure 0004003066
【0034】
表1に、熱処理条件、水素ガス試験条件、水素ガス試験後の外観を示した。実施例1,2及び比較例4は、水素ガス試験において変化がなかったことに対し、比較例1,2及び3は、粉々に粉砕されていた。このことから、実施例1,2及び比較例4は、水素脆性を引き起こさなかったことは明らかである。
【0035】
【表2】
Figure 0004003066
【0036】
表2に、表面処理前及び水素ガス試験前後の磁石の磁気特性を示した。表面処理前及び水素ガス試験前後で、実施例1,2は、ほとんど磁気特性の変化はなかったことに対し、比較例4は、表面処理前と水素ガス試験前で大きく磁気特性が変化していることが分かる。このことは、実施例1,2において、表面処理による磁気特性の劣化及び水素脆性がなかったことと、比較例4が表面処理において磁気特性の劣化を招いてしまったことを示している。比較例1,2及び3は、水素処理により粉砕されてしまったため、水素処理後の磁気特性は、測定不能であった。
【0037】
以上、表1,2は、比較例1〜4では、表面処理により磁気特性が明らかに劣化した又は耐水素性の向上が見られなかったのに対し、実施例1,2では、表面処理により磁気特性が劣化することなく、耐水素性が向上したことを示している。
【0038】
【発明の効果】
本発明のR2Fe14B系焼結磁石の製造方法により、水素雰囲気中においても、水素脆性を引き起こさない、モーター等に使用できる希土類焼結磁石を得ることが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an R 2 Fe 14 B-based sintered magnet used for a motor or the like that is exposed to a hydrogen atmosphere for a long time.
[0002]
[Prior art]
An intermetallic compound of a rare earth element and a transition metal has a characteristic that hydrogen penetrates between crystal lattices, that is, has a characteristic of occluding and releasing hydrogen in an alloy, and the characteristic is used in various fields. Examples thereof include hydrogen battery according to the hydrogen storage alloy that is represented by LaNi 5, also in the rare earth sintered magnets, as a method for pulverizing R 2 Fe 1 4 B-based alloy, further R 2 Fe 14 B This is used as a method for producing a bonded magnet (HDDR Japanese Patent Laid-Open No. 3-129702).
[0003]
However, when hydrogen is occluded and released in the alloy or magnet, hydrogen embrittlement is caused. Therefore, when a motor or the like using a rare earth sintered magnet is used in a hydrogen atmosphere, the rare earth sintered magnet causes hydrogen embrittlement, causing a problem that cracking, cracking, or powdering occurs in the material.
[0004]
Currently, there are various types of rare earth sintered magnets such as R 2 Fe 14 B, SmCo 5 and Sm 2 Co 17 systems. In general, for hydrogen, the plateau pressure is lower in the 1-5 type crystal structure than in the 2-17 type crystal structure, and in the 2-7 type crystal structure than in the 1-5 type crystal structure, that is, rare earth rich ( Hereinafter, R-rich alloys tend to be more likely to occlude hydrogen and are more likely to become hydrogen embrittled.
[0005]
Since the R 2 Fe 14 B-based magnet has an R-rich phase in the magnet, it easily causes hydrogen embrittlement in a hydrogen atmosphere at a pressure of 0.1 MPa or less, and cracks, cracks, or powdering occurs in the magnet material. Usually, R 2 Fe 14 B-based magnets are subjected to surface treatment such as plating and resin coating in order to improve corrosion resistance, but they are not means for preventing hydrogen embrittlement. As a method for solving this problem, a method of incorporating a hydrogen storage alloy into the surface treatment film of the R 2 Fe 14 B magnet has been proposed . An R 2 Fe 14 B magnet produced by this method does not cause hydrogen embrittlement in a hydrogen atmosphere at a pressure of 0.1 MPa or less, but does cause hydrogen embrittlement in a hydrogen atmosphere at a pressure higher than that. It is considered that cracking, cracking or powdering occurs in the magnet material.
[0006]
Similar to the R 2 Fe 14 B magnet, the SmCo 5 magnet also has an R-rich phase, and the plateau pressure of the SmCo 5 phase that is the main phase is about 0.3 MPa. For this reason, in a hydrogen atmosphere at a pressure exceeding 0.3 MPa, hydrogen embrittlement is caused, and cracking, cracking or powdering occurs in the magnet material.
[0007]
The Sm 2 Co 17- based magnet has a 2-17 phase main phase, is not R-rich compared to the R 2 Fe 14 B-based and SmCo 5 -based magnets, and does not contain an R-rich phase, and thus hardly causes hydrogen embrittlement. . However, it has been found that in a hydrogen atmosphere at a pressure exceeding 1 MPa, as with other rare earth sintered magnets, hydrogen embrittlement is caused, and cracking, cracking or powdering occurs in the magnet material.
[0008]
In order to improve hydrogen embrittlement resistance, an Sm 2 Co 17- based magnet should be a sintered magnet, cut and / or polished to process the surface, and then heat treated in an oxygen partial pressure of 10 −6 to 152 torr. Is known (Japanese Patent Laid-Open No. 2002-118209). By doing so, hydrogen brittleness does not occur even in a high-pressure hydrogen atmosphere exceeding 3 MPa if a layer in which Sm 2 O 3 is finely dispersed in Co and / or Co and Fe is present on the magnet surface. . However, the Sm 2 Co 17- based magnet and the layer in which Sm 2 O 3 is finely dispersed in Co and / or Co and Fe are hard and easily chipped, which causes chipping during product assembly and handling. There is a case. Sintered rare earth magnets that cause chipping, etc. have little effect on magnetic properties, but there are parts where the hydrogen-resistant film is missing, so the hydrogen embrittlement resistance is greatly reduced, equivalent to the case without a surface layer Become. Therefore, in a hydrogen atmosphere at a pressure exceeding 1 MPa, hydrogen embrittlement is caused, and cracks, cracks, or powdering occurs in the magnet material. Therefore, it cannot be used in such an atmosphere.
[0009]
The above problem is caused by the mechanical strength of the Sm 2 Co 17 magnet. That is, it is clear that a material having a high mechanical strength is preferable, and the R 2 Fe 14 B magnet has a higher mechanical strength than the Sm 2 Co 17 magnet, and moreover, usually an oxidation resistant film is provided. Therefore, it is considered that it is effective if the R 2 Fe 14 B magnet can be coated with a hydrogen resistant film.
[0010]
R 2 Fe 14 B magnets have disadvantages such as inferior corrosion resistance and temperature characteristics compared to Sm 2 Co 17 magnets, but the main elements are not expensive Sm and Co. Because it is inexpensive Nd and Fe, not only the raw material cost is low, but also in the highest magnetic properties currently mass-produced, the R 2 Fe 14 B magnet is compared to the 32 MGOe of the Sm 2 Co 17 magnet. There is an advantage that it is as excellent as the maximum energy product of 50 MGOe. That is, the R 2 Fe 14 B-based magnet is an extremely excellent permanent magnet material at room temperature if it has been subjected to surface treatment for improving corrosion resistance. If the temperature is not higher than ° C., R 2 Fe 14 B magnets are often used instead of Sm 2 Co 17 magnets in order to reduce the size and increase the efficiency of the magnetic circuit. In other words, it is clear that the magnetic characteristics are very effective if the R 2 Fe 14 B system magnet is more resistant to hydrogen than the Sm 2 Co 17 system magnet.
[0011]
[Patent Document 1]
JP 2002-118209 A [Patent Document 2]
Japanese Patent Laid-Open No. 3-129702
[Problems to be solved by the invention]
The present invention provides a method for producing an R 2 Fe 14 B-based sintered magnet that solves such problems. That is, a method of manufacturing an R 2 Fe 14 B-based sintered magnet that solves the problem of causing hydrogen embrittlement in a hydrogen atmosphere and causing cracks, cracks, or pulverization in the magnet material as in the case of conventional rare earth sintered magnets. The purpose is to provide.
[0013]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor conducted surface treatment on sintered and aged sintered magnets, then applied metal plating, and further subjected to optimal heat treatment, so that the surface of the magnet body was subjected to heat treatment. The present inventors have found a method for producing a rare earth sintered magnet that does not cause hydrogen embrittlement even in a high-pressure hydrogen atmosphere by forming a layer having excellent hydrogen resistance. From this, it was found that an R 2 Fe 14 B-based sintered magnet suitably used for a motor or the like exposed to a hydrogen atmosphere for a long time was obtained, and the present invention was made.
[0014]
That is, the present invention provides the following methods (1) and (2) for producing a rare earth sintered magnet as a method for solving the above problems.
(1) R (R is one or more rare earth elements selected from Nd, Pr, Dy, Tb and Ho) 20 to 35 wt%, Co 15 wt% or less, B 0.2 -8% by weight, additive, Ni, Nb, Al, Ti, Zr, Cr, V, Mn, Mo, Si, Sn, Ga, Cu and Zn at least 8% by weight, the balance An alloy composed of Fe and inevitable impurities is dissolved, cast, pulverized, finely pulverized, molded in a magnetic field, sintered, and heat-treated in order to obtain a sintered magnet, and the sintered magnet is cut and / or polished to obtain a surface. Is processed, copper plating is performed, and multilayer plating is performed on which nickel plating is performed. After that, in an argon, nitrogen, air, or low-pressure vacuum atmosphere having an oxygen partial pressure of 10 −4 Pa to 50 kPa, 200 to Heat at 700 ° C for 3-50 hours Method for producing a rare earth sintered magnet having water feature with water in a hydrogen atmosphere you and forming an oxide layer of plated metal having a thickness of 0.1 to 100 [mu] m,
(2) The method for producing a rare earth sintered magnet according to (1), wherein the heat treatment after multilayer plating is performed at 200 to 600 ° C.
[0015]
Details of the present invention will be described below.
The main component of the R 2 Fe 14 B-based sintered magnet alloy composition in the present invention is 20 to R (R is one or more rare earth elements selected from Nd, Pr, Dy, Tb, or Ho). 35% by weight, Co more than 0% by weight and 15% by weight or less, B is 0.2 to 8% by weight, Ni, Nb, Al, Ti, Zr, Cr, V, Mn, Mo, Si, Sn as additives At least one element selected from Ga, Cu and Zn is comprised of more than 0 wt% and 8 wt% or less, the remainder Fe and inevitable impurities. When the R content is less than 20% by weight, the coercive force is remarkably reduced, and when it exceeds 35% by weight, the residual magnetic flux density is remarkably reduced.
[0016]
The R 2 Fe 14 B-based magnet alloy of the present invention melts and casts the raw material having the above composition range in a non-oxidizing atmosphere such as argon by high frequency melting.
[0017]
Next, the R 2 Fe 14 B-based magnet alloy is coarsely pulverized and then is not particularly limited, but is preferably finely pulverized to an average particle size of 1 to 10 μm. This rough pulverization can be performed by, for example, a jaw crusher, a brown mill, a pin mill, and hydrogen storage in an inert gas atmosphere. The fine pulverization can be performed by a wet ball mill or attritor using alcohol, hexane or the like as a solvent, a dry ball mill in an inert gas atmosphere, a jet mill using an inert gas stream, or the like.
[0018]
Next, the finely pulverized powder is preferably compression-molded by a press in a magnetic field capable of applying a magnetic field of 10 kOe or more, particularly 15 kOe or more, preferably at a pressure of 200 kg / cm 2 or more and less than 2000 kg / cm 2. To do. Subsequently, the obtained compression-molded body is sintered in a high-vacuum atmosphere or a non-oxidizing atmosphere gas such as argon at 1000 to 1200 ° C. for 1 to 2 hours in a heat treatment furnace.
[0019]
Subsequently, a heat treatment is performed at a temperature lower than the sintering temperature, preferably at a temperature of 400 to 700 ° C. in a non-oxidizing atmosphere gas such as argon or argon, and the surface is finished by cutting and / or polishing. I do. At this time, although not particularly limited, it is desirable that the rare earth sintered magnet body is chamfered.
[0020]
After this surface processing, a metal plating layer is formed on the rare earth sintered magnet body. Here, the metal plating layer is to improve the corrosion resistance enough to become if a multilayer, the cost of manufacturing is applied, the efficiency is poor, the metal plating layer, such as a pressurized et al 2-5 layers decrease in magnetic properties It can be. However, it is preferable to select this according to the corrosion resistance required by the application and other conditions. Metal of the metal plating, Cu, Ni or Rannahli, plating thickness, 1 to 100 [mu] m, particularly 1~50μm is preferred. Preferable specific examples include multilayer plating in which Cu is formed in the lower layer and Ni is further formed, and examples thereof include Cu—Ni and Cu—Ni— Ni . Although it does not specifically limit as pre-processing which performs this metal plating, It is desirable to carry out alkaline degreasing | defatting, acid washing, and water washing | cleaning of the said rare earth sintered magnet body. The plating film forming method is not particularly limited, but an electrolytic plating method is desirable. The method of immersing the rare earth sintered magnet body in the plating solution may be either a barrel method or a hooking jig method, and is appropriately selected depending on the size and shape of the rare earth sintered magnet body.
[0021]
As the electrolytic plating solution, a plating solution having a known composition can be used and plating can be performed under known conditions according to the plating solution, but a plating solution having a pH of 2 to 12 is particularly suitable. In addition, when two or more layers of metals having different compositions are laminated, the corrosion potential of the immediately lower layer may be noble with respect to the uppermost layer. However, as in the case of plating two layers of Ni, In the method of controlling the potential by changing the sulfur content, the sulfur content of the upper layer is preferably about 0.03% or less, and the lower layer preferably does not contain sulfur. Other combinations are not particularly limited, but examples include Ni in the uppermost layer and Cu in the immediate lower layer.
[0022]
After performing metal plating by the above method, the oxygen partial pressure is 10 −4 Pa to 50 kPa, preferably 10 −4 Pa to 30 kPa, in an argon, nitrogen, air, or low pressure vacuum atmosphere for 3 to 50 hours, 200 It heat-processes at -700 degreeC, Preferably it is 200-600 degreeC. If the heat treatment time is less than 10 minutes, the formation of a layer excellent in hydrogen resistance is not sufficient, or the variation increases, so that the heat treatment time exceeding 50 hours is not efficient, This is not appropriate because a layer having an excellent feature may become thicker and cause deterioration of magnetic properties. If the heat treatment temperature is less than 80 ° C., a long-time treatment is required to obtain a rare earth sintered magnet having excellent hydrogen resistance, which is not efficient, and if the temperature exceeds 700 ° C., the hydrogen resistance is excellent. Although the layer is formed, the rare earth sintered magnet reacts with the metal plating, resulting in deterioration of magnetic properties. Incidentally, the layer excellent in hydrogen resistance is an oxide layer of a plated metal, and preferably has a thickness of 0.1 to 100 μm, more preferably 0.1 to 20 μm.
[0023]
Next, resin coating (so-called resin coating such as spray coating, electrodeposition coating, powder coating or dipping coating) can be applied to the surface of the rare earth sintered magnet body. The coating by resin coating does not have hydrogen resistance, but it must have acid resistance depending on the atmosphere in which the motor using the rare earth sintered magnet is used, or the rare earth sintered magnet is incorporated in the motor etc. This is done because the surface layer is not damaged. The resin for resin coating is not particularly limited, but acrylic, epoxy, phenolic, silicone, polyester, and polyurethane resins are desirable.
[0024]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0025]
[Example 1]
R 2 Fe 14 B-based magnet alloy has Nd: 28.0 wt%, Dy: 4.0 wt%, Co: 3.5 wt%, B: 1.0 wt%, Cu: 0.2 wt%, It was prepared by blending so that the composition of Al: 0.4% by weight and the balance of Fe was obtained, melting in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere, and casting the mold.
[0026]
Next, the R 2 Fe 14 B-based magnet alloy was coarsely pulverized to about 500 μm or less with a jaw crusher and a brown mill, and then finely pulverized to an average particle diameter of about 3 μm with a jet mill using a nitrogen stream. The obtained finely pulverized powder was molded at a pressure of 1.2 t / cm 2 in a magnetic field of 10 kOe with a press in a magnetic field. The obtained molded body was sintered in an argon atmosphere at 1070 ° C. for 2 hours using a heat treatment furnace, cooled, and further heat-treated in an argon atmosphere at 600 ° C. for 1 hour to produce a sintered magnet. . A magnet was cut out to 5 × 5 × 5 mm from the obtained sintered magnet.
[0027]
Next, electrolytic Cu plating (5 μm), electrolytic Ni plating (5 μm), and electrolytic Ni plating (10 μm) were sequentially applied to the sintered magnet. In this case, using a plating bath adjusted with copper pyrophosphate 60 g / L, potassium pyrophosphate 240 g / L, and potassium oxalate 30 g / L, electrolytic Cu plating was performed at a bath temperature of 40 ° C. and a current density of 1.5 A / dm 2. Next, electrolytic Ni plating was performed using a plating bath adjusted with Ni chloride 40 g / L, sulfuric acid Ni 270 g / L, and boric acid 30 g / L at a bath temperature of 50 ° C. and a current density of 2.0 A / dm 2. Further, electrolytic Ni was applied under the same conditions as in the Ni plating. Thereafter, heat treatment was performed at 300 ° C. for 50 hours in the air (oxygen partial pressure 20 kPa), cooled to room temperature, and further coated with an epoxy resin by spraying to obtain a hydrogen gas test sample. The hydrogen gas test sample obtained here was measured for magnetic properties using a Vibrating Sample Magnetometer (hereinafter referred to as VSM).
[0028]
Each of the hydrogen gas test samples was put in a pressure vessel, subjected to a hydrogen gas test under the conditions of hydrogen, 10 MPa, 25 ° C., and 1 day, and then taken out. The magnet taken out was visually observed for appearance, and the magnetic properties were measured by VSM.
[0029]
[Example 2]
A sintered magnet was produced by the same composition and method as in Example 1. Next, a magnet was cut out to 5 × 5 × 5 mm in the same manner as in Example 1 from the obtained sintered magnet. Electrolytic Cu plating (5 μm), electrolytic Ni plating (5 μm), and electrolytic Ni plating (10 μm) were sequentially applied to the magnet under the same conditions as in Example 1, and then in vacuum (oxygen content) at 250 ° C. for 3 hours. The sample was subjected to a heat treatment at a pressure of 10 −2 Pa, slowly cooled to room temperature, and further coated with an epoxy resin by spraying to obtain a hydrogen gas test sample, and the magnetic properties were measured by VSM. The hydrogen gas test sample was subjected to a hydrogen gas test under the same conditions as in Example 1 and then taken out. The magnet taken out was visually observed for appearance, and the magnetic properties were measured by VSM.
[0030]
[Comparative Example 1]
A sintered magnet was produced by the same composition and method as in Example 1. Next, a magnet is cut out to 5 × 5 × 5 mm from the obtained sintered magnet in the same manner as in Example 1, and further coated with an epoxy resin by spraying to obtain a sample for hydrogen gas test, and measurement of magnetic properties by VSM Went. The hydrogen gas test sample was subjected to a hydrogen gas test under the same conditions as in Example 1 and then taken out. The removed magnet was visually observed for appearance.
[0031]
[Comparative Example 2]
A sintered magnet was produced by the same composition and method as in Example 1. Next, a magnet was cut out to 5 × 5 × 5 mm in the same manner as in Example 1 from the obtained sintered magnet. Electrolytic Cu plating (5 μm), electrolytic Ni plating (5 μm), and electrolytic Ni plating (10 μm) were sequentially applied to the magnet under the same conditions as in Example 1, and then an epoxy resin was applied by spraying to generate hydrogen gas. A test sample was obtained, and magnetic properties were measured by VSM. The hydrogen gas test sample was subjected to a hydrogen gas test under the same conditions as in Example 1 and then taken out. The removed magnet was visually observed for appearance.
[0032]
[Comparative Examples 3 and 4]
A sintered magnet was produced by the same composition and method as in Example 1. Next, a magnet was cut out to 5 × 5 × 5 mm in the same manner as in Example 1 from the obtained sintered magnet. Electrolytic Cu plating (5 μm), electrolytic Ni plating (5 μm), and electrolytic Ni plating (10 μm) were sequentially applied to the magnet under the same conditions as in Example 1, and then in the air (oxygen content) at 50 ° C. for 12 hours. Pressure 20 kPa) [Comparative Example 3] and 800 ° C. for 12 hours in the air (oxygen partial pressure 20 kPa) [Comparative Example 4] heat treatment, gradually cooled to room temperature, and further sprayed with epoxy resin A sample for hydrogen gas test was obtained, and the magnetic properties were measured by VSM. The hydrogen gas test sample was subjected to a hydrogen gas test under the same conditions as in Example 1 and then taken out. The magnet taken out was visually observed for appearance, and the magnetic properties were measured by VSM.
[0033]
[Table 1]
Figure 0004003066
[0034]
Table 1 shows the heat treatment conditions, hydrogen gas test conditions, and appearance after the hydrogen gas test. Examples 1 and 2 and Comparative Example 4 did not change in the hydrogen gas test, whereas Comparative Examples 1, 2 and 3 were crushed into pieces. From this, it is clear that Examples 1 and 2 and Comparative Example 4 did not cause hydrogen embrittlement.
[0035]
[Table 2]
Figure 0004003066
[0036]
Table 2 shows the magnetic properties of the magnet before the surface treatment and before and after the hydrogen gas test. Before and after the surface treatment and before and after the hydrogen gas test, Examples 1 and 2 had almost no change in magnetic properties, whereas in Comparative Example 4, the magnetic properties changed greatly before the surface treatment and before the hydrogen gas test. I understand that. This indicates that in Examples 1 and 2, there was no deterioration in magnetic properties and hydrogen embrittlement due to the surface treatment, and Comparative Example 4 caused deterioration in magnetic properties in the surface treatment. Since Comparative Examples 1, 2, and 3 were crushed by the hydrogen treatment, the magnetic properties after the hydrogen treatment were not measurable.
[0037]
As described above, Tables 1 and 2 show that in Comparative Examples 1 to 4, the magnetic properties were clearly deteriorated by the surface treatment or no improvement in hydrogen resistance was observed, whereas in Examples 1 and 2, the magnetic properties were increased by the surface treatment. It shows that the hydrogen resistance has been improved without deterioration of the characteristics.
[0038]
【The invention's effect】
The method for producing an R 2 Fe 14 B based sintered magnet of the present invention makes it possible to obtain a rare earth sintered magnet that can be used for a motor or the like that does not cause hydrogen embrittlement even in a hydrogen atmosphere.

Claims (2)

R(Rは、Nd、Pr、Dy、Tb及びHoから選択される1種又は2種以上の希土類元素)を20〜35重量%、Coを15重量%以下、Bを0.2〜8重量%、添加物としてNi、Nb、Al、Ti、Zr、Cr、V、Mn、Mo、Si、Sn、Ga、Cu及びZnから選ばれる少なくとも1種の元素を8重量%以下、残部Fe及び不可避的不純物からなる合金を溶解、鋳造し、粉砕、微粉砕、磁場中成形、焼結、熱処理を順次行って焼結磁石とし、更に該焼結磁石を切断及び/又は研磨して表面を加工後、銅メッキを施し、その上にニッケルメッキを施す多層メッキを行い、その後、酸素分圧が10-4Pa〜50kPaである、アルゴン、窒素、空気又は低圧真空雰囲気下において、200〜700℃で3〜50時間熱処理して0.1〜100μmの厚さのメッキ金属の酸化物層を形成することを特徴とする水素雰囲気中で耐水素性を有する希土類焼結磁石の製造方法。R (R is one or more rare earth elements selected from Nd, Pr, Dy, Tb and Ho) 20 to 35% by weight, Co 15% by weight or less, and B 0.2 to 8% by weight %, At least one element selected from Ni, Nb, Al, Ti, Zr, Cr, V, Mn, Mo, Si, Sn, Ga, Cu and Zn as an additive, 8% by weight or less, the remainder Fe and inevitable After melting, casting, grinding, finely grinding, forming in a magnetic field, sintering, and heat treatment in order to form a sintered magnet, the sintered magnet is cut and / or polished and the surface is processed Then, copper plating is performed, multilayer plating is performed by nickel plating thereon, and then oxygen partial pressure is 10 −4 Pa to 50 kPa at 200 to 700 ° C. in an argon, nitrogen, air, or low pressure vacuum atmosphere. Heat treated for 3-50 hours to 0.1 Method for producing a rare earth sintered magnet having water feature with water in a hydrogen atmosphere you and forming an oxide layer of plated metal having a thickness of ~100Myuemu. 多層メッキ後の熱処理を200〜600℃の条件で行う請求項1記載の希土類焼結磁石の製造方法。  The method for producing a rare earth sintered magnet according to claim 1, wherein the heat treatment after the multilayer plating is performed at 200 to 600 ° C.
JP2002373630A 2001-12-28 2002-12-25 Manufacturing method of rare earth sintered magnet Expired - Fee Related JP4003066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373630A JP4003066B2 (en) 2001-12-28 2002-12-25 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-399175 2001-12-28
JP2001399175 2001-12-28
JP2002373630A JP4003066B2 (en) 2001-12-28 2002-12-25 Manufacturing method of rare earth sintered magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007126724A Division JP2007288205A (en) 2001-12-28 2007-05-11 Method for improving anti-hydrogen property of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2003257768A JP2003257768A (en) 2003-09-12
JP4003066B2 true JP4003066B2 (en) 2007-11-07

Family

ID=28677358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373630A Expired - Fee Related JP4003066B2 (en) 2001-12-28 2002-12-25 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4003066B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639832B1 (en) 2005-04-19 2006-10-30 (주)이례파워테크 Continuous hydrogen furnace equipment for manufacturing diamond tool and heat treatment method of diamond tool material using the same
JP4670567B2 (en) * 2005-09-30 2011-04-13 Tdk株式会社 Rare earth magnets
JP4600332B2 (en) * 2006-03-31 2010-12-15 Tdk株式会社 Magnet member and manufacturing method thereof
JP5036207B2 (en) * 2006-03-31 2012-09-26 Tdk株式会社 Magnet member
JP2007324461A (en) * 2006-06-02 2007-12-13 Shin Etsu Chem Co Ltd High corrosion resistant rare-earth permanent magnet and its manufacturing method
EP2110823B1 (en) * 2007-05-30 2017-03-01 Shin-Etsu Chemical Co., Ltd. Process for producing highly anticorrosive rare earth permanent magnet and method of using the same
JP4645854B2 (en) * 2007-08-24 2011-03-09 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP5471678B2 (en) * 2010-03-23 2014-04-16 Tdk株式会社 Rare earth magnet and rotating machine
JP5012942B2 (en) * 2010-03-26 2012-08-29 Tdk株式会社 Rare earth sintered magnet, manufacturing method thereof, and rotating machine
CN108154987B (en) 2016-12-06 2020-09-01 Tdk株式会社 R-T-B permanent magnet
US10672544B2 (en) 2016-12-06 2020-06-02 Tdk Corporation R-T-B based permanent magnet

Also Published As

Publication number Publication date
JP2003257768A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
KR100788330B1 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
JP4003067B2 (en) Rare earth sintered magnet
JP4003066B2 (en) Manufacturing method of rare earth sintered magnet
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP5024531B2 (en) How to use rare earth sintered magnets
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP3904062B2 (en) Rare earth sintered magnet
JP2007288205A (en) Method for improving anti-hydrogen property of rare earth sintered magnet
JP4296442B2 (en) Method for preventing hydrogen embrittlement of rare earth sintered magnets
JP4919048B2 (en) How to use rare earth sintered magnets
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP3904061B2 (en) Manufacturing method of rare earth sintered magnet
JPS61136656A (en) Production of sintered material for permanent magnet
JP4081642B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2001196215A (en) Rare earth permanent magnet having good corrosion resistance and method of manufacturing the same
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0475303B2 (en)
JP2721187B2 (en) RF lower e-BM sintered magnet and manufacturing method thereof
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JP3641477B2 (en) R-T-B permanent magnet
JP2720038B2 (en) Manufacturing method of permanent magnet
JPH04253306A (en) R-tm-b permanent magnet improved in corrosion resistance
JP2005079544A (en) R-t-b permanent magnet
JPH06231944A (en) R-t-b permanent magnet with improved corrosion resistance
JPS6386404A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Ref document number: 4003066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees