JP2002327217A - Method for collecting valuable metal - Google Patents

Method for collecting valuable metal

Info

Publication number
JP2002327217A
JP2002327217A JP2001135298A JP2001135298A JP2002327217A JP 2002327217 A JP2002327217 A JP 2002327217A JP 2001135298 A JP2001135298 A JP 2001135298A JP 2001135298 A JP2001135298 A JP 2001135298A JP 2002327217 A JP2002327217 A JP 2002327217A
Authority
JP
Japan
Prior art keywords
vacuum
raw material
heating
material chamber
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001135298A
Other languages
Japanese (ja)
Other versions
JP4781555B2 (en
Inventor
Seiji Kobayashi
誠司 小林
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2001135298A priority Critical patent/JP4781555B2/en
Publication of JP2002327217A publication Critical patent/JP2002327217A/en
Application granted granted Critical
Publication of JP4781555B2 publication Critical patent/JP4781555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To collect valuable metals at low cost by shortening necessary time for raising and lowering the temperature and for decomposing alloy scrap with heat, and consequently by reducing vaporization loss, in a vacuum heat decomposition method. SOLUTION: A vacuum heating apparatus comprises a material chamber 1 composed of a glass window 5 made of quartz and a water cooled type of a metallic body 6, a heating device 2 with condensed infrared-rays, a trap 3 for collecting a vaporized material, and a vacuum pump 4. The method for separately collecting each constituent is characterized by decomposing the alloy scrap 10 charged in the material chamber 1 into two elements having high and low vapor pressures, and by heating it in the heating device 2 with condensed infrared-rays of the vacuum heating apparatus, under reduced pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金スクラップ例
えばガリウムおよび砒素を含有する化合物半導体スクラ
ップ等からガリウム、砒素などの有価金属を効率的に分
離回収する有価金属の回収方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of recovering valuable metals such as gallium and arsenic from alloy scraps such as compound semiconductor scraps containing gallium and arsenic.

【0002】[0002]

【従来の技術】ガリウムおよび砒素を含有する化合物半
導体としては、砒化ガリウムが良く知られている。砒化
ガリウムは、携帯電話をはじめとするモバイル機器の普
及に伴い半導体デバイス用にその需要が急増している。
しかし、化合物半導体は、原料から製品になるまでの製
品化率は極めて低く、製品に移行しない部材がスクラッ
プとして単結晶の端面カット部分、破損ウエハー、切断
屑、研磨屑等さまざまな形態で排出され、これら砒化ガ
リウムのスクラップは高価なガリウムおよび毒物の砒素
を含有することから、有効な回収方法の確立が要望され
ている。
2. Description of the Related Art As a compound semiconductor containing gallium and arsenic, gallium arsenide is well known. Demand for gallium arsenide for semiconductor devices is rapidly increasing with the spread of mobile devices such as mobile phones.
However, compound semiconductors have a very low production rate from raw materials to products, and members that do not migrate to products are discharged as scrap in various forms such as single crystal end face cuts, damaged wafers, cutting chips, and polishing chips. Since these gallium arsenide scraps contain expensive gallium and toxic arsenic, establishment of an effective recovery method is demanded.

【0003】従来、砒化ガリウムスクラップからガリウ
ムおよび砒素を回収する方法には、アルカリ溶融分解法
または酸分解法と電解採取の組み合わせ、または真空加
熱分解法等が用いられ、回収したガリウムは酸洗浄、再
結晶で精製され半導体原料として使用可能な純度99.
9999%ガリウムとして再利用されている。一方、砒
素に関しては工業的には回収が行われておらず、環境汚
染を防止するためにも回収、再利用が重要な命題とされ
ている。
Conventionally, as a method of recovering gallium and arsenic from gallium arsenide scrap, a combination of an alkali melting decomposition method or an acid decomposition method and electrowinning, or a vacuum heat decomposition method has been used. Purity purified by recrystallization and usable as a semiconductor raw material
Reused as 9999% gallium. On the other hand, arsenic has not been recovered industrially, and recovery and reuse are regarded as important propositions in order to prevent environmental pollution.

【0004】アルカリ溶融分解法と電解採取の組み合わ
せは、ニッケルあるいはジルコニウム坩堝に水酸化アル
カリ、炭酸アルカリと砒化ガリウムスクラップを入れ、
加熱溶融分解した後、水で浸出する。浸出液を酸でpH
7前後に調整することで水酸化ガリウムを沈澱させ、ろ
別した水酸化ガリウムを苛性ソーダ水溶液に溶解し電解
液とする。
[0004] In the combination of the alkali melting decomposition method and the electrolytic extraction, an alkali hydroxide, an alkali carbonate and gallium arsenide scrap are put into a nickel or zirconium crucible,
After heat melting and decomposition, it is leached with water. PH of leachate with acid
Gallium hydroxide is precipitated by adjusting the value to about 7, and the filtered gallium hydroxide is dissolved in an aqueous solution of sodium hydroxide to prepare an electrolyte.

【0005】電解採取は、白金、カーボンまたはステン
レスを電極とする電解により陰極にガリウムを電析させ
回収する。電解液中のガリウム濃度は30%以下、水酸
化ナトリウム濃度は30〜50%で、最大2000A/
2 の電流密度で電解する。電解採取では原料である酸
化ガリウムまたは水酸化ガリウムからガリウムを電析さ
せるのが主目的で、その純度は99%程度である。これ
らの操作を行うため、スクラップ分解用加熱炉、電解液
調製槽、ろ過装置、直流電源、電解槽等多くの付帯設備
が必要である上に、廃棄物量が多くコスト高になる傾向
がある。
In the electrowinning, gallium is electrodeposited on a cathode by electrolysis using platinum, carbon or stainless steel as an electrode and collected. The concentration of gallium in the electrolyte is 30% or less, the concentration of sodium hydroxide is 30 to 50%, and the maximum is 2000 A /
Electrolyze at a current density of m 2 . The main purpose of electrowinning is to deposit gallium from gallium oxide or gallium hydroxide as a raw material, and its purity is about 99%. To perform these operations, many auxiliary facilities such as a heating furnace for scrap disassembly, an electrolytic solution preparation tank, a filtration device, a DC power supply, and an electrolytic tank are required, and the amount of waste tends to be large and the cost is high.

【0006】酸分解法と電解採取の組み合わせは、石英
容器に砒化ガリウムスクラップを入れ、王水を添加した
後、加温することにより分解し溶解液とする。溶解液は
苛性ソーダ溶液でpH7前後に調整して水酸化ガリウム
を沈澱させ、ろ別して水酸化ガリウムを苛性ソーダ水溶
液に溶解して電解液とする。電解採取は、アルカリ溶融
分解法と電解採取の組み合わせの場合と同様であり、回
収できるガリウムの純度は99%程度である。これらの
操作を行うため、結晶屑分解槽、加熱源、電解液調製
槽、ろ過装置、直流電源、電解槽等多くの付帯設備が必
要である上に、アルカリ溶融分解法と電解採取の組み合
わせの場合と同様に廃棄物量が多くコスト高になる傾向
がある。
[0006] In the combination of the acid decomposition method and the electrowinning, gallium arsenide scrap is put in a quartz container, aqua regia is added, and the mixture is heated to be decomposed into a solution. The solution is adjusted to a pH of about 7 with a caustic soda solution to precipitate gallium hydroxide, and filtered to dissolve gallium hydroxide in an aqueous caustic soda solution to form an electrolytic solution. The electrowinning is the same as the case of the combination of the alkali melting decomposition method and the electrowinning, and the purity of gallium that can be recovered is about 99%. In order to perform these operations, many additional facilities such as a crystal decomposing tank, a heating source, an electrolytic solution preparing tank, a filtration device, a DC power supply, and an electrolytic tank are required. As in the case, the amount of waste tends to be large and the cost tends to be high.

【0007】真空加熱分解法は、砒化ガリウムスクラッ
プの分解時に蒸気圧の差を利用してガリウムよりも蒸気
圧の高い砒素を昇華分離する方法である。砒化ガリウム
スクラップを13Pa以下の真空度で1,000℃以上
に加熱分解し、残留するガリウム中に蒸気圧の高い砒素
を1ppmまで低減させることが可能であり、比較的簡
便な装置で分離回収ができる上に全工程を乾式で行うこ
とができるため、アルカリ溶融分解法または酸分解法と
電解採取の組み合わせに比べれば、低コスト化が可能と
なる。真空加熱分解法は、1,000℃以上に加熱する
ことによって起こりうる容器からの不純物混入を防止
し、さらにガリウムの蒸発損失を抑制するような操業条
件が選択される。
[0007] The vacuum thermal decomposition method is a method of sublimating and separating arsenic having a higher vapor pressure than gallium by utilizing a difference in vapor pressure during decomposition of gallium arsenide scrap. Gallium arsenide scrap can be thermally decomposed at a vacuum of 13 Pa or less to 1,000 ° C. or more, and arsenic with a high vapor pressure can be reduced to 1 ppm in the remaining gallium. Separation and recovery can be performed with a relatively simple device. In addition to the fact that the entire process can be performed in a dry manner, the cost can be reduced as compared with a combination of the alkali melting decomposition method or the acid decomposition method and the electrolytic extraction. In the vacuum pyrolysis method, operating conditions are selected so as to prevent contamination of the container from impurities that may occur by heating to 1,000 ° C. or higher, and to further suppress evaporation loss of gallium.

【0008】真空加熱分解法では、真空加熱炉を使用す
るが、その加熱方式は電気抵抗加熱あるいは高周波誘導
加熱である。電気抵抗加熱は設備が比較的低価格である
が、熱伝導と輻射で加熱するため炉心管材質は必然的に
石英、アルミナあるいはそれらを保護管で外装した形態
をとる。例えば炉心管に石英を使用した場合、破損防止
等の安全対策として砒化ガリウムスクラップの仕込み量
を制限したり、保護管で炉心管を外装する必要がある。
保護管としてはステンレス鋼が適しているが、昇温に要
する時間は通常1〜5h、降温には6〜12hを必要と
するためバッチ当たりの処理時間が長くなり、多数回の
昇温と降温のくり返しで保護管の強度が低下するため安
全性に問題がある。
In the vacuum thermal decomposition method, a vacuum heating furnace is used, and the heating method is electric resistance heating or high frequency induction heating. Although electric resistance heating is relatively inexpensive in equipment, the material of the furnace tube is inevitably quartz, alumina, or a form in which they are covered with a protective tube for heating by heat conduction and radiation. For example, when quartz is used for the furnace tube, it is necessary to limit the amount of gallium arsenide scrap to be charged or to cover the furnace tube with a protective tube as safety measures such as damage prevention.
Stainless steel is suitable for the protective tube, but the time required for temperature rise is usually 1 to 5 hours, and the time required for temperature decrease is 6 to 12 hours. There is a problem in safety because the strength of the protective tube is reduced by repeated use.

【0009】一方、高周波誘導加熱は砒化ガリウムスク
ラップを入れた容器が直接加熱されるので、砒化ガリウ
ムスクラップを直に加熱することが可能となり、昇温お
よび降温の時間を短縮できる反面、温度制御が難しく、
例えば容器の直径を大きくした場合、砒化ガリウムスク
ラップは分解がある程度進捗するまでは容器近傍のみが
高温となり、均一な分解ができない。また、昇温速度を
上げると容器近傍の砒化ガリウムスクラップが過熱状態
となりガリウムの蒸発損失を引き起こす。
On the other hand, the high-frequency induction heating directly heats the container containing the gallium arsenide scrap, which makes it possible to directly heat the gallium arsenide scrap, thereby shortening the time for raising and lowering the temperature. Difficult,
For example, when the diameter of the container is increased, the temperature of the gallium arsenide scrap becomes high only in the vicinity of the container until the decomposition proceeds to some extent, so that uniform decomposition cannot be performed. In addition, when the heating rate is increased, the gallium arsenide scrap in the vicinity of the container becomes overheated, causing gallium evaporation loss.

【0010】真空加熱分解法は、減圧下で処理を行うた
めバッチ処理にならざるを得ず、バッチ当たりの処理時
間が長いとそれに起因する蒸発損失により回収率が低下
し、コストが上昇するという欠点がある。
[0010] In the vacuum pyrolysis method, since the treatment is performed under reduced pressure, the treatment must be performed in a batch process. If the treatment time per batch is long, the recovery rate is reduced due to evaporation loss caused by the treatment, and the cost is increased. There are drawbacks.

【0011】[0011]

【発明が解決しようとする課題】以上のように、ガリウ
ムおよび砒素を含有する化合物半導体などの合金スクラ
ップからガリウムや砒素等の有価金属を低コストで回収
する方法が求められているが、アルカリ溶融分解法また
は酸分解法と電解採取の組み合わせでは、多くの付帯設
備が必要である上に、廃棄物量が多くコスト高になり、
また真空加熱分解法では、昇温、降温ならびに加熱分解
に長時間を必要とし、金属の蒸発損失が大きいという問
題がある。
As described above, there is a demand for a method of recovering valuable metals such as gallium and arsenic from alloy scraps such as compound semiconductors containing gallium and arsenic at low cost. In the combination of decomposition or acid decomposition and electrowinning, many additional facilities are required, and the amount of waste is high and the cost is high.
Further, the vacuum thermal decomposition method has a problem that a long time is required for raising and lowering the temperature and thermal decomposition, and there is a problem that the evaporation loss of the metal is large.

【0012】本発明は、真空加熱分解法において合金ス
クラップの昇温、降温ならびに加熱分解に長時間を必要
とせず、蒸発損失が少なく有価金属を低コストで回収可
能な有価金属の回収方法を提供することを目的とする。
The present invention provides a method for recovering valuable metals, which does not require a long time for raising and lowering the temperature of alloy scrap and thermal decomposition in the vacuum pyrolysis method, and which can recover valuable metals at a low cost with little evaporation loss. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明の有価金属の回収
方法では、石英製ガラス窓と水冷式の金属製躯体からな
る原料室と、赤外線集光加熱装置と、蒸発物質回収トラ
ップと、真空ポンプとを備えた真空加熱設備を用い、原
料室に装入した合金スクラップを減圧下において赤外線
集光加熱装置で加熱することにより蒸気圧の高い成分と
蒸気圧の低い成分とに分解し、各成分をそれぞれ回収す
ることにより、合金スクラップの分解時間の短縮と回収
率の向上を実現する。
According to the method for recovering valuable metals of the present invention, a raw material chamber composed of a quartz glass window and a water-cooled metal frame, an infrared ray condensing and heating device, an evaporative substance recovery trap, and a vacuum Using a vacuum heating facility equipped with a pump, the alloy scrap charged into the raw material chamber is heated under reduced pressure by an infrared condensing heating device to be decomposed into a component having a high vapor pressure and a component having a low vapor pressure. By recovering the respective components, it is possible to shorten the decomposition time of the alloy scrap and improve the recovery rate.

【0014】石英製ガラス窓は、原料室内を減圧したと
きに破損しないように十分耐圧強度を有する厚さを持た
せなければならない。厚さは400mm×400mmの
面積に対し10mmが適当であるが、安全が確保できれ
ば、この数値以外でも差し支えない。また、強度を増す
方法として形状を半円筒状とすることも可能である。半
円筒状にすれば、原料室の容積を大きくすることがで
き、バッチ当たりの処理量が増大する。
The quartz glass window must be thick enough to withstand pressure so as not to be damaged when the inside of the raw material chamber is depressurized. The thickness is suitably 10 mm for an area of 400 mm × 400 mm, but any value other than this value may be used as long as safety can be ensured. Further, as a method of increasing the strength, a semi-cylindrical shape can be used. If it is made semi-cylindrical, the capacity of the raw material chamber can be increased, and the throughput per batch increases.

【0015】ガラス窓材としての石英は、高い赤外線透
過率、耐熱性、耐圧強度および耐食性を具備しており、
この材料が最適である。水冷式の金属製躯体には、耐食
性、耐熱性、熱伝導性、強度に優れた材質が使用され
る。材質は、SUS316、SUS304、Alなどが
良い。また、水冷することで金属製躯体の過熱を防止す
る。
Quartz as a glass window material has high infrared transmittance, heat resistance, compressive strength and corrosion resistance.
This material is optimal. A material having excellent corrosion resistance, heat resistance, heat conductivity, and strength is used for the water-cooled metal frame. The material is preferably SUS316, SUS304, Al or the like. Water cooling prevents overheating of the metal frame.

【0016】原料室の上下には、赤外線集光加熱装置を
設置する。赤外線集光加熱装置には、赤外線ランプを金
メッキされた楕円面あるいは放物面の反射鏡内に取り付
け、集光された赤外線が原料室内に装入された合金スク
ラップ全体に照射されるようにする。楕円面反射鏡は比
較的低い電力で小面積を加熱するのに向いており、処理
量を増加させるためには一時的に大きな電力を消費する
が大面積を加熱できる放物面反射鏡が適している。反射
鏡はジャケット構造とし、水冷して過熱を防止する。赤
外線ランプとしてはハロゲンもしくはキセノンランプが
用いられ、その定格電力は使用する本数と形状によって
異なるが、300mm×300mmの面積を加熱する場
合、合計52kW程度が良いと考えられる。
Above and below the raw material chamber, infrared condensing and heating devices are installed. The infrared condensing heating device has an infrared lamp mounted in a gold-plated elliptical or parabolic reflector so that the condensed infrared light can be radiated to the entire alloy scrap loaded in the raw material chamber. . Ellipsoidal reflectors are suitable for heating small areas with relatively low power, and in order to increase the throughput, a parabolic reflector that consumes large power temporarily but can heat large areas is suitable ing. The reflector has a jacket structure and is cooled with water to prevent overheating. A halogen or xenon lamp is used as the infrared lamp, and its rated power varies depending on the number and shape of the lamp used, but when heating an area of 300 mm × 300 mm, a total of about 52 kW is considered to be good.

【0017】蒸発物質回収トラップは、原料室の金属製
躯体で凝集できなかった蒸気圧の高い成分を補足的に回
収するため、金属製躯体と真空ポンプとの間に取り付け
る。蒸発物質回収トラップがないと、蒸気圧の高い成分
の一部が真空ポンプに流入するため、真空ポンプの故障
の原因となるだけでなく、回収率も低下する。蒸気圧の
高い成分の回収率を向上させるには、蒸発物質回収トラ
ップを低温に保持することが重要であるが、その方法と
して水冷が適当である。また、材質は耐食性に優れたS
US316やSUS304などが適しているが、蒸気圧
の高い成分の性質、特にその耐食性を考慮の上決定すべ
きである。
The evaporative substance recovery trap is mounted between the metal frame and the vacuum pump in order to supplementarily collect components having a high vapor pressure that could not be coagulated by the metal frame in the raw material chamber. Without the evaporative substance recovery trap, some of the components having a high vapor pressure flow into the vacuum pump, which not only causes a failure of the vacuum pump but also lowers the recovery rate. In order to improve the recovery of components having a high vapor pressure, it is important to keep the evaporant recovery trap at a low temperature, and water cooling is suitable as a method for this. The material is S which has excellent corrosion resistance.
US316 and SUS304 are suitable, but should be determined in consideration of the nature of the component having a high vapor pressure, particularly its corrosion resistance.

【0018】真空ポンプは、原料室および蒸発物質回収
トラップを減圧するために設けられる。真空ポンプは真
空度10-3〜13Paが保持できればよく、通常油回転
ポンプで十分であるが、分解が起こりにくい合金スクラ
ップの場合には油拡散ポンプを付加することが好まし
い。合金スクラップを入れる容器の材質は、高い赤外線
透過率、耐熱性および耐食性に優れた石英が最適であ
る。合金スクラップは容器に充填して原料室内に装入
し、真空ポンプで原料室および蒸発物質回収トラップを
減圧した後、赤外線集光加熱装置に通電し加熱する。
A vacuum pump is provided to reduce the pressure in the raw material chamber and the evaporant recovery trap. The vacuum pump only needs to be able to maintain a degree of vacuum of 10 −3 to 13 Pa, and an oil rotary pump is usually sufficient. However, in the case of alloy scrap that does not easily decompose, it is preferable to add an oil diffusion pump. As the material of the container for containing the alloy scrap, quartz having high infrared transmittance, excellent heat resistance and excellent corrosion resistance is optimal. The alloy scrap is filled in a container and charged into the raw material chamber. The pressure in the raw material chamber and the evaporative substance recovery trap is reduced by a vacuum pump, and then the infrared condensing heating device is energized and heated.

【0019】加熱によって、合金スクラップ中の蒸気圧
の高い成分が優先的に蒸発し、その蒸気は原料室の金属
製躯体および蒸発物質回収トラップに凝集し、蒸気圧の
低い成分は残留するので、冷却後原料室および蒸発物質
回収トラップを大気圧に戻し、分解生成物を回収する。
未分解の合金スクラップが蒸気圧の低い成分とともに残
留する場合は、そのまま再度分解を繰り返すか、あるい
は蒸気圧の低い成分をろ別後、未分解の合金スクラップ
のみを再度分解する。
Due to the heating, the components having a high vapor pressure in the alloy scrap evaporate preferentially, and the vapor condenses on the metal frame and the evaporative substance recovery trap in the raw material chamber, and the components having a low vapor pressure remain. After cooling, the raw material chamber and the evaporative substance recovery trap are returned to atmospheric pressure, and the decomposition products are recovered.
If the undecomposed alloy scrap remains together with the component having a low vapor pressure, the decomposition is repeated again, or only the undecomposed alloy scrap is decomposed again after filtering the component having a low vapor pressure.

【0020】このとき、真空度を10-3Paより高真空
にすると、蒸気圧の低い成分も気化し易くなり、蒸気圧
の高い成分の純度を低下させるだけでなく、蒸気圧の低
い成分の回収率を低下させる。また、真空度を13Pa
より低真空にすると、合金スクラップの分解速度が遅
く、実用的でない。加熱温度が700℃より低い場合に
は合金スクラップの分解速度が一般的に遅く、1200
℃より高温では蒸気圧の成分の蒸発損失が増大するので
非効率的である。
At this time, if the degree of vacuum is made higher than 10 -3 Pa, the components having a low vapor pressure are also easily vaporized, which not only lowers the purity of the components having a high vapor pressure but also reduces the purity of the components having a low vapor pressure. Decreases recovery. In addition, the degree of vacuum is 13 Pa
If the vacuum is lower, the decomposition rate of the alloy scrap is low, which is not practical. When the heating temperature is lower than 700 ° C., the decomposition rate of alloy scrap is generally slow,
If the temperature is higher than 0 ° C., the evaporation loss of the components of the vapor pressure increases, which is inefficient.

【0021】赤外線集光加熱では、急速な加熱と冷却が
可能であるため、昇温時間は0.3〜60minの間で
行うことができ、冷却も60min以内で室温〜40℃
まで降温するので、バッチ当たりの処理時間が短縮され
る。また、合金スクラップのみに赤外線を集光して加熱
することができるため、低温に保持された原料室の金属
製躯体などは蒸気圧の高い物質による腐食劣化がなく、
さらに蒸気圧の高い成分は原料室の金属製躯体で迅速に
凝集されるため原料室内の蒸気分圧が低く抑えられ、分
解速度は従来の加熱方式より格段に速くなる。
In the case of infrared condensing heating, rapid heating and cooling are possible, so that the temperature can be raised within a time period of 0.3 to 60 minutes, and cooling can be performed within a period of 60 minutes or less.
Since the temperature is lowered, the processing time per batch is reduced. In addition, since infrared rays can be focused and heated only on the alloy scrap, the metal frame of the raw material room kept at a low temperature is not corroded and deteriorated by substances with high vapor pressure.
Further, components having a high vapor pressure are rapidly agglomerated in the metal frame of the raw material chamber, so that the partial pressure of the vapor in the raw material chamber is suppressed to a low level, and the decomposition rate is significantly higher than that of the conventional heating method.

【0022】赤外線集光加熱装置を可動式にしておけ
ば、一式の赤外線集光加熱装置で多数台の原料室を加熱
できるため仕込み、加熱分解、取り出しが連続的に行え
ることから作業効率があがり、最大電力も低く抑えるこ
とができる。また、赤外線集光加熱装置を固定し、多数
台の原料室を可動式にすることも可能である。
If the infrared condensing and heating device is made movable, a large number of raw material chambers can be heated by a single set of infrared condensing and heating devices, so that charging, thermal decomposition, and removal can be performed continuously, thereby increasing work efficiency. Also, the maximum power can be kept low. Further, it is also possible to fix the infrared ray condensing and heating device and make many raw material chambers movable.

【0023】[0023]

【発明の実施の形態】以下、合金スクラップとして砒化
ガリウムスクラップを分解する場合の実施の一形態につ
いて説明する。図1は本発明の有価金属の回収方法の実
施の際に用いられる真空加熱設備の一例を示す構成図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which gallium arsenide scrap is decomposed as an alloy scrap will be described below. FIG. 1 is a configuration diagram showing an example of a vacuum heating facility used in carrying out the method for recovering valuable metals of the present invention.

【0024】真空加熱設備は、原料室1と赤外線集光加
熱装置2と蒸発物質回収トラップ3と真空ポンプ4とを
備えており、原料室1と蒸発物質回収トラップ3との間
および蒸発物質回収トラップ3と真空ポンプ4との間は
SUS316またはSUS304製の配管11、12で
接続されている。原料室1は、石英製ガラス窓5とSU
S316またはSUS304製の躯体6とで構成されて
いる。石英製ガラス窓5は、長さ400mm×幅400
mm×厚さ10mmで、一つが躯体6に密着固定されて
おり、他の一つが開閉式の上蓋となっている。原料室1
の躯体6、赤外線集光加熱装置2および蒸発物質回収ト
ラップ3は水冷ジャケット構造とし冷却水の入口と出口
(図示略)が設けられている。真空ポンプ4には油回転
ポンプが用いられている。
The vacuum heating equipment includes a raw material chamber 1, an infrared ray condensing and heating device 2, an evaporative substance recovery trap 3, and a vacuum pump 4, and the space between the raw material chamber 1 and the evaporative substance recovery trap 3 and the evaporative substance recovery The pipes 11 and 12 made of SUS316 or SUS304 are connected between the trap 3 and the vacuum pump 4. The raw material chamber 1 has a quartz glass window 5 and an SU
And a frame 6 made of S316 or SUS304. The quartz glass window 5 has a length of 400 mm and a width of 400 mm.
mm × 10 mm in thickness, one of which is tightly fixed to the frame 6, and the other is an openable top cover. Raw material room 1
The frame 6, the infrared ray condensing and heating device 2 and the evaporant recovery trap 3 have a water-cooled jacket structure, and are provided with an inlet and an outlet (not shown) for cooling water. As the vacuum pump 4, an oil rotary pump is used.

【0025】原料室1の上下に設置されている赤外線集
光加熱装置2には、ハロゲンランプ7と放物面の反射鏡
8とが設けられており、照射面積は長さ300mm×幅
300mmとなっている。砒化ガリウムスクラップ10
を長さ300mm×幅300mm×深さ50mmのバッ
ト状の石英製容器9に均一に充填し、石英製容器9を原
料室1の中央に装入設置した後、石英製ガラス窓5から
なる上蓋を閉める。石英製容器9の厚さは2〜5mmが
良いが、強度を十分考えて決定すれば良い。砒化ガリウ
ムスクラップ10は、細粒ほど分解速度が速いが、真空
引きに伴う飛散ロスを考慮すると0.5〜2.36mm
が適当である。また、砒化ガリウムスクラップ10の充
填量は、石英製容器9からこぼれ落ちない程度とし、長
さ300mm×幅300mm×深さ50mmのバット状
の石英製容器9に対しては通常5〜10kgが適当であ
る。
A halogen lamp 7 and a parabolic reflecting mirror 8 are provided in the infrared ray condensing and heating device 2 installed above and below the raw material chamber 1, and the irradiation area is 300 mm long × 300 mm wide. Has become. Gallium arsenide scrap 10
Is uniformly filled in a bat-shaped quartz container 9 having a length of 300 mm × a width of 300 mm × a depth of 50 mm. Close. The thickness of the quartz container 9 is preferably 2 to 5 mm, but may be determined in consideration of the strength. The gallium arsenide scrap 10 has a higher decomposition rate as the finer the grains, but in consideration of the scattering loss caused by evacuation, it is 0.5 to 2.36 mm.
Is appropriate. The filling amount of the gallium arsenide scrap 10 is set so as not to spill from the quartz container 9 and usually 5 to 10 kg is appropriate for the bat-shaped quartz container 9 having a length of 300 mm × a width of 300 mm × a depth of 50 mm. is there.

【0026】原料室1の躯体6、赤外線集光加熱装置2
および蒸発物質回収トラップ3の水冷ジャケットに冷却
水を5〜20L/min流し、真空ポンプ4を用いて原
料室1および蒸発物質回収トラップ3を真空度10-3
13Paに保持する。赤外線集光加熱装置2に通電し7
00℃〜1200℃まで0.3〜60minで昇温し、
1〜4h保持後、通電を止め、冷却する。冷却を開始す
ると、石英製ガラス窓5に砒素が付着するが、分解物に
残留した砒素の一部が昇華するためで、次回の処理の際
に赤外線を照射することで簡単に除去される。ただし、
分解後600〜700℃で5〜60min保持すると、
この温度では分解物からの砒素の昇華がないため石英製
ガラス窓5への砒素の付着は防止できるが、バッチ当た
りの処理時間は長くなる。操業条件を考慮し、どちらが
効率的か選択し実施するのが良い。
The frame 6 of the raw material chamber 1 and the infrared condensing heating device 2
And evaporated substance recovery trap 3 of the water-cooling jacket cooling water flow 5~20L / min, a feed chamber 1 and the evaporation material recovery trap 3 vacuum degree of 10 -3 to using a vacuum pump 4
It is kept at 13 Pa. Power is supplied to the infrared condensing heating device 2 and 7
The temperature is raised from 00 ° C to 1200 ° C in 0.3 to 60 minutes,
After holding for 1 to 4 hours, the power supply is stopped and cooling is performed. When cooling is started, arsenic adheres to the quartz glass window 5, but part of the arsenic remaining in the decomposition product is sublimated, so that it is easily removed by irradiating infrared rays at the next processing. However,
After decomposition, if the temperature is maintained at 600 to 700 ° C for 5 to 60 minutes,
At this temperature, there is no sublimation of arsenic from the decomposition product, so that arsenic can be prevented from adhering to the quartz glass window 5, but the processing time per batch becomes longer. It is better to select which one is more efficient in consideration of operating conditions.

【0027】冷却は炉冷でも60min以内で原料室1
の内部温度が室温〜40℃になるが、冷却速度を速める
ためには、窒素あるいはアルゴン等の不活性ガスを原料
室1に導入すればよい。冷却後、原料室1および蒸発物
質回収トラップ3を大気圧に戻し、原料室1の上蓋を開
けて石英製容器9に残った分解生成物を取り出す。
Cooling is performed within 60 minutes even in a furnace.
The internal temperature becomes from room temperature to 40 ° C. In order to increase the cooling rate, an inert gas such as nitrogen or argon may be introduced into the raw material chamber 1. After cooling, the raw material chamber 1 and the evaporating substance recovery trap 3 are returned to atmospheric pressure, the upper lid of the raw material chamber 1 is opened, and the decomposition products remaining in the quartz container 9 are taken out.

【0028】原料室1の躯体6、蒸発物質回収トラップ
3および配管11、12類は水冷しているため、砒素等
による設備部材の腐食劣化はない。昇華した砒素は原料
室1の躯体6と蒸発物質回収トラップ3に凝集するの
で、剥落させ回収する。一方、ガリウムおよび未分解の
砒化ガリウムは石英製容器9に残るので、回収後ポリプ
ロピレン製不織布を使用しガリウムと砒化ガリウムにろ
別し、砒化ガリウムは再度真空加熱分解させることによ
り効率的な操業が可能となる。
Since the body 6, the evaporative substance recovery trap 3, and the pipes 11 and 12 of the raw material chamber 1 are water-cooled, there is no corrosion deterioration of equipment members due to arsenic or the like. The sublimated arsenic is agglomerated in the skeleton 6 of the raw material chamber 1 and the evaporative substance recovery trap 3, and is stripped and collected. On the other hand, since gallium and undecomposed gallium arsenide remain in the quartz container 9, after recovery, the gallium and gallium arsenide are filtered off using a nonwoven fabric made of polypropylene, and the gallium arsenide is again decomposed by heating under vacuum for efficient operation. It becomes possible.

【0029】[0029]

【実施例】〔実施例1〕砒化ガリウムスクラップ10を
打撃式粉砕機で0.5〜2.36mmの粉末とし、石英
製容器9(長さ300mm×幅300mm×深さ50m
m)に8kg充填した。
EXAMPLES Example 1 A gallium arsenide scrap 10 was made into a powder having a size of 0.5 to 2.36 mm by a percussion crusher, and a quartz container 9 (300 mm long × 300 mm wide × 50 m deep) was used.
m) was filled with 8 kg.

【0030】この石英製容器9を図1の真空加熱設備の
原料室1中央に装入配置した後、石英製ガラス窓5の上
蓋を閉め、原料室1の躯体6、赤外線集光加熱装置2お
よび蒸発物質回収トラップ3の水冷ジャケットに冷却水
を10L/min流し、真空ポンプ4を用いて原料室1
および蒸発物質回収トラップ3を真空度8Paに保持し
た。
After the quartz container 9 is placed in the center of the raw material chamber 1 of the vacuum heating equipment shown in FIG. 1, the upper lid of the quartz glass window 5 is closed, and the frame 6 of the raw material chamber 1 and the infrared condensing heating device 2 Then, cooling water is supplied at a flow rate of 10 L / min to the water cooling jacket of the evaporant recovery trap 3, and the raw material chamber 1 is
Further, the evaporant recovery trap 3 was maintained at a vacuum degree of 8 Pa.

【0031】赤外線集光加熱装置2に通電し1050℃
まで20minで昇温後2h保持し、分解させた後、
0.5minで700℃まで降温、30min保持する
ことで石英製ガラス窓5への砒素の付着を防止し、炉冷
した。700℃から40℃までの冷却時間は50min
であった。昇華した砒素は原料室1の躯体6と蒸発物質
回収トラップ3に付着したので、ハンマーで軽い衝撃を
与えて剥落させ、回収した。一方、ガリウムおよび未分
解の砒化ガリウムは石英製容器9に残るので、回収後ポ
リプロピレン製不織布を使用しガリウムと砒化ガリウム
にろ別した。
Electric power is supplied to the infrared condensing heating device 2 at 1050 ° C.
After heating for 20 min, hold for 2 h and decompose,
The temperature was lowered to 700 ° C. in 0.5 min and maintained for 30 min to prevent arsenic from adhering to the quartz glass window 5 and the furnace was cooled. Cooling time from 700 ° C to 40 ° C is 50min
Met. Since the sublimed arsenic adhered to the frame 6 of the raw material chamber 1 and the evaporant recovery trap 3, the arsenic was peeled off with a light impact with a hammer and collected. On the other hand, since gallium and undecomposed gallium arsenide remain in the quartz container 9, they were collected and separated into gallium and gallium arsenide using a nonwoven fabric made of polypropylene.

【0032】以上の操作でガリウムの回収率は96%、
砒素の回収率は97%であった。3%の砒素は未分解の
砒化ガリウムと原料室1の躯体6と蒸発物質回収トラッ
プ3から回収できなかったものである。一方4%のガリ
ウムは未分解の砒化ガリウムとそこに付着したガリウム
および蒸発して砒素に混入したものである。8kg/バ
ッチの真空分解に要した時間は3.68hで、仕込みお
よび回収の操作を含めて5hで終了した。
With the above operation, the recovery rate of gallium is 96%,
The recovery of arsenic was 97%. 3% of arsenic could not be recovered from undecomposed gallium arsenide, the skeleton 6 of the raw material chamber 1 and the evaporant recovery trap 3. On the other hand, 4% of gallium is undecomposed gallium arsenide, gallium adhering thereto, and evaporated and mixed with arsenic. The time required for vacuum decomposition of 8 kg / batch was 3.68 h, and the operation was completed in 5 h including the operations of charging and recovery.

【0033】〔実施例2〕原料室1および蒸発物質回収
トラップ3を真空度10-1Paに保持しながら赤外線集
光加熱装置2に通電し1050℃まで20minで昇温
後1.5h保持した以外は実施例1と同様に操作した。
以上の操作でガリウムの回収率は95%、砒素の回収率
は96%であった。4%の砒素は未分解の砒化ガリウム
と原料室1の躯体6と蒸発物質回収トラップ3から回収
できなかったものである。一方5%のガリウムは未分解
の砒化ガリウムとそこに付着したガリウムおよび蒸発し
て砒素に混入したものである。
Example 2 While keeping the raw material chamber 1 and the evaporating substance recovery trap 3 at a degree of vacuum of 10 -1 Pa, the infrared ray condensing and heating apparatus 2 was energized, heated to 1050 ° C. for 20 minutes, and held for 1.5 hours. Other than that, it operated similarly to Example 1.
By the above operation, the recovery rate of gallium was 95%, and the recovery rate of arsenic was 96%. 4% of arsenic could not be recovered from undecomposed gallium arsenide, the skeleton 6 of the raw material chamber 1 and the evaporant recovery trap 3. On the other hand, 5% of gallium is undecomposed gallium arsenide, gallium adhering thereto, and evaporated and mixed with arsenic.

【0034】8kg/バッチの真空分解に要した時間は
3.18hで、仕込みおよび回収の操作を含めて4.5
hで終了した。 〔実施例3〕原料室1および蒸発物質回収トラップ3を
真空度8Paに保持しながら赤外線集光加熱装置2に通
電し1000℃まで20minで昇温後2.18h保持
した以外は実施例1と同様に操作した。
The time required for vacuum decomposition of 8 kg / batch was 3.18 h, and 4.5 hours including the charging and recovery operations.
h. Example 3 The procedure was the same as that of Example 1 except that the raw material chamber 1 and the evaporating substance recovery trap 3 were kept at a vacuum degree of 8 Pa, and the infrared ray condensing and heating apparatus 2 was energized, heated to 1000 ° C. in 20 minutes, and then held for 2.18 h. The same operation was performed.

【0035】以上の操作でガリウムの回収率は94%、
砒素の回収率は95%であった。5%の砒素は未分解の
砒化ガリウムと原料室1の躯体6と蒸発物質回収トラッ
プ3から回収できなかったものである。一方6%のガリ
ウムは未分解の砒化ガリウムとそこに付着したガリウム
および蒸発して砒素に混入したものである。8kg/バ
ッチの真空分解に要した時間は4.2hで、仕込みおよ
び回収の操作を含めて5.5hで終了した。
By the above operation, the recovery rate of gallium is 94%,
The recovery of arsenic was 95%. 5% of arsenic could not be recovered from undecomposed gallium arsenide, the frame 6 of the raw material chamber 1 and the evaporant recovery trap 3. On the other hand, 6% of gallium is undecomposed gallium arsenide, gallium adhering thereto, and evaporated and mixed with arsenic. The time required for the vacuum decomposition of 8 kg / batch was 4.2 h, and was completed in 5.5 h including the charging and recovery operations.

【0036】[0036]

【発明の効果】本発明の有価金属の回収方法によれば、
真空加熱分解法において合金スクラップの昇温、降温な
らびに加熱分解に要する時間が短縮でき、また、蒸発損
失が少ないため有価金属を低コストで回収することがで
きる。
According to the method for recovering valuable metals of the present invention,
In the vacuum thermal decomposition method, the time required for raising and lowering the temperature of the alloy scrap and the time required for thermal decomposition can be shortened, and valuable metals can be recovered at low cost because the evaporation loss is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の有価金属の回収方法の実施の際
に用いられる真空加熱設備の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a vacuum heating facility used in carrying out a valuable metal recovery method of the present invention.

【符号の説明】[Explanation of symbols]

1 原料室 2 赤外線集光加熱装置 3 蒸発物質回収トラップ 4 真空ポンプ 5 石英製ガラス窓 6 躯体 7 ハロゲンランプ 8 反射鏡 9 石英製容器 10 砒化ガリウムスクラップ 11 配管 12 配管 DESCRIPTION OF SYMBOLS 1 Raw material chamber 2 Infrared condensing heating device 3 Evaporation substance collection trap 4 Vacuum pump 5 Quartz glass window 6 Frame 7 Halogen lamp 8 Reflector 9 Quartz container 10 Gallium arsenide scrap 11 Piping 12 Piping

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K001 AA03 AA11 BA22 EA01 EA02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K001 AA03 AA11 BA22 EA01 EA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 石英製ガラス窓と水冷式の金属製躯体か
らなる原料室と赤外線集光加熱装置と蒸発物質回収トラ
ップと真空ポンプとを備えた真空加熱設備を用い、原料
室に装入した合金スクラップを減圧下において赤外線集
光加熱装置で加熱することにより蒸気圧の高い成分と蒸
気圧の低い成分とに分解し、各成分をそれぞれ回収する
ことを特徴とする有価金属の回収方法。
1. A raw material chamber composed of a quartz glass window and a water-cooled metal frame, a vacuum heating facility equipped with an infrared condensing heating device, an evaporating substance recovery trap, and a vacuum pump were charged into the raw material chamber. A method for recovering valuable metals, comprising heating an alloy scrap under reduced pressure with an infrared condensing heating device to decompose it into a component having a high vapor pressure and a component having a low vapor pressure, and recovering each component.
JP2001135298A 2001-05-02 2001-05-02 Collection method of valuable metals Expired - Lifetime JP4781555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135298A JP4781555B2 (en) 2001-05-02 2001-05-02 Collection method of valuable metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135298A JP4781555B2 (en) 2001-05-02 2001-05-02 Collection method of valuable metals

Publications (2)

Publication Number Publication Date
JP2002327217A true JP2002327217A (en) 2002-11-15
JP4781555B2 JP4781555B2 (en) 2011-09-28

Family

ID=18982784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135298A Expired - Lifetime JP4781555B2 (en) 2001-05-02 2001-05-02 Collection method of valuable metals

Country Status (1)

Country Link
JP (1) JP4781555B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084628A (en) * 2007-09-28 2009-04-23 Ulvac Japan Ltd Sintered compact production device
WO2010110195A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Apparatus and method for melting waste by light heating
US9033705B2 (en) 2007-08-10 2015-05-19 Toyota Jidosha Kabushiki Kaisha Heating furnace and heating method employed by heating furnace
CN106119550A (en) * 2016-07-29 2016-11-16 上海交通大学 The recovery method of indium in a kind of waste liquid crystal panel mechanical stripping product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176440A (en) * 1987-01-16 1988-07-20 Mitsubishi Kasei Corp Heating furnace
JPS63270427A (en) * 1987-04-24 1988-11-08 Chiyoda Chem Eng & Constr Co Ltd Method for removing deposited solid matter containing gallium
JP2000346563A (en) * 1999-06-04 2000-12-15 Thermo Riko:Kk Vacuum flange used in infrared ray radiation heating device and infrared radiation heating device provided with this vacuum flange

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176440A (en) * 1987-01-16 1988-07-20 Mitsubishi Kasei Corp Heating furnace
JPS63270427A (en) * 1987-04-24 1988-11-08 Chiyoda Chem Eng & Constr Co Ltd Method for removing deposited solid matter containing gallium
JP2000346563A (en) * 1999-06-04 2000-12-15 Thermo Riko:Kk Vacuum flange used in infrared ray radiation heating device and infrared radiation heating device provided with this vacuum flange

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033705B2 (en) 2007-08-10 2015-05-19 Toyota Jidosha Kabushiki Kaisha Heating furnace and heating method employed by heating furnace
JP2009084628A (en) * 2007-09-28 2009-04-23 Ulvac Japan Ltd Sintered compact production device
WO2010110195A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Apparatus and method for melting waste by light heating
JP2010227828A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Apparatus and method for melting and detoxifying waste to be treated by light heating
CN106119550A (en) * 2016-07-29 2016-11-16 上海交通大学 The recovery method of indium in a kind of waste liquid crystal panel mechanical stripping product

Also Published As

Publication number Publication date
JP4781555B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5702428B2 (en) Method and apparatus for continuously producing titanium metal or titanium-based alloys
TWI411581B (en) Method for recovering ruthenium from waste containing ruthenium
JP2002164558A (en) REPRODUCTION METHOD OF CdTe/CdS THIN FILM SOLAR CELL MODULE
JP2010506714A (en) Method for treating waste containing precious metals and apparatus for carrying out the method
JP4781555B2 (en) Collection method of valuable metals
KR20210129042A (en) Lithium recovery method
JP5854202B2 (en) Target substance separation / recovery method and separation / recovery system
JP3173404B2 (en) How to recover indium
JP4190678B2 (en) Purification method of gallium
JP4485083B2 (en) Method for recovering gallium and indium
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
RU2038395C1 (en) Method for rendering chromium-containing wastes of electroplating harmless
RU2205241C1 (en) Calcium producing method and apparatus (versions)
TWI688731B (en) Waste electronic product processing method and processing device
JP2004292912A (en) Method for recovering high purity rhodium from rhodium-containing metal waste or the like
JP2651523B2 (en) Continuous gallium recovery method and apparatus from gallium-containing material
RU2205240C1 (en) Lithium producing method and apparatus (versions)
JP2000215811A (en) Mercury recovery method from mercury adhered glass and device therefor
Liu et al. Efficient separation and recovery of gallium from GaAs scraps by alkaline oxidative leaching, cooling crystallization and cyclone electrowinning
RU2534323C1 (en) Metallic cobalt obtaining method
CN113249576B (en) Waste cathode carbon block, fluoride and metal sodium recovery processing equipment and use method
JPH01191753A (en) Treatment of indium-containing scrap
JP3885913B2 (en) Method for purifying recovered gallium
JP4007447B2 (en) Method for producing high purity chromium
Takeda et al. A new high speed titanium production by subhalide reduction process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term