JP4781555B2 - Collection method of valuable metals - Google Patents

Collection method of valuable metals Download PDF

Info

Publication number
JP4781555B2
JP4781555B2 JP2001135298A JP2001135298A JP4781555B2 JP 4781555 B2 JP4781555 B2 JP 4781555B2 JP 2001135298 A JP2001135298 A JP 2001135298A JP 2001135298 A JP2001135298 A JP 2001135298A JP 4781555 B2 JP4781555 B2 JP 4781555B2
Authority
JP
Japan
Prior art keywords
gallium
raw material
arsenic
vapor pressure
material chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001135298A
Other languages
Japanese (ja)
Other versions
JP2002327217A (en
Inventor
誠司 小林
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2001135298A priority Critical patent/JP4781555B2/en
Publication of JP2002327217A publication Critical patent/JP2002327217A/en
Application granted granted Critical
Publication of JP4781555B2 publication Critical patent/JP4781555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合金スクラップ例えばガリウムおよび砒素を含有する化合物半導体スクラップ等からガリウム、砒素などの有価金属を効率的に分離回収する有価金属の回収方法に関するものである。
【0002】
【従来の技術】
ガリウムおよび砒素を含有する化合物半導体としては、砒化ガリウムが良く知られている。砒化ガリウムは、携帯電話をはじめとするモバイル機器の普及に伴い半導体デバイス用にその需要が急増している。しかし、化合物半導体は、原料から製品になるまでの製品化率は極めて低く、製品に移行しない部材がスクラップとして単結晶の端面カット部分、破損ウエハー、切断屑、研磨屑等さまざまな形態で排出され、これら砒化ガリウムのスクラップは高価なガリウムおよび毒物の砒素を含有することから、有効な回収方法の確立が要望されている。
【0003】
従来、砒化ガリウムスクラップからガリウムおよび砒素を回収する方法には、アルカリ溶融分解法または酸分解法と電解採取の組み合わせ、または真空加熱分解法等が用いられ、回収したガリウムは酸洗浄、再結晶で精製され半導体原料として使用可能な純度99.9999%ガリウムとして再利用されている。一方、砒素に関しては工業的には回収が行われておらず、環境汚染を防止するためにも回収、再利用が重要な命題とされている。
【0004】
アルカリ溶融分解法と電解採取の組み合わせは、ニッケルあるいはジルコニウム坩堝に水酸化アルカリ、炭酸アルカリと砒化ガリウムスクラップを入れ、加熱溶融分解した後、水で浸出する。浸出液を酸でpH7前後に調整することで水酸化ガリウムを沈澱させ、ろ別した水酸化ガリウムを苛性ソーダ水溶液に溶解し電解液とする。
【0005】
電解採取は、白金、カーボンまたはステンレスを電極とする電解により陰極にガリウムを電析させ回収する。電解液中のガリウム濃度は30%以下、水酸化ナトリウム濃度は30〜50%で、最大2000A/m2 の電流密度で電解する。電解採取では原料である酸化ガリウムまたは水酸化ガリウムからガリウムを電析させるのが主目的で、その純度は99%程度である。これらの操作を行うため、スクラップ分解用加熱炉、電解液調製槽、ろ過装置、直流電源、電解槽等多くの付帯設備が必要である上に、廃棄物量が多くコスト高になる傾向がある。
【0006】
酸分解法と電解採取の組み合わせは、石英容器に砒化ガリウムスクラップを入れ、王水を添加した後、加温することにより分解し溶解液とする。溶解液は苛性ソーダ溶液でpH7前後に調整して水酸化ガリウムを沈澱させ、ろ別して水酸化ガリウムを苛性ソーダ水溶液に溶解して電解液とする。
電解採取は、アルカリ溶融分解法と電解採取の組み合わせの場合と同様であり、回収できるガリウムの純度は99%程度である。これらの操作を行うため、結晶屑分解槽、加熱源、電解液調製槽、ろ過装置、直流電源、電解槽等多くの付帯設備が必要である上に、アルカリ溶融分解法と電解採取の組み合わせの場合と同様に廃棄物量が多くコスト高になる傾向がある。
【0007】
真空加熱分解法は、砒化ガリウムスクラップの分解時に蒸気圧の差を利用してガリウムよりも蒸気圧の高い砒素を昇華分離する方法である。砒化ガリウムスクラップを13Pa以下の真空度で1,000℃以上に加熱分解し、残留するガリウム中に蒸気圧の高い砒素を1ppmまで低減させることが可能であり、比較的簡便な装置で分離回収ができる上に全工程を乾式で行うことができるため、アルカリ溶融分解法または酸分解法と電解採取の組み合わせに比べれば、低コスト化が可能となる。真空加熱分解法は、1,000℃以上に加熱することによって起こりうる容器からの不純物混入を防止し、さらにガリウムの蒸発損失を抑制するような操業条件が選択される。
【0008】
真空加熱分解法では、真空加熱炉を使用するが、その加熱方式は電気抵抗加熱あるいは高周波誘導加熱である。電気抵抗加熱は設備が比較的低価格であるが、熱伝導と輻射で加熱するため炉心管材質は必然的に石英、アルミナあるいはそれらを保護管で外装した形態をとる。例えば炉心管に石英を使用した場合、破損防止等の安全対策として砒化ガリウムスクラップの仕込み量を制限したり、保護管で炉心管を外装する必要がある。保護管としてはステンレス鋼が適しているが、昇温に要する時間は通常1〜5h、降温には6〜12hを必要とするためバッチ当たりの処理時間が長くなり、多数回の昇温と降温のくり返しで保護管の強度が低下するため安全性に問題がある。
【0009】
一方、高周波誘導加熱は砒化ガリウムスクラップを入れた容器が直接加熱されるので、砒化ガリウムスクラップを直に加熱することが可能となり、昇温および降温の時間を短縮できる反面、温度制御が難しく、例えば容器の直径を大きくした場合、砒化ガリウムスクラップは分解がある程度進捗するまでは容器近傍のみが高温となり、均一な分解ができない。また、昇温速度を上げると容器近傍の砒化ガリウムスクラップが過熱状態となりガリウムの蒸発損失を引き起こす。
【0010】
真空加熱分解法は、減圧下で処理を行うためバッチ処理にならざるを得ず、バッチ当たりの処理時間が長いとそれに起因する蒸発損失により回収率が低下し、コストが上昇するという欠点がある。
【0011】
【発明が解決しようとする課題】
以上のように、ガリウムおよび砒素を含有する化合物半導体などの合金スクラップからガリウムや砒素等の有価金属を低コストで回収する方法が求められているが、アルカリ溶融分解法または酸分解法と電解採取の組み合わせでは、多くの付帯設備が必要である上に、廃棄物量が多くコスト高になり、また真空加熱分解法では、昇温、降温ならびに加熱分解に長時間を必要とし、金属の蒸発損失が大きいという問題がある。
【0012】
本発明は、真空加熱分解法において合金スクラップの昇温、降温ならびに加熱分解に長時間を必要とせず、蒸発損失が少なく有価金属を低コストで回収可能な有価金属の回収方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の有価金属の回収方法では、石英製ガラス窓と水冷式の金属製躯体からなる原料室と、赤外線集光加熱装置と、蒸発物質回収トラップと、真空ポンプとを備えた真空加熱設備を用い、原料室に装入した合金スクラップを減圧下において赤外線集光加熱装置で加熱することにより蒸気圧の高い成分と蒸気圧の低い成分とに分解し、各成分をそれぞれ回収することにより、合金スクラップの分解時間の短縮と回収率の向上を実現する。
【0014】
石英製ガラス窓は、原料室内を減圧したときに破損しないように十分耐圧強度を有する厚さを持たせなければならない。厚さは400mm×400mmの面積に対し10mmが適当であるが、安全が確保できれば、この数値以外でも差し支えない。また、強度を増す方法として形状を半円筒状とすることも可能である。半円筒状にすれば、原料室の容積を大きくすることができ、バッチ当たりの処理量が増大する。
【0015】
ガラス窓材としての石英は、高い赤外線透過率、耐熱性、耐圧強度および耐食性を具備しており、この材料が最適である。水冷式の金属製躯体には、耐食性、耐熱性、熱伝導性、強度に優れた材質が使用される。材質は、SUS316、SUS304、Alなどが良い。また、水冷することで金属製躯体の過熱を防止する。
【0016】
原料室の上下には、赤外線集光加熱装置を設置する。赤外線集光加熱装置には、赤外線ランプを金メッキされた楕円面あるいは放物面の反射鏡内に取り付け、集光された赤外線が原料室内に装入された合金スクラップ全体に照射されるようにする。
楕円面反射鏡は比較的低い電力で小面積を加熱するのに向いており、処理量を増加させるためには一時的に大きな電力を消費するが大面積を加熱できる放物面反射鏡が適している。反射鏡はジャケット構造とし、水冷して過熱を防止する。赤外線ランプとしてはハロゲンもしくはキセノンランプが用いられ、その定格電力は使用する本数と形状によって異なるが、300mm×300mmの面積を加熱する場合、合計52kW程度が良いと考えられる。
【0017】
蒸発物質回収トラップは、原料室の金属製躯体で凝集できなかった蒸気圧の高い成分を補足的に回収するため、金属製躯体と真空ポンプとの間に取り付ける。蒸発物質回収トラップがないと、蒸気圧の高い成分の一部が真空ポンプに流入するため、真空ポンプの故障の原因となるだけでなく、回収率も低下する。蒸気圧の高い成分の回収率を向上させるには、蒸発物質回収トラップを低温に保持することが重要であるが、その方法として水冷が適当である。また、材質は耐食性に優れたSUS316やSUS304などが適しているが、蒸気圧の高い成分の性質、特にその耐食性を考慮の上決定すべきである。
【0018】
真空ポンプは、原料室および蒸発物質回収トラップを減圧するために設けられる。真空ポンプは真空度10-3〜13Paが保持できればよく、通常油回転ポンプで十分であるが、分解が起こりにくい合金スクラップの場合には油拡散ポンプを付加することが好ましい。
合金スクラップを入れる容器の材質は、高い赤外線透過率、耐熱性および耐食性に優れた石英が最適である。合金スクラップは容器に充填して原料室内に装入し、真空ポンプで原料室および蒸発物質回収トラップを減圧した後、赤外線集光加熱装置に通電し加熱する。
【0019】
加熱によって、合金スクラップ中の蒸気圧の高い成分が優先的に蒸発し、その蒸気は原料室の金属製躯体および蒸発物質回収トラップに凝集し、蒸気圧の低い成分は残留するので、冷却後原料室および蒸発物質回収トラップを大気圧に戻し、分解生成物を回収する。未分解の合金スクラップが蒸気圧の低い成分とともに残留する場合は、そのまま再度分解を繰り返すか、あるいは蒸気圧の低い成分をろ別後、未分解の合金スクラップのみを再度分解する。
【0020】
このとき、真空度を10-3Paより高真空にすると、蒸気圧の低い成分も気化し易くなり、蒸気圧の高い成分の純度を低下させるだけでなく、蒸気圧の低い成分の回収率を低下させる。また、真空度を13Paより低真空にすると、合金スクラップの分解速度が遅く、実用的でない。
加熱温度が700℃より低い場合には合金スクラップの分解速度が一般的に遅く、1200℃より高温では蒸気圧の成分の蒸発損失が増大するので非効率的である。
【0021】
赤外線集光加熱では、急速な加熱と冷却が可能であるため、昇温時間は0.3〜60minの間で行うことができ、冷却も60min以内で室温〜40℃まで降温するので、バッチ当たりの処理時間が短縮される。また、合金スクラップのみに赤外線を集光して加熱することができるため、低温に保持された原料室の金属製躯体などは蒸気圧の高い物質による腐食劣化がなく、さらに蒸気圧の高い成分は原料室の金属製躯体で迅速に凝集されるため原料室内の蒸気分圧が低く抑えられ、分解速度は従来の加熱方式より格段に速くなる。
【0022】
赤外線集光加熱装置を可動式にしておけば、一式の赤外線集光加熱装置で多数台の原料室を加熱できるため仕込み、加熱分解、取り出しが連続的に行えることから作業効率があがり、最大電力も低く抑えることができる。また、赤外線集光加熱装置を固定し、多数台の原料室を可動式にすることも可能である。
【0023】
【発明の実施の形態】
以下、合金スクラップとして砒化ガリウムスクラップを分解する場合の実施の一形態について説明する。
図1は本発明の有価金属の回収方法の実施の際に用いられる真空加熱設備の一例を示す構成図である。
【0024】
真空加熱設備は、原料室1と赤外線集光加熱装置2と蒸発物質回収トラップ3と真空ポンプ4とを備えており、原料室1と蒸発物質回収トラップ3との間および蒸発物質回収トラップ3と真空ポンプ4との間はSUS316またはSUS304製の配管11、12で接続されている。
原料室1は、石英製ガラス窓5とSUS316またはSUS304製の躯体6とで構成されている。石英製ガラス窓5は、長さ400mm×幅400mm×厚さ10mmで、一つが躯体6に密着固定されており、他の一つが開閉式の上蓋となっている。原料室1の躯体6、赤外線集光加熱装置2および蒸発物質回収トラップ3は水冷ジャケット構造とし冷却水の入口と出口(図示略)が設けられている。真空ポンプ4には油回転ポンプが用いられている。
【0025】
原料室1の上下に設置されている赤外線集光加熱装置2には、ハロゲンランプ7と放物面の反射鏡8とが設けられており、照射面積は長さ300mm×幅300mmとなっている。
砒化ガリウムスクラップ10を長さ300mm×幅300mm×深さ50mmのバット状の石英製容器9に均一に充填し、石英製容器9を原料室1の中央に装入設置した後、石英製ガラス窓5からなる上蓋を閉める。石英製容器9の厚さは2〜5mmが良いが、強度を十分考えて決定すれば良い。砒化ガリウムスクラップ10は、細粒ほど分解速度が速いが、真空引きに伴う飛散ロスを考慮すると0.5〜2.36mmが適当である。また、砒化ガリウムスクラップ10の充填量は、石英製容器9からこぼれ落ちない程度とし、長さ300mm×幅300mm×深さ50mmのバット状の石英製容器9に対しては通常5〜10kgが適当である。
【0026】
原料室1の躯体6、赤外線集光加熱装置2および蒸発物質回収トラップ3の水冷ジャケットに冷却水を5〜20L/min流し、真空ポンプ4を用いて原料室1および蒸発物質回収トラップ3を真空度10-3〜13Paに保持する。
赤外線集光加熱装置2に通電し700℃〜1200℃まで0.3〜60minで昇温し、1〜4h保持後、通電を止め、冷却する。冷却を開始すると、石英製ガラス窓5に砒素が付着するが、分解物に残留した砒素の一部が昇華するためで、次回の処理の際に赤外線を照射することで簡単に除去される。ただし、分解後600〜700℃で5〜60min保持すると、この温度では分解物からの砒素の昇華がないため石英製ガラス窓5への砒素の付着は防止できるが、バッチ当たりの処理時間は長くなる。操業条件を考慮し、どちらが効率的か選択し実施するのが良い。
【0027】
冷却は炉冷でも60min以内で原料室1の内部温度が室温〜40℃になるが、冷却速度を速めるためには、窒素あるいはアルゴン等の不活性ガスを原料室1に導入すればよい。
冷却後、原料室1および蒸発物質回収トラップ3を大気圧に戻し、原料室1の上蓋を開けて石英製容器9に残った分解生成物を取り出す。
【0028】
原料室1の躯体6、蒸発物質回収トラップ3および配管11、12類は水冷しているため、砒素等による設備部材の腐食劣化はない。昇華した砒素は原料室1の躯体6と蒸発物質回収トラップ3に凝集するので、剥落させ回収する。一方、ガリウムおよび未分解の砒化ガリウムは石英製容器9に残るので、回収後ポリプロピレン製不織布を使用しガリウムと砒化ガリウムにろ別し、砒化ガリウムは再度真空加熱分解させることにより効率的な操業が可能となる。
【0029】
【実施例】
〔実施例1〕
砒化ガリウムスクラップ10を打撃式粉砕機で0.5〜2.36mmの粉末とし、石英製容器9(長さ300mm×幅300mm×深さ50mm)に8kg充填した。
【0030】
この石英製容器9を図1の真空加熱設備の原料室1中央に装入配置した後、石英製ガラス窓5の上蓋を閉め、原料室1の躯体6、赤外線集光加熱装置2および蒸発物質回収トラップ3の水冷ジャケットに冷却水を10L/min流し、真空ポンプ4を用いて原料室1および蒸発物質回収トラップ3を真空度8Paに保持した。
【0031】
赤外線集光加熱装置2に通電し1050℃まで20minで昇温後2h保持し、分解させた後、0.5minで700℃まで降温、30min保持することで石英製ガラス窓5への砒素の付着を防止し、炉冷した。700℃から40℃までの冷却時間は50minであった。
昇華した砒素は原料室1の躯体6と蒸発物質回収トラップ3に付着したので、ハンマーで軽い衝撃を与えて剥落させ、回収した。一方、ガリウムおよび未分解の砒化ガリウムは石英製容器9に残るので、回収後ポリプロピレン製不織布を使用しガリウムと砒化ガリウムにろ別した。
【0032】
以上の操作でガリウムの回収率は96%、砒素の回収率は97%であった。3%の砒素は未分解の砒化ガリウムと原料室1の躯体6と蒸発物質回収トラップ3から回収できなかったものである。一方4%のガリウムは未分解の砒化ガリウムとそこに付着したガリウムおよび蒸発して砒素に混入したものである。
8kg/バッチの真空分解に要した時間は3.68hで、仕込みおよび回収の操作を含めて5hで終了した。
【0033】
〔実施例2〕
原料室1および蒸発物質回収トラップ3を真空度10-1Paに保持しながら赤外線集光加熱装置2に通電し1050℃まで20minで昇温後1.5h保持した以外は実施例1と同様に操作した。
以上の操作でガリウムの回収率は95%、砒素の回収率は96%であった。4%の砒素は未分解の砒化ガリウムと原料室1の躯体6と蒸発物質回収トラップ3から回収できなかったものである。一方5%のガリウムは未分解の砒化ガリウムとそこに付着したガリウムおよび蒸発して砒素に混入したものである。
【0034】
8kg/バッチの真空分解に要した時間は3.18hで、仕込みおよび回収の操作を含めて4.5hで終了した。
〔実施例3〕
原料室1および蒸発物質回収トラップ3を真空度8Paに保持しながら赤外線集光加熱装置2に通電し1000℃まで20minで昇温後2.18h保持した以外は実施例1と同様に操作した。
【0035】
以上の操作でガリウムの回収率は94%、砒素の回収率は95%であった。5%の砒素は未分解の砒化ガリウムと原料室1の躯体6と蒸発物質回収トラップ3から回収できなかったものである。一方6%のガリウムは未分解の砒化ガリウムとそこに付着したガリウムおよび蒸発して砒素に混入したものである。
8kg/バッチの真空分解に要した時間は4.2hで、仕込みおよび回収の操作を含めて5.5hで終了した。
【0036】
【発明の効果】
本発明の有価金属の回収方法によれば、真空加熱分解法において合金スクラップの昇温、降温ならびに加熱分解に要する時間が短縮でき、また、蒸発損失が少ないため有価金属を低コストで回収することができる。
【図面の簡単な説明】
【図1】図1は本発明の有価金属の回収方法の実施の際に用いられる真空加熱設備の一例を示す構成図である。
【符号の説明】
1 原料室
2 赤外線集光加熱装置
3 蒸発物質回収トラップ
4 真空ポンプ
5 石英製ガラス窓
6 躯体
7 ハロゲンランプ
8 反射鏡
9 石英製容器
10 砒化ガリウムスクラップ
11 配管
12 配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valuable metal recovery method for efficiently separating and recovering valuable metals such as gallium and arsenic from alloy scrap such as compound semiconductor scrap containing gallium and arsenic.
[0002]
[Prior art]
Gallium arsenide is well known as a compound semiconductor containing gallium and arsenic. The demand for gallium arsenide is rapidly increasing for semiconductor devices with the spread of mobile devices such as mobile phones. However, compound semiconductors have a very low commercialization rate from raw materials to products, and members that do not transition to products are discharged as scraps in various forms such as single-crystal end face cut parts, damaged wafers, cutting scraps, and polishing scraps. Since these gallium arsenide scraps contain expensive gallium and the toxic arsenic, establishment of an effective recovery method is desired.
[0003]
Conventionally, as a method for recovering gallium and arsenic from gallium arsenide scrap, an alkali fusion decomposition method, a combination of acid decomposition method and electrolytic extraction, or a vacuum thermal decomposition method has been used, and the recovered gallium is subjected to acid cleaning and recrystallization. Purified and reused as 99.9999% gallium, which can be used as a semiconductor raw material. On the other hand, arsenic has not been industrially recovered, and recovery and reuse are important propositions to prevent environmental pollution.
[0004]
In the combination of the alkali melting method and electrowinning, an alkali hydroxide, alkali carbonate and gallium arsenide scrap are put into a nickel or zirconium crucible, heated and decomposed, and then leached with water. Gallium hydroxide is precipitated by adjusting the leachate to about pH 7 with an acid, and the filtered gallium hydroxide is dissolved in an aqueous caustic soda solution to obtain an electrolytic solution.
[0005]
In the electrowinning, gallium is electrodeposited on the cathode by electrolysis using platinum, carbon or stainless steel as an electrode and collected. Electrolysis is performed at a current density of 2000 A / m 2 at a maximum with a gallium concentration of 30% or less and a sodium hydroxide concentration of 30-50% in the electrolytic solution. In electrowinning, the main purpose is to deposit gallium from gallium oxide or gallium hydroxide as a raw material, and its purity is about 99%. In order to perform these operations, many additional facilities such as a scrap decomposition heating furnace, an electrolytic solution preparation tank, a filtration device, a direct current power source, and an electrolytic tank are required, and the amount of waste tends to increase and the cost tends to increase.
[0006]
The combination of the acid decomposition method and electrowinning is carried out by putting gallium arsenide scrap into a quartz container, adding aqua regia, and then heating to decompose it into a solution. The solution is adjusted to a pH of around 7 with a caustic soda solution, gallium hydroxide is precipitated, filtered and dissolved in an aqueous caustic soda solution to obtain an electrolyte.
Electrolytic extraction is the same as in the case of a combination of the alkaline melt decomposition method and electrolytic extraction, and the purity of gallium that can be recovered is about 99%. In order to perform these operations, a large number of incidental facilities such as a crystal scrap decomposition tank, a heating source, an electrolytic solution preparation tank, a filtration device, a DC power supply, an electrolytic tank are necessary, and a combination of an alkali melting decomposition method and electrolytic collection is required. As in the case, the amount of waste tends to be high and the cost tends to be high.
[0007]
The vacuum thermal decomposition method is a method of sublimating and separating arsenic having a higher vapor pressure than gallium by utilizing the difference in vapor pressure when decomposing gallium arsenide scrap. It is possible to thermally decompose gallium arsenide scrap to 1,000 ° C or higher at a vacuum of 13 Pa or less, and to reduce arsenic with a high vapor pressure to 1 ppm in the remaining gallium. In addition, since all the steps can be performed in a dry process, the cost can be reduced as compared with the combination of the alkali melt decomposition method or the acid decomposition method and electrowinning. In the vacuum pyrolysis method, operating conditions are selected so as to prevent contamination of impurities from the container that may occur by heating to 1,000 ° C. or higher, and to further suppress gallium evaporation loss.
[0008]
In the vacuum pyrolysis method, a vacuum heating furnace is used, and the heating method is electrical resistance heating or high frequency induction heating. Although electrical resistance heating is relatively inexpensive, the core tube material is inevitably in the form of quartz, alumina, or a protective tube sheathed for heating by heat conduction and radiation. For example, when quartz is used for the reactor core tube, it is necessary to limit the amount of gallium arsenide scrap charged as a safety measure for preventing damage or to externally coat the reactor core tube with a protective tube. Stainless steel is suitable as a protective tube, but it usually takes 1 to 5 hours to raise the temperature and 6 to 12 hours to lower the temperature, so the processing time per batch becomes longer, and the temperature increases and decreases many times. Since the strength of the protective tube decreases due to repeated, there is a problem in safety.
[0009]
On the other hand, since the container containing the gallium arsenide scrap is directly heated in the high frequency induction heating, it becomes possible to heat the gallium arsenide scrap directly, and while it is possible to shorten the temperature raising and lowering time, temperature control is difficult, for example, When the diameter of the container is increased, the gallium arsenide scrap has a high temperature only in the vicinity of the container until the decomposition progresses to some extent, and uniform decomposition cannot be performed. In addition, when the rate of temperature increase is increased, the gallium arsenide scrap near the container becomes overheated, causing gallium evaporation loss.
[0010]
The vacuum pyrolysis method has to be batch processing because the processing is performed under reduced pressure, and if the processing time per batch is long, the recovery rate decreases due to evaporation loss resulting from it, and the cost increases. .
[0011]
[Problems to be solved by the invention]
As described above, a method for recovering valuable metals such as gallium and arsenic from alloy scrap such as compound semiconductors containing gallium and arsenic at low cost is required. This combination requires a lot of ancillary equipment, increases the amount of waste and increases costs, and the vacuum pyrolysis method requires a long period of time for temperature rise, fall, and heat cracking, resulting in metal evaporation loss. There is a problem of being big.
[0012]
The present invention provides a method for recovering valuable metals that does not require a long time for heating, lowering, and thermal decomposition of alloy scrap in a vacuum pyrolysis method, and that can recover valuable metals with low evaporation loss at low cost. Objective.
[0013]
[Means for Solving the Problems]
In the method for recovering valuable metals of the present invention, a vacuum heating facility comprising a raw material chamber composed of a quartz glass window and a water-cooled metal casing, an infrared condensing heating device, an evaporative substance recovery trap, and a vacuum pump is provided. The alloy scrap charged in the raw material chamber is decomposed into a component having a high vapor pressure and a component having a low vapor pressure by heating with an infrared condensing heating device under reduced pressure, and the respective components are recovered, respectively. Reduce scrap decomposition time and improve recovery rate.
[0014]
The quartz glass window must have a thickness sufficient to withstand pressure so that it is not damaged when the pressure inside the raw material chamber is reduced. A thickness of 10 mm is appropriate for an area of 400 mm × 400 mm, but other values may be used as long as safety can be ensured. Further, as a method for increasing the strength, the shape may be a semi-cylindrical shape. If it is made semi-cylindrical, the volume of the raw material chamber can be increased, and the throughput per batch increases.
[0015]
Quartz as a glass window material has high infrared transmittance, heat resistance, pressure strength and corrosion resistance, and this material is optimal. For the water-cooled metal casing, a material having excellent corrosion resistance, heat resistance, thermal conductivity, and strength is used. The material is preferably SUS316, SUS304, Al or the like. Moreover, overheating of the metal casing is prevented by water cooling.
[0016]
Infrared condensing heating devices are installed above and below the raw material chamber. In the infrared condensing heating device, an infrared lamp is mounted in a gold-plated ellipsoidal or parabolic reflector so that the collected infrared rays are irradiated to the entire alloy scrap charged in the raw material chamber. .
Ellipsoidal reflectors are suitable for heating small areas with relatively low power, and parabolic reflectors that consume large power temporarily but can heat large areas are suitable for increasing throughput. ing. The reflector has a jacket structure and is cooled with water to prevent overheating. As the infrared lamp, a halogen or xenon lamp is used, and its rated power varies depending on the number and shape used, but when heating an area of 300 mm × 300 mm, a total of about 52 kW is considered good.
[0017]
The evaporative substance recovery trap is attached between the metal casing and the vacuum pump in order to supplementarily collect components with high vapor pressure that could not be aggregated by the metal casing in the raw material chamber. Without the evaporative substance recovery trap, a part of the high vapor pressure component flows into the vacuum pump, which not only causes a failure of the vacuum pump but also reduces the recovery rate. In order to improve the recovery rate of components having a high vapor pressure, it is important to keep the evaporative substance recovery trap at a low temperature, but water cooling is suitable as the method. Further, SUS316, SUS304, etc., which are excellent in corrosion resistance, are suitable for the material, but should be determined in consideration of the nature of the component having a high vapor pressure, particularly its corrosion resistance.
[0018]
The vacuum pump is provided to depressurize the raw material chamber and the evaporative substance recovery trap. The vacuum pump only needs to be able to maintain a degree of vacuum of 10 −3 to 13 Pa. Usually, an oil rotary pump is sufficient, but an oil diffusion pump is preferably added in the case of alloy scrap that hardly decomposes.
Quartz with high infrared transmittance, heat resistance, and corrosion resistance is optimal as the material for containers for alloy scrap. The alloy scrap is filled in a container and charged into the raw material chamber, and after the pressure in the raw material chamber and the evaporative substance recovery trap is reduced by a vacuum pump, the infrared condensing heating device is energized and heated.
[0019]
The component with high vapor pressure in the alloy scrap is preferentially evaporated by heating, and the vapor is condensed in the metal casing and the evaporative substance recovery trap in the raw material chamber, and the component with low vapor pressure remains, so the raw material after cooling The chamber and evaporant recovery trap are returned to atmospheric pressure and the decomposition products are recovered. When undecomposed alloy scrap remains with a component having a low vapor pressure, the decomposition is repeated again as it is, or after separating a component having a low vapor pressure, only the undecomposed alloy scrap is decomposed again.
[0020]
At this time, if the degree of vacuum is higher than 10 −3 Pa, components having a low vapor pressure are easily vaporized, not only reducing the purity of components having a high vapor pressure, but also improving the recovery rate of components having a low vapor pressure. Reduce. On the other hand, if the degree of vacuum is lower than 13 Pa, the decomposition rate of the alloy scrap is slow, which is not practical.
When the heating temperature is lower than 700 ° C., the decomposition rate of the alloy scrap is generally slow, and when it is higher than 1200 ° C., the evaporation loss of the vapor pressure component increases, which is inefficient.
[0021]
In the infrared condensing heating, since rapid heating and cooling are possible, the temperature raising time can be performed between 0.3 and 60 min, and the cooling is also performed within 60 min within room temperature to 40 ° C. The processing time is shortened. In addition, since infrared rays can be condensed and heated only on alloy scrap, metal casings in the raw material chamber kept at a low temperature have no corrosion deterioration due to substances with high vapor pressure, and components with higher vapor pressure Since it is rapidly agglomerated by the metal casing in the raw material chamber, the vapor partial pressure in the raw material chamber is kept low, and the decomposition rate becomes much faster than the conventional heating method.
[0022]
If the infrared condensing heating device is movable, a large number of raw material chambers can be heated with a set of infrared condensing heating devices, so that charging, thermal decomposition, and removal can be performed continuously, increasing work efficiency and maximum power. Can be kept low. It is also possible to fix an infrared condensing heating device and make a large number of raw material chambers movable.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in the case of decomposing gallium arsenide scrap as alloy scrap will be described.
FIG. 1 is a block diagram showing an example of a vacuum heating facility used in carrying out the valuable metal recovery method of the present invention.
[0024]
The vacuum heating equipment includes a raw material chamber 1, an infrared condensing heating device 2, an evaporated substance recovery trap 3, and a vacuum pump 4, and between the raw material chamber 1 and the evaporated substance recovery trap 3 and between the evaporated substance recovery trap 3, The vacuum pump 4 is connected with pipes 11 and 12 made of SUS316 or SUS304.
The raw material chamber 1 is composed of a quartz glass window 5 and a housing 6 made of SUS316 or SUS304. The quartz glass window 5 has a length of 400 mm, a width of 400 mm, and a thickness of 10 mm. One is closely fixed to the housing 6 and the other is an openable upper lid. The housing 6 of the raw material chamber 1, the infrared condensing heating device 2 and the evaporative substance recovery trap 3 have a water cooling jacket structure and are provided with an inlet and an outlet (not shown) of cooling water. An oil rotary pump is used as the vacuum pump 4.
[0025]
The infrared condensing heating device 2 installed above and below the raw material chamber 1 is provided with a halogen lamp 7 and a parabolic reflecting mirror 8, and the irradiation area is 300 mm long × 300 mm wide. .
The gallium arsenide scrap 10 is uniformly filled into a vat-like quartz container 9 having a length of 300 mm, a width of 300 mm, and a depth of 50 mm, and the quartz container 9 is loaded and installed in the center of the raw material chamber 1 and then a quartz glass window. Close the top cover consisting of 5. The thickness of the quartz container 9 is preferably 2 to 5 mm, but may be determined with sufficient consideration of the strength. The gallium arsenide scrap 10 has a faster decomposition rate for finer particles, but 0.5 to 2.36 mm is appropriate in consideration of scattering loss associated with evacuation. Further, the filling amount of the gallium arsenide scrap 10 is set so as not to spill from the quartz container 9, and normally 5 to 10 kg is appropriate for the bat-shaped quartz container 9 having a length of 300 mm × width of 300 mm × depth of 50 mm. is there.
[0026]
Cooling water is supplied to the housing 6 of the raw material chamber 1, the infrared condensing heating device 2, and the water cooling jacket of the evaporative substance recovery trap 3, and the raw material chamber 1 and the evaporative substance recovery trap 3 are vacuumed using the vacuum pump 4. The degree is maintained at 10 −3 to 13 Pa.
The infrared condensing heating device 2 is energized, heated up to 700 ° C. to 1200 ° C. in 0.3 to 60 minutes, held for 1 to 4 hours, and then energized and cooled. When cooling is started, arsenic adheres to the quartz glass window 5, but a part of the arsenic remaining in the decomposition product is sublimated, so that it can be easily removed by irradiating infrared rays in the next processing. However, if the temperature is maintained at 600 to 700 ° C. for 5 to 60 minutes after decomposition, arsenic is not sublimated from the decomposition product at this temperature, so that arsenic can be prevented from adhering to the quartz glass window 5, but the processing time per batch is long. Become. Considering the operating conditions, it is better to select which one is more efficient.
[0027]
Cooling is performed within 60 minutes even in furnace cooling, and the internal temperature of the raw material chamber 1 becomes room temperature to 40 ° C., but an inert gas such as nitrogen or argon may be introduced into the raw material chamber 1 in order to increase the cooling rate.
After cooling, the raw material chamber 1 and the evaporative substance recovery trap 3 are returned to atmospheric pressure, the upper cover of the raw material chamber 1 is opened, and the decomposition product remaining in the quartz container 9 is taken out.
[0028]
Since the housing 6, the evaporative substance recovery trap 3 and the pipes 11 and 12 of the raw material chamber 1 are water-cooled, there is no corrosion deterioration of equipment members due to arsenic or the like. The sublimated arsenic aggregates in the housing 6 and the evaporative substance recovery trap 3 in the raw material chamber 1, and is peeled off and recovered. On the other hand, since gallium and undecomposed gallium arsenide remain in the quartz container 9, after recovery, the polypropylene non-woven fabric is used to separate it into gallium and gallium arsenide. It becomes possible.
[0029]
【Example】
[Example 1]
Gallium arsenide scrap 10 was made into a powder of 0.5 to 2.36 mm with a blow-type crusher, and 8 kg was filled in a quartz container 9 (length 300 mm × width 300 mm × depth 50 mm).
[0030]
After the quartz container 9 is placed and placed in the center of the raw material chamber 1 of the vacuum heating equipment shown in FIG. 1, the upper cover of the quartz glass window 5 is closed, and the housing 6 of the raw material chamber 1, the infrared condensing heating device 2 and the evaporating substance. Cooling water was allowed to flow through the water cooling jacket of the recovery trap 3 at 10 L / min, and the raw material chamber 1 and the evaporated substance recovery trap 3 were maintained at a vacuum degree of 8 Pa using the vacuum pump 4.
[0031]
The infrared condensing heating device 2 is energized and heated up to 1050 ° C. for 20 minutes and then held for 2 hours. After decomposition, the temperature is lowered to 700 ° C. for 0.5 minutes and held for 30 minutes, so that arsenic adheres to the quartz glass window 5 The furnace was cooled. The cooling time from 700 ° C. to 40 ° C. was 50 min.
Since the sublimated arsenic adhered to the housing 6 and the evaporative substance recovery trap 3 in the raw material chamber 1, it was removed by applying a light impact with a hammer and recovered. On the other hand, since gallium and undecomposed gallium arsenide remain in the quartz container 9, after recovery, they were separated into gallium and gallium arsenide using a polypropylene nonwoven fabric.
[0032]
Through the above operation, the recovery rate of gallium was 96%, and the recovery rate of arsenic was 97%. 3% of arsenic was not recovered from undecomposed gallium arsenide, the housing 6 of the raw material chamber 1 and the evaporative substance recovery trap 3. On the other hand, 4% of gallium is undecomposed gallium arsenide, gallium adhering thereto, and evaporated and mixed in arsenic.
The time required for the vacuum decomposition of 8 kg / batch was 3.68 h, and it was completed in 5 h including charging and recovery operations.
[0033]
[Example 2]
Example 1 except that the infrared ray condensing heating device 2 was energized while maintaining the raw material chamber 1 and the evaporative substance recovery trap 3 at a vacuum degree of 10 −1 Pa, heated to 1050 ° C. in 20 minutes, and then maintained for 1.5 hours. Operated.
With the above operation, the recovery rate of gallium was 95%, and the recovery rate of arsenic was 96%. 4% of arsenic was not recovered from undecomposed gallium arsenide, the casing 6 of the raw material chamber 1 and the evaporative substance recovery trap 3. On the other hand, 5% of gallium is undecomposed gallium arsenide, gallium adhering thereto, and evaporated and mixed in arsenic.
[0034]
The time required for the vacuum decomposition of 8 kg / batch was 3.18 h, and it was completed in 4.5 h including charging and recovery operations.
Example 3
The same operation as in Example 1 was performed except that the infrared ray condensing heating device 2 was energized while maintaining the raw material chamber 1 and the evaporative substance recovery trap 3 at a vacuum degree of 8 Pa, heated to 1000 ° C. for 20 minutes, and then maintained for 2.18 h.
[0035]
With the above operation, the recovery rate of gallium was 94% and the recovery rate of arsenic was 95%. 5% of arsenic was not recovered from undecomposed gallium arsenide, the casing 6 of the raw material chamber 1 and the evaporative substance recovery trap 3. On the other hand, 6% of gallium is undecomposed gallium arsenide, gallium adhering thereto, and evaporated and mixed into arsenic.
The time required for the vacuum decomposition of 8 kg / batch was 4.2 h, and was completed in 5.5 h including charging and collecting operations.
[0036]
【The invention's effect】
According to the valuable metal recovery method of the present invention, it is possible to shorten the time required for heating, lowering, and thermal decomposition of the alloy scrap in the vacuum pyrolysis method, and to recover the valuable metal at a low cost because of less evaporation loss. Can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a vacuum heating facility used in carrying out the valuable metal recovery method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw material chamber 2 Infrared condensing heating apparatus 3 Evaporative substance collection trap 4 Vacuum pump 5 Quartz glass window 6 Housing 7 Halogen lamp 8 Reflector 9 Quartz container 10 Gallium arsenide scrap 11 Piping 12 Piping

Claims (2)

石英製ガラス窓と水冷式の金属製躯体からなる原料室と赤外線集光加熱装置と蒸発物質回収トラップと真空ポンプとを備えた真空加熱設備を用い、原料室に装入した砒化ガリウムスクラップを減圧下において赤外線集光加熱装置で加熱することにより蒸気圧の高い成分である砒素と蒸気圧の低い成分であるガリウムとに分解し、各成分をそれぞれ回収することを特徴とする有価金属の回収方法。 Depressurize the gallium arsenide scrap charged in the raw material chamber using a vacuum heating facility equipped with a quartz glass window, a water-cooled metal enclosure, an infrared condensing heating device, an evaporative substance recovery trap, and a vacuum pump. A valuable metal recovery method comprising: arsenic , which is a component having a high vapor pressure, and gallium , which is a component having a low vapor pressure, which are heated by an infrared ray condensing heating device, and each component is recovered. . 砒化ガリウムスクラップを、真空度10Vacuum degree of gallium arsenide scrap 10 -3-3 〜13Paの減圧下において、放物面反射鏡を備える赤外線集光加熱装置で700〜1200℃に加熱することにより、蒸気圧の高い成分である砒素と蒸気圧の低い成分であるガリウムとに分解し、各成分をそれぞれ回収することを特徴とする請求項1に記載の有価金属の回収方法。It is decomposed into arsenic, which has a high vapor pressure, and gallium, which has a low vapor pressure, by heating to 700 to 1200 ° C. with an infrared condensing heating device equipped with a parabolic reflector under a reduced pressure of ˜13 Pa And each component is collect | recovered, respectively, The recovery method of the valuable metal of Claim 1 characterized by the above-mentioned.
JP2001135298A 2001-05-02 2001-05-02 Collection method of valuable metals Expired - Lifetime JP4781555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135298A JP4781555B2 (en) 2001-05-02 2001-05-02 Collection method of valuable metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135298A JP4781555B2 (en) 2001-05-02 2001-05-02 Collection method of valuable metals

Publications (2)

Publication Number Publication Date
JP2002327217A JP2002327217A (en) 2002-11-15
JP4781555B2 true JP4781555B2 (en) 2011-09-28

Family

ID=18982784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135298A Expired - Lifetime JP4781555B2 (en) 2001-05-02 2001-05-02 Collection method of valuable metals

Country Status (1)

Country Link
JP (1) JP4781555B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974805B2 (en) 2007-08-10 2012-07-11 トヨタ自動車株式会社 Heating furnace and heating method of heating furnace
JP5179133B2 (en) * 2007-09-28 2013-04-10 株式会社アルバック Sintered body manufacturing equipment
JP4863316B2 (en) * 2009-03-27 2012-01-25 独立行政法人産業技術総合研究所 An apparatus for melting and detoxifying waste to be treated by light heating and a method of detoxifying melting using the same.
CN106119550A (en) * 2016-07-29 2016-11-16 上海交通大学 The recovery method of indium in a kind of waste liquid crystal panel mechanical stripping product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176440A (en) * 1987-01-16 1988-07-20 Mitsubishi Kasei Corp Heating furnace
JPS63270427A (en) * 1987-04-24 1988-11-08 Chiyoda Chem Eng & Constr Co Ltd Method for removing deposited solid matter containing gallium
JP2000346563A (en) * 1999-06-04 2000-12-15 Thermo Riko:Kk Vacuum flange used in infrared ray radiation heating device and infrared radiation heating device provided with this vacuum flange

Also Published As

Publication number Publication date
JP2002327217A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP5284970B2 (en) Method for treating waste containing precious metals and apparatus for carrying out the method
JP4304254B2 (en) Recovery method of high purity indium
JP2013177689A (en) Method and apparatus for continuously producing metal titanium or titanium-base alloy
JP4781555B2 (en) Collection method of valuable metals
JP4651506B2 (en) Liquid crystal panel processing method and processing apparatus
CN108203766A (en) Rare earth metal metallurgy degassing method
JP2011219286A (en) Method and system for manufacturing silicon and silicon carbide
CN116683082B (en) Microwave-assisted pyrogenic process-wet process combined process recovery method for waste lithium batteries
JP4190678B2 (en) Purification method of gallium
US5948140A (en) Method and system for extracting and refining gold from ores
CN218097186U (en) Device for treating low-vanadium titanium aluminum waste and preparing high-quality aluminum
JP6167359B2 (en) Method for recovering valuable materials from CIS thin film solar cells
CN211689250U (en) Processing apparatus of nickeliferous waste material that produces in nitrogen trifluoride electrolysis
RU2205241C1 (en) Calcium producing method and apparatus (versions)
RU2205240C1 (en) Lithium producing method and apparatus (versions)
JP4485083B2 (en) Method for recovering gallium and indium
JP2005048210A (en) Method and apparatus for separating and recovering impurity in molten salt
JP2005146420A (en) High purity indium
JPS6160840A (en) Processing method of refuse containing mercury
TW202007901A (en) Wasted electronic product processing method and processing apparatus thereof capable of greatly improving the practicality of the wasted electronic products
JP5716167B2 (en) Silicon recycling system and method
FR2699318A1 (en) Process for the separation and recovery of ruthenium from liquid waste with a high level of radioactivity.
CN108314049A (en) Alloy vacuum powder production technology
JP4348552B2 (en) Method of removing mercury from waste fluorescent tubes
JP2006089808A (en) Method for deoxidizing sponge platinum, hydrogen reduction furnace used for the method, and method for grinding sponge platinum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term