JP5117220B2 - Method for manufacturing permanent magnet - Google Patents
Method for manufacturing permanent magnet Download PDFInfo
- Publication number
- JP5117220B2 JP5117220B2 JP2008041555A JP2008041555A JP5117220B2 JP 5117220 B2 JP5117220 B2 JP 5117220B2 JP 2008041555 A JP2008041555 A JP 2008041555A JP 2008041555 A JP2008041555 A JP 2008041555A JP 5117220 B2 JP5117220 B2 JP 5117220B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered magnet
- metal
- processing box
- magnet
- evaporation material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 title description 19
- 239000000463 material Substances 0.000 claims description 86
- 229910052751 metal Inorganic materials 0.000 claims description 63
- 239000002184 metal Substances 0.000 claims description 63
- 238000001883 metal evaporation Methods 0.000 claims description 58
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 43
- 229910052771 Terbium Inorganic materials 0.000 claims description 41
- 125000006850 spacer group Chemical group 0.000 claims description 40
- 239000013078 crystal Substances 0.000 claims description 32
- 238000001704 evaporation Methods 0.000 claims description 30
- 239000011261 inert gas Substances 0.000 claims description 30
- 239000012071 phase Substances 0.000 description 28
- 230000005291 magnetic effect Effects 0.000 description 25
- 238000011282 treatment Methods 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 229910052761 rare earth metal Inorganic materials 0.000 description 15
- 239000000047 product Substances 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 12
- 239000010409 thin film Substances 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 230000005347 demagnetization Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910001172 neodymium magnet Inorganic materials 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000005293 ferrimagnetic effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Hard Magnetic Materials (AREA)
Description
本発明は、永久磁石の製造方法に関し、特に、Nd−Fe−B系の焼結磁石の結晶粒界及び/または結晶粒界相にDyやTbを拡散させてなる高磁気特性の永久磁石を製造する方法に関する。 The present invention relates to a method for manufacturing a permanent magnet, and more particularly, to a permanent magnet having a high magnetic property obtained by diffusing Dy or Tb into a crystal grain boundary and / or a crystal grain boundary phase of an Nd—Fe—B based sintered magnet. It relates to a method of manufacturing.
Nd−Fe−B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。 Nd-Fe-B based sintered magnets (so-called neodymium magnets) can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied. In addition, since it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and is also used in motors and generators for hybrid cars. is increasing.
上記焼結磁石のキュリー温度は、約300℃と低いことから、採用する製品の使用状況によっては所定温度を超えて昇温する場合があり、所定温度を超えると、熱により減磁するという問題がある。また、上記焼結磁石を所望の製品に利用するに際しては、焼結磁石を所定形状に加工する場合があり、この加工によって焼結磁石の結晶粒に欠陥(クラック等)や歪などが生じて磁気特性が著しく劣化するという問題がある。 Since the Curie temperature of the sintered magnet is as low as about 300 ° C., the temperature may rise above a predetermined temperature depending on the usage status of the product to be used. There is. In addition, when the sintered magnet is used for a desired product, the sintered magnet may be processed into a predetermined shape, and this processing may cause defects (cracks, etc.) or distortions in the crystal grains of the sintered magnet. There is a problem that the magnetic properties are significantly deteriorated.
このため、従来では、Yb、Eu、Smの中から選択された希土類金属をNd−Fe−B系の焼結磁石と混合した状態で処理室内に配置し、この処理室を加熱することで希土類金属を蒸発させ、蒸発した希土類金属原子を焼結磁石へ収着させ、さらにはこの金属原子を焼結磁石の結晶粒界相に拡散させることで、焼結磁石表面並びに結晶粒界相に希土類金属を導入して、磁化および保磁力を向上または回復させることが知られている(特許文献1)。 For this reason, conventionally, a rare earth metal selected from Yb, Eu, and Sm is placed in a processing chamber in a state of being mixed with an Nd—Fe—B based sintered magnet, and the processing chamber is heated to thereby form a rare earth metal. By evaporating the metal, sorbing the evaporated rare earth metal atoms to the sintered magnet, and further diffusing the metal atoms into the grain boundary phase of the sintered magnet, It is known that a metal is introduced to improve or recover the magnetization and coercive force (Patent Document 1).
ここで、希土類金属のうちDy、Tbは、Ndより大きい4f電子の磁気異方性を有し、Ndと同じく負のスティーブンス因子を持つことで、主相の結晶磁気異方性を大きく向上させることが知られている。但し、焼結磁石作製の際にDyやTbを添加したのでは、Dy、Tbは主相結晶格子中でNdと逆向きのスピン配列をするフェリ磁性構造を取ることから磁界強度、ひいては、磁気特性を示す最大エネルギー積が大きく低下する。 Here, among the rare earth metals, Dy and Tb have a magnetic anisotropy of 4f electrons larger than Nd, and have a negative Stevens factor similar to Nd, thereby greatly improving the magnetocrystalline anisotropy of the main phase. It is known to let However, if Dy or Tb is added at the time of producing the sintered magnet, Dy and Tb have a ferrimagnetic structure in which the spin arrangement is opposite to Nd in the main phase crystal lattice, so that the magnetic field strength, and hence the magnetic The maximum energy product showing the characteristics is greatly reduced.
そこで、Dy、Tbを用い、上記方法によって、結晶粒界及び/または結晶粒界相にDy、Tbを均一かつ所望量導入することが提案されるが、上記方法を用いて焼結磁石表面にもDyやTbが存するように(つまり、焼結磁石表面にDyやTbの薄膜が形成されるように)、蒸発したDy、Tbの金属原子が供給されると、焼結磁石表面で堆積した金属原子が再結晶し、焼結磁石表面を著しく劣化させる(表面粗さが悪くなる)という問題が生じる。希土類金属と焼結磁石とを混合した状態で配置した上記方法では、金属蒸発材料を加熱した際に溶けた希土類金属が直接焼結磁石に付着することで薄膜の形成や突起の形成が避けられない。 Therefore, it is proposed to use Dy and Tb and to introduce a desired amount of Dy and Tb uniformly and into the grain boundaries and / or grain boundary phases by the above method. As Dy and Tb exist (that is, a thin film of Dy and Tb is formed on the surface of the sintered magnet), when vaporized metal atoms of Dy and Tb are supplied, they are deposited on the surface of the sintered magnet. There arises a problem that the metal atoms are recrystallized and the surface of the sintered magnet is remarkably deteriorated (surface roughness is deteriorated). In the above-described method in which the rare earth metal and the sintered magnet are mixed, the melted rare earth metal directly adheres to the sintered magnet when the metal evaporation material is heated, thereby avoiding the formation of thin films and protrusions. Absent.
また、焼結磁石表面にDy、Tbの薄膜が形成されるように焼結磁石表面に過剰に金属原子が供給されると、処理中に加熱されている焼結磁石表面に堆積し、DyやTbの量が増えることで表面付近の融点が下がり、表面に堆積したDy、Tbが溶けて特に焼結磁石表面に近い結晶粒内に過剰に進入する。結晶粒内に過剰に進入した場合、上述したようにDy、Tbは主相結晶格子中でNdと逆向きのスピン配列をするフェリ磁性構造を取ることから、磁化および保磁力を効果的に向上または回復させることができない虞がある。 In addition, if excessive metal atoms are supplied to the sintered magnet surface so that a thin film of Dy and Tb is formed on the sintered magnet surface, it accumulates on the surface of the sintered magnet heated during processing, As the amount of Tb increases, the melting point near the surface decreases, and Dy and Tb deposited on the surface melt and enter excessively into crystal grains particularly close to the surface of the sintered magnet. When entering excessively into the crystal grains, as described above, Dy and Tb take a ferrimagnetic structure in the main phase crystal lattice that has a spin arrangement opposite to Nd, thereby effectively improving magnetization and coercivity. Or there is a possibility that it cannot be recovered.
つまり、焼結磁石表面にDyやTbの薄膜が一度形成されると、その薄膜に隣接した焼結磁石表面の平均組成がDyやTbの希土類リッチ組成となり、希土類リッチ組成になると、液相温度が下がり、焼結磁石表面が溶けるようになる(即ち、主相が溶けて液相の量が増加する)。その結果、焼結磁石表面付近が溶けて崩れ、凹凸が増加することになる。その上、Dyが多量の液相と共に結晶粒内に過剰に侵入し、磁気特性を示す最大エネルギー積及び残留磁束密度がさらに低下する。 That is, once a thin film of Dy or Tb is once formed on the surface of the sintered magnet, the average composition of the sintered magnet surface adjacent to the thin film becomes a rare earth rich composition of Dy or Tb. And the surface of the sintered magnet is melted (that is, the main phase is melted and the amount of the liquid phase is increased). As a result, the vicinity of the surface of the sintered magnet melts and collapses, and the unevenness increases. In addition, Dy excessively penetrates into the crystal grains together with a large amount of liquid phase, and the maximum energy product and the residual magnetic flux density showing the magnetic characteristics are further lowered.
このような問題を解決策として、処理箱内で鉄−ホウ素−希土類系の焼結磁石と、Dy、Tbの少なくとも一方を含む金属蒸発材料とを相互に離間させて収納し、この処理箱を真空雰囲気にて加熱して金属蒸発材料を蒸発させ、この蒸発した金属原子の焼結磁石表面への供給量を調節してこの金属原子を付着させ、この付着した金属原子を、焼結磁石表面に金属蒸発材料からなる薄膜が形成される前に焼結磁石の結晶粒界及び/または結晶粒界相に拡散させる処理(真空蒸気処理)を施すことが、本出願人により提案されている(国際出願PCT/JP2007/066272)。
上記真空蒸気処理によれば、当該処理後の永久磁石の表面状態が、処理前の状態と略同一であって別段の後工程を必要とせず、それに加えて、DyやTbを焼結磁石の結晶粒界及び/または結晶粒界相に拡散させて均一に行き渡っていることで、結晶粒界相にDy、Tbのリッチ相(Dy、Tbを5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyやTbが拡散し、その結果、磁化および保磁力が効果的に向上または回復した高性能磁石が得られる。 According to the above vacuum vapor treatment, the surface state of the permanent magnet after the treatment is substantially the same as the state before the treatment and does not require a separate post-process. In addition, Dy and Tb are added to the sintered magnet. Diffusion to crystal grain boundaries and / or grain boundary phases to spread uniformly, so that the grain boundary phase has a rich phase of Dy and Tb (phase containing Dy and Tb in the range of 5 to 80%). Furthermore, Dy and Tb diffuse only in the vicinity of the surface of the crystal grains, and as a result, a high-performance magnet having effectively improved or recovered magnetization and coercive force can be obtained.
然し、このような高性能磁石を得るには、数時間に及ぶ真空蒸気処理時間が必要となるため、量産性を高めるには、真空蒸気処理による上述の効果や処理箱に焼結磁石を収納する作業性が害されることなく、1個の処理箱内に数多くの焼結磁石が収納できるようにする(処理箱内での焼結磁石の積載量を高める)ことが求められる。 However, in order to obtain such a high-performance magnet, it takes several hours of vacuum steam processing time. To increase mass productivity, the above-mentioned effects of vacuum steam processing and the sintered magnets are stored in a processing box. It is required that a large number of sintered magnets can be accommodated in one processing box (increasing the stacking amount of sintered magnets in the processing box) without impairing the workability.
そこで、本発明は、上記点に鑑み、1個の処理箱内に多数の焼結磁石が作業性よく収納でき、その上、高性能磁石が得られる量産性の高い永久磁石の製造方法を提供することをその課題とする。 Therefore, in view of the above points, the present invention provides a method for producing a mass-produced permanent magnet that can accommodate a large number of sintered magnets in one processing box with good workability, and obtain a high-performance magnet. The task is to do.
上記課題を解決するために、本発明の永久磁石の製造方法は、処理箱内に、Dy及びTbの少なくとも一方を含む金属蒸発材料とリング磁石とを収納し、この処理箱を真空チャンバ内に設置した後、真空雰囲気にて当該処理箱を所定温度に加熱して金属蒸発材料を蒸発させて焼結磁石に付着させ、この付着したDy、Tbの金属原子を当該焼結磁石の結晶粒界及び/または結晶粒界相に拡散させる永久磁石の製造方法であって、線材を格子状に組付けた基台と縦横の線材が交差する箇所にそれぞれ立設した支持体とから構成される治具を有し、リング磁石の各々が各支持体にその上方から挿設され、リング磁石の各々が相互に接触しないように金属原子の通過を許容するスペーサーを配置して処理箱に収納するように構成したことを特徴とする。この場合、前記処理箱内に、リング磁石を設置した治具を、板状の金属蒸発材料を介して上下に積み重ねて収納することが好ましい。
In order to solve the above-described problems, a method for manufacturing a permanent magnet according to the present invention includes storing a metal evaporation material containing at least one of Dy and Tb and a ring magnet in a processing box, and placing the processing box in a vacuum chamber. After the installation, the processing box is heated to a predetermined temperature in a vacuum atmosphere to evaporate the metal evaporation material and attach it to the sintered magnet. The attached Dy and Tb metal atoms are separated from the crystal grain boundaries of the sintered magnet. And / or a method for producing a permanent magnet that diffuses into a grain boundary phase, comprising a base on which wires are assembled in a lattice shape and a support that is erected at the points where the vertical and horizontal wires cross each other. Each ring magnet is inserted into each support from above, and a spacer that allows the passage of metal atoms is arranged so that the ring magnets do not come into contact with each other. It is characterized by being configured to . In this case, it is preferable that the jig in which the ring magnet is installed is stacked and stored in the processing box with a plate-shaped metal evaporation material.
本発明によれば、処理箱の底面に金属蒸発材料を設置した後、リング磁石の各々が各支持体にその上方から挿設され、更に、その上方に所定の間隔を存して金属蒸発材料を設置する。そして、処理箱の上端部まで金属蒸発材料とリング磁石が設置された治具とを階層状に交互に積み重ねていく。これにより、1個の処理箱内に収納できるリング磁石の数を増加させることが可能になる(積載量を増加できる)。この場合、DyやTb原子を焼結磁石の結晶粒界及び/または結晶粒界相に拡散させて、磁化および保磁力を向上または回復させるという真空蒸気処理の効果が損なわれることはない。
According to the present invention, after the metal evaporating material is installed on the bottom surface of the processing box, each of the ring magnets is inserted into each support body from above, and further, there is a predetermined interval above the metal evaporating material. Is installed. And the metal evaporation material and the jig | tool with which the ring magnet was installed are alternately piled up hierarchically to the upper end part of a process box. This makes it possible to increase the number of ring magnets that can be stored in one processing box (the load capacity can be increased) . In this case, by diffusing Dy or Tb atoms to the grain boundaries and / or grain boundary phase of the sintered magnet, it will not be impaired the effect of the vacuum vapor process of magnetizing and improve or recover the coercive force.
本発明のおいては、前記金属蒸発材料として板状に形成したものを用いれば、スペーサーごと処理箱に収納することと相俟って、金属蒸発材料及び焼結磁石を処理箱に収納する作業性を一層向上できる。 In the present invention, if the metal evaporation material formed in a plate shape is used, the operation of storing the metal evaporation material and the sintered magnet in the processing box together with storing the spacer in the processing box. Can be further improved.
また、前記処理箱は、前記処理炉内に出入れ自在であって、上面が開口した箱部とこの開口した上面に着脱自在に装着される蓋部とから構成されたものであり、真空排気手段を作動させて前記真空チャンバを減圧するのに伴って処理箱内が減圧されることが好ましい。これにより、処理箱用に別個の真空排気手段は不要になり、装置構成を簡単にできてよい。また、真空チャンバの外側で焼結磁石と金属蒸発材料との収納ができてよい。 In addition, the processing box is configured to include a box part having an upper surface opened and a lid part detachably attached to the opened upper surface, the vacuum chamber being evacuated. It is preferable that the inside of the processing box is depressurized as the means is operated to depressurize the vacuum chamber. This eliminates the need for a separate evacuation unit for the processing box, and simplifies the apparatus configuration. Further, the sintered magnet and the metal evaporation material may be accommodated outside the vacuum chamber.
ところで、上記のように、処理箱内においてサンドイッチ構造で金属蒸発材料と焼結磁石とを上下に積み重ねると、金属蒸発材料と焼結磁石との間の間隔が狭くなる。このような状態で金属蒸発材料を蒸発させると、蒸発した金属原子の直進性の影響を強く受ける。つまり、焼結磁石のうち、金属蒸発材料と対向した面に金属原子が局所的に付着し易くなり、例えばスペーサーが細い線材を格子状に組付けて構成したものである場合、線材の影となる部分にDyやTbが供給され難くなる。このため、上記真空蒸気処理を施した永久磁石には局所的に保磁力の高い部分と低い部分とが存在し、その結果、減磁曲線の角型性が損なわれる。このような場合には、前記金属蒸発材料が蒸発している間において、前記真空チャンバ内に不活性ガスを導入すればよい。 By the way, as described above, when the metal evaporation material and the sintered magnet are stacked up and down in a sandwich structure in the processing box, the interval between the metal evaporation material and the sintered magnet becomes narrow. When the metal evaporation material is evaporated in such a state, it is strongly influenced by the straightness of the evaporated metal atoms. That is, among the sintered magnets, metal atoms easily adhere to the surface facing the metal evaporation material.For example, when the spacer is configured by assembling thin wires in a lattice shape, It becomes difficult to supply Dy and Tb to the part. For this reason, the permanent magnet subjected to the vacuum vapor treatment has a portion having a high coercive force and a portion having a low coercive force locally, and as a result, the squareness of the demagnetization curve is impaired. In such a case, an inert gas may be introduced into the vacuum chamber while the metal evaporation material is evaporating.
これにより、DyやTbの金属原子の平均自由行程が短いことから、不活性ガスにより処理箱内で蒸発した金属原子が拡散し、直接焼結磁石表面に付着する金属原子の量が減少すると共に、複数の方向から焼結磁石表面に供給されるようになり、当該焼結磁石と金属蒸発材料との間の間隔が狭い場合でも、線材の影となる部分まで蒸発したDyやTbが回り込んで付着する。その結果、DyやTbの金属原子が結晶粒内に過剰に拡散し、最大エネルギー積及び残留磁束密度を低下させることや局所的に保磁力の高い部分と低い部分とが存在することを抑制でき、減磁曲線の角型性が損なわれることを防止できる。 Thereby, since the mean free path of the metal atoms of Dy and Tb is short, the metal atoms evaporated in the processing box by the inert gas diffuse, and the amount of metal atoms directly attached to the surface of the sintered magnet is reduced. Even if the distance between the sintered magnet and the metal evaporation material is narrow, the evaporated Dy and Tb wrap around to the shadowed portion of the wire. Adhere with. As a result, metal atoms such as Dy and Tb can be prevented from excessively diffusing into the crystal grains, reducing the maximum energy product and residual magnetic flux density, and the presence of locally high and low coercivity portions. It is possible to prevent the squareness of the demagnetization curve from being damaged.
図1を参照して説明すれば、本実施の形態において、永久磁石Mは、所定形状に作製されたNd−Fe−B系の焼結磁石Sの表面に、金属蒸発材料vを蒸発させ、その蒸発した金属原子を付着させ、焼結磁石Sの結晶粒界及び/または結晶粒界相に拡散させて均一に行き渡らせる一連の処理(真空蒸気処理)を同時に行って作製される。 Referring to FIG. 1, in the present embodiment, the permanent magnet M evaporates the metal evaporation material v on the surface of the Nd—Fe—B sintered magnet S produced in a predetermined shape, A series of treatments (vacuum vapor treatment) are performed simultaneously by attaching the evaporated metal atoms and diffusing them to the crystal grain boundaries and / or crystal grain boundary phases of the sintered magnet S so as to spread uniformly.
出発材料であるNd−Fe−B系の焼結磁石Sは、次のように作製される。即ち、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm〜0.5mmの合金原料を先ず作製する。あるいは、遠心鋳造法で5〜10mm程度の厚さの合金原料を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。希土類元素の合計含有量を28.5%より多くし、α鉄が生成しないインゴットとする。 The Nd—Fe—B based sintered magnet S as a starting material is manufactured as follows. That is, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method. First, an alloy raw material of 05 mm to 0.5 mm is prepared. Alternatively, an alloy raw material having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, or the like may be added during blending. . The total content of rare earth elements is increased to more than 28.5%, and an ingot that does not produce α iron is obtained.
次いで、作製した合金原料を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径3〜10μmの合金原料粉末を得る。この合金原料粉末を、公知の圧縮成形機を用いて磁界中で所定形状に圧縮成形する。そして、圧縮成形機から取出した成形体を、図示省略した焼結炉内に収納し、真空中で所定温度(例えば、1050℃)で所定時間焼結(焼結工程)し、一次焼結体を得る。 Next, the produced alloy raw material is coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill fine pulverization step to obtain an alloy raw material powder having an average particle diameter of 3 to 10 μm. This alloy raw material powder is compression molded into a predetermined shape in a magnetic field using a known compression molding machine. Then, the molded body taken out from the compression molding machine is stored in a sintering furnace (not shown), and sintered (sintering process) for a predetermined time at a predetermined temperature (for example, 1050 ° C.) in a vacuum. Get.
次いで、作製した一次焼結体を、図示省略した真空熱処理炉内に収納し、真空雰囲気にて所定温度に加熱する。加熱温度は900℃以上で、焼結温度未満の温度に設定する。900℃より低い温度では、希土類元素の蒸発速度が遅く、また、焼結温度を超えると、異常粒成長が起こり、磁気特性が大きく低下する。また、炉内の圧力を10−3Pa以下の圧力に設定する。10−3Paより高い圧力では、希土類元素を効率よく蒸発させることができない。 Next, the produced primary sintered body is housed in a vacuum heat treatment furnace (not shown) and heated to a predetermined temperature in a vacuum atmosphere. The heating temperature is set to 900 ° C. or higher and lower than the sintering temperature. When the temperature is lower than 900 ° C., the evaporation rate of the rare earth element is slow, and when the sintering temperature is exceeded, abnormal grain growth occurs and the magnetic properties are greatly deteriorated. Moreover, the pressure in a furnace is set to the pressure of 10 < -3 > Pa or less. At pressures higher than 10 −3 Pa, the rare earth elements cannot be evaporated efficiently.
これにより、一定温度下での蒸気圧の相違により(例えば、1000℃において、Ndの蒸気圧は10−3Pa、Feの蒸気圧は10−5Pa、Bの蒸気圧は10−13Pa)、一次焼結体の希土類リッチ相中の希土類元素のみが蒸発する。その結果、Ndリッチ相の割合が減少して、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)が向上した焼結磁石Sが作製される。この場合、高性能な永久磁石Mを得るには、永久磁石Mの希土類元素の含有量を28.5wt%未満、または、希土類元素の平均濃度の減少量を0.5重量%以上となるまで加熱処理する。そして、このようにして得た焼結磁石Sに対し真空蒸気処理を施す。この真空蒸気処理を施す真空蒸気処理装置を図2を用いて以下に説明する。 Thereby, due to the difference in vapor pressure at a constant temperature (for example, at 1000 ° C., the vapor pressure of Nd is 10 −3 Pa, the vapor pressure of Fe is 10 −5 Pa, and the vapor pressure of B is 10 −13 Pa). Only the rare earth elements in the rare earth-rich phase of the primary sintered body evaporate. As a result, the ratio of the Nd-rich phase is reduced, and the sintered magnet S is produced in which the maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting magnetic characteristics are improved. In this case, in order to obtain a high-performance permanent magnet M, the rare earth element content of the permanent magnet M is less than 28.5 wt%, or the average concentration of the rare earth element is reduced to 0.5 wt% or more. Heat treatment. The sintered magnet S thus obtained is subjected to vacuum vapor treatment. A vacuum steam processing apparatus that performs this vacuum steam processing will be described below with reference to FIG.
真空蒸気処理装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段2を介して所定圧力(例えば1×10−5Pa)まで減圧して保持できる真空チャンバ3を有する。真空チャンバ3内には、後述する処理箱の周囲を囲う断熱材41とその内側に配置した発熱体42とから構成される加熱手段4が設けられる。断熱材41は、例えばMo製であり、また、発熱体42としては、Mo製のフィラメント(図示せず)を有する電気ヒータであり、図示省略した電源からフィラメントに通電し、抵抗加熱式で断熱材41により囲繞され処理箱が設置される空間5を加熱できる。この空間5には、例えばMo製の載置テーブル6が設けられ、少なくとも1個の処理箱7が載置できるようになっている。 The vacuum vapor processing apparatus 1 has a vacuum chamber 3 that can be held at a reduced pressure to a predetermined pressure (for example, 1 × 10 −5 Pa) via a vacuum exhaust means 2 such as a turbo molecular pump, a cryopump, or a diffusion pump. In the vacuum chamber 3, there is provided a heating means 4 composed of a heat insulating material 41 surrounding a processing box, which will be described later, and a heating element 42 arranged inside the heat insulating material 41. The heat insulating material 41 is made of, for example, Mo, and the heating element 42 is an electric heater having a filament (not shown) made of Mo. The filament is energized from a power supply (not shown) and is insulated by resistance heating. The space 5 surrounded by the material 41 and in which the processing box is installed can be heated. In this space 5, for example, a mounting table 6 made of Mo is provided, and at least one processing box 7 can be mounted.
処理箱7は、上面を開口した直方体形状の箱部71と、開口した箱部71の上面に着脱自在な蓋部72とから構成されている。蓋部72の外周縁部には下方に屈曲させたフランジ72aがその全周に亘って形成され、箱部71の上面に蓋部72を装着すると、フランジ72aが箱部71の外壁に嵌合して(この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ3と隔絶された処理室70が画成される。そして、真空排気手段2を作動させて真空チャンバ3を所定圧力(例えば、1×10−5Pa)まで減圧すると、処理室70が真空チャンバ3より略半桁高い圧力(例えば、5×10−4Pa)まで減圧される。これにより、付加的な真空排気手段を必要とすることなく、処理室70内を適宜所定の真空圧に減圧できる。 The processing box 7 includes a rectangular parallelepiped box portion 71 whose upper surface is opened and a lid portion 72 that is detachable from the upper surface of the opened box portion 71. A flange 72a bent downward is formed on the outer peripheral edge of the lid portion 72 over the entire circumference. When the lid portion 72 is attached to the upper surface of the box portion 71, the flange 72a is fitted to the outer wall of the box portion 71. Thus (in this case, a vacuum seal such as a metal seal is not provided), and a processing chamber 70 isolated from the vacuum chamber 3 is defined. Then, a predetermined pressure of the vacuum chamber 3 by actuating the evacuating means 2 (e.g., 1 × 10 -5 Pa) until the depressurizing substantially semi orders of magnitude higher pressure than the process chamber 70 is a vacuum chamber 3 (e.g., 5 × 10 - The pressure is reduced to 4 Pa). Thereby, the inside of the processing chamber 70 can be appropriately reduced to a predetermined vacuum pressure without the need for additional vacuum exhaust means.
図3に示すように、処理箱7の箱部71には、上記焼結磁石S及び金属蒸発材料vが相互に接触しないようにスペーサー8を介在させて上下に積み重ねて両者が収納される。スペーサー8は、箱部72の横断面より小さい面積となるように複数本の線材81(例えばφ0.1〜10mm)を格子状に組付けて構成したものであり、その外周縁部が略直角に上方に屈曲されている。この屈曲した箇所の高さは、真空蒸気処理すべき焼結磁石Sの高さより高く設定されており、本実施の形態においては、この屈曲した外周縁部が、上側に設置される金属蒸発材料vとの間で空間を確保する支持片9を構成する。そして、このスペーサー8の水平部分に複数個の焼結磁石Sが等間隔で並べて載置される。なお、焼結磁石のうち表面積が大きい部分が金属蒸発材料vと対向するように載置することが好ましい。 As shown in FIG. 3, in the box part 71 of the processing box 7, the sintered magnet S and the metal evaporation material v are stacked up and down with a spacer 8 interposed therebetween so that they are not in contact with each other. The spacer 8 is configured by assembling a plurality of wires 81 (for example, φ0.1 to 10 mm) in a lattice shape so as to have an area smaller than the cross section of the box portion 72, and the outer peripheral edge portion thereof is substantially perpendicular. Is bent upward. The height of the bent portion is set to be higher than the height of the sintered magnet S to be vacuum-steamed. In the present embodiment, the bent outer peripheral edge portion is a metal evaporation material installed on the upper side. The support piece 9 which secures space between v is comprised. A plurality of sintered magnets S are placed on the horizontal portion of the spacer 8 at regular intervals. In addition, it is preferable to mount so that a part with a large surface area among sintered magnets may oppose the metal evaporation material v.
ここで、金属蒸発材料vとしては、主相の結晶磁気異方性を大きく向上させるDy及びTbまたはこれらにNd、Pr、Al、Cu及びGa等の一層保磁力を高める金属を配合した合金(Dy及び/またはTbの質量比が50%以上)が用いられ、上記各金属を所定の混合割合で配合した後、例えばアーク溶解炉で溶解した後、所定の厚さの板状に形成されている。この場合、金属蒸発材料vは支持片9の全周で支持されるような面積を有する。 Here, as the metal evaporation material v, Dy and Tb that greatly improve the magnetocrystalline anisotropy of the main phase, or an alloy containing a metal that further enhances the coercive force such as Nd, Pr, Al, Cu, and Ga (see FIG. Dy and / or Tb mass ratio is 50% or more), and after the above metals are blended in a predetermined mixing ratio, for example, after being melted in an arc melting furnace, a plate having a predetermined thickness is formed. Yes. In this case, the metal evaporation material v has an area that is supported on the entire circumference of the support piece 9.
そして、箱部71の底面に板状の金属蒸発材料vを設置した後、その上側に、焼結磁石Sを並設したスペーサー8を載置し、さらに、支持片9の上端で支持されるように他の板状の金属蒸発材料vを設置する。このようにして、処理箱7の上端部まで金属蒸発材料vと焼結磁石Sの複数個が並置されたスペーサー8とを階層状に交互に積み重ねていく。尚、最上階のスペーサー8の上方においては、蓋部72が近接して位置するため、金属蒸発材料vを省略することもできる。 And after installing the plate-shaped metal evaporation material v in the bottom face of the box part 71, the spacer 8 which arranged the sintered magnet S in parallel is mounted in the upper side, and also it is supported by the upper end of the support piece 9. FIG. In this manner, another plate-like metal evaporation material v is installed. In this way, the metal evaporation material v and the spacer 8 in which a plurality of sintered magnets S are juxtaposed are alternately stacked in a hierarchical manner up to the upper end of the processing box 7. Note that the metal evaporating material v can be omitted because the lid portion 72 is located close to the uppermost spacer 8.
これにより、1個の処理箱7内に収納される焼結磁石Sの数を増加させて(積載量が増加する)、量産性を高めることができる。また、本実施の形態のように、スペーサー8(同一平面)に並置した焼結磁石Sの上下を板状の金属蒸発材料vで挟む所謂サンドイッチ構造としたため、処理室70内で全ての焼結磁石Sの近傍に金属蒸発材料vが位置し、当該金属蒸発材料vを蒸発させたときに、この蒸発させた金属原子が各焼結磁石S表面に供給されて付着するようになる。その結果、DyやTb原子を焼結磁石の結晶粒界及び/または結晶粒界相に拡散させて磁化および保磁力を向上または回復させるという真空蒸気処理の効果が損なわれることはない。それに加えて、スペーサー8と板状の金属蒸発材料vとを重ねて行くだけで、焼結磁石Sの直上に積み重ねられる金属蒸発材料vとの間に所定の空間が確保されて両者の相互の接触が防止でき、処理箱7に金属蒸発材料vと焼結磁石Sとを収納していくための作業性がよい。 Thereby, the number of the sintered magnets S accommodated in one processing box 7 can be increased (loading capacity increases), and mass productivity can be improved. Further, as in the present embodiment, since a so-called sandwich structure in which the upper and lower sides of the sintered magnet S juxtaposed on the spacer 8 (same plane) is sandwiched between the plate-like metal evaporation materials v, all the sintering is performed in the processing chamber 70. When the metal evaporation material v is located in the vicinity of the magnet S and the metal evaporation material v is evaporated, the evaporated metal atoms are supplied to and adhered to the surface of each sintered magnet S. As a result, the effect of the vacuum vapor treatment of improving or recovering the magnetization and coercive force by diffusing Dy and Tb atoms into the crystal grain boundaries and / or crystal grain boundary phases of the sintered magnet is not impaired. In addition, a predetermined space is secured between the spacer 8 and the plate-like metal evaporating material v and the metal evaporating material v stacked immediately above the sintered magnet S. Contact can be prevented, and workability for storing the metal evaporation material v and the sintered magnet S in the processing box 7 is good.
処理箱7やスペーサー8は、例えば、Mo、W、Nb、V、Taまたはこれらの合金(希土類添加型Mo合金、Ti添加型Mo合金などを含む)やCaO、Y2O3、或いは希土類酸化物から製作するか、またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成されていることが好ましい。これにより、DyやTbと反応してその表面に反応生成物が形成されることが防止できる。 The processing box 7 and the spacer 8 are, for example, Mo, W, Nb, V, Ta, or alloys thereof (including rare earth-added Mo alloys, Ti-added Mo alloys, etc.), CaO, Y 2 O 3 , or rare earth oxidation. It is preferable that the material is made of a material, or is formed by depositing these materials as a lining film on the surface of another heat insulating material. Thereby, it can prevent that the reaction product is formed on the surface by reacting with Dy and Tb.
また、上記のように、処理箱7内においてサンドイッチ構造で金属蒸発材料vと焼結磁石Sとを上下に積み重ねと、金属蒸発材料vと焼結磁石Sとの間の間隔が狭くなる。このような状態で金属蒸発材料vを蒸発させると、蒸発した金属原子の直進性の影響を強く受ける虞がある。つまり、焼結磁石Sのうち、金属蒸発材料vと対向した面に金属原子が局所的に付着し易くなり、また、焼結磁石Sのスペーサー8との当接面において線材81の影となる部分にDyやTbが供給され難くなる。このため、上記真空蒸気処理を施すと、得られた永久磁石Mには局所的に保磁力の高い部分と低い部分とが存在し、その結果、減磁曲線の角型性が損なわれる。 Further, as described above, when the metal evaporating material v and the sintered magnet S are stacked in the processing box 7 in a sandwich structure, the distance between the metal evaporating material v and the sintered magnet S is narrowed. If the metal evaporating material v is evaporated in such a state, there is a risk of being strongly influenced by the straightness of the evaporated metal atoms. That is, in the sintered magnet S, metal atoms are likely to locally adhere to the surface facing the metal evaporation material v, and the shadow of the wire 81 on the contact surface of the sintered magnet S with the spacer 8. It becomes difficult to supply Dy and Tb to the portion. For this reason, when the above-described vacuum vapor treatment is performed, the obtained permanent magnet M locally has a portion having a high coercive force and a portion having a low coercive force, and as a result, the squareness of the demagnetization curve is impaired.
本実施の形態においては、真空チャンバ3に不活性ガス導入手段を設けた。不活性ガス導入手段は、断熱材41で囲繞された空間5に通じるガス導入管10を有し、ガス導入管10が図示省略したマスフローコントローラを介して不活性ガスのガス源に連通している。そして、真空蒸気処理の間において、He、Ar、Ne、Kr、N2等の不活性ガスを一定量で導入するようにした。この場合、真空蒸気処理中に不活性ガスの導入量を変化させるようにしてもよい(当初に不活性ガスの導入量を多くし、その後に少なくしたり若しくは当初に不活性ガスの導入量を少なくし、その後に多くしたり、または、これらを繰り返す)。不活性ガスは、例えば、金属蒸発材料vが蒸発を開始後や設定された加熱温度に達した後に導入され、設定された真空蒸気処理時間の間またはその前後の所定時間だけ導入すればよい。また、不活性ガスを導入したとき、真空チャンバ3内の不活性ガスの分圧が調節できるように、真空排気手段2に通じる排気管に開閉度が調節自在なバルブ11を設けておくことが好ましい。 In the present embodiment, an inert gas introducing means is provided in the vacuum chamber 3. The inert gas introduction means has a gas introduction pipe 10 that leads to a space 5 surrounded by a heat insulating material 41, and the gas introduction pipe 10 communicates with a gas source of an inert gas via a mass flow controller (not shown). . During the vacuum vapor treatment, an inert gas such as He, Ar, Ne, Kr, N2 or the like is introduced in a constant amount. In this case, the introduction amount of the inert gas may be changed during the vacuum steam treatment (initially, the introduction amount of the inert gas is increased and then decreased or the introduction amount of the inert gas is initially reduced. Less, then more, or repeat these). The inert gas may be introduced, for example, after the metal evaporating material v starts evaporation or after reaching a set heating temperature, and may be introduced for a predetermined time during or around the set vacuum vapor processing time. In addition, when the inert gas is introduced, a valve 11 whose degree of opening and closing can be adjusted is provided in the exhaust pipe leading to the vacuum exhaust means 2 so that the partial pressure of the inert gas in the vacuum chamber 3 can be adjusted. preferable.
これにより、空間5に導入された不活性ガスが処理箱7内にも導入され、このとき、DyやTbの金属原子の平均自由行程が短いことから、不活性ガスにより処理箱7内で蒸発した金属原子が拡散し、直接焼結磁石S表面に付着する金属原子の量が減少すると共に、複数の方向から焼結磁石S表面に供給されるようになる。このため、当該焼結磁石Sと金属蒸発材料vとの間の間隔が狭い場合(例えば5mm以下)でも、線材81の影となる部分まで蒸発したDyやTbが回り込んで付着する。その結果、DyやTbの金属原子が結晶粒内に過剰に拡散し、最大エネルギー積及び残留磁束密度を低下させることを防止できる。さらに、局所的に保磁力の高い部分と低い部分とが存在することが抑制でき、減磁曲線の角型性が損なわれることを防止できる。 As a result, the inert gas introduced into the space 5 is also introduced into the processing box 7. At this time, since the mean free path of the metal atoms of Dy and Tb is short, the inert gas evaporates in the processing box 7. The metal atoms diffused and the amount of metal atoms adhering directly to the surface of the sintered magnet S is reduced and supplied to the surface of the sintered magnet S from a plurality of directions. For this reason, even when the space | interval between the said sintered magnet S and the metal evaporation material v is narrow (for example, 5 mm or less), evaporated Dy and Tb wrap around and adhere to the shadow part of the wire 81. As a result, it is possible to prevent the metal atoms of Dy and Tb from being excessively diffused in the crystal grains and reducing the maximum energy product and the residual magnetic flux density. Furthermore, it can suppress that a part with a high coercive force exists locally and a low part, and can prevent that the squareness of a demagnetization curve is impaired.
尚、上記実施の形態では、複数本の線材81を格子状に組付けてスペーサー8を構成した場合を例に説明したが、蒸発した金属原子の通過を許容するものであれば特に限定されない。例えば、MoやNb製の板材に所定の間隔をおいて矩形の打ち抜き孔を列設し、当該板材を引き伸ばして形成されるエキスパンドメタルでスペーサー8を構成することができる。エキスパンドメタルは、強度を考慮して板材の表面積に対する開口率が30〜80%となるように形成すればよい。 In the above embodiment, the case where the spacer 8 is configured by assembling a plurality of wires 81 in a lattice shape has been described as an example. However, the embodiment is not particularly limited as long as it allows passage of evaporated metal atoms. For example, the spacer 8 can be made of expanded metal formed by arranging rectangular punched holes at predetermined intervals on a plate material made of Mo or Nb and stretching the plate material. The expanded metal may be formed so that the opening ratio with respect to the surface area of the plate is 30 to 80% in consideration of strength.
これにより、例えばNb製でかつ約60%の開口率でエキスパンドメタルたるスペーサー8を形成した場合、略同一の開口率でMo製線材を格子状に組付けてスペーサー8を構成した場合と比較して、その重量を略半分にできる。その結果、処理箱7内にスペーサー8を介在させて同数の焼結磁石Sと板状の金属蒸発材料vとを上下に重ねて収納したときに、重量が大幅に減少して熱容量が減少し、真空蒸気処理温度までの昇温速度や真空蒸気処理後の真空チャンバ3、ひいては磁石の冷却速度を速くできるため、サイクル時間を短くできる。 Thus, for example, when the spacer 8 that is an expanded metal made of Nb and having an opening ratio of about 60% is formed, it is compared with the case where the spacer 8 is configured by assembling Mo wire rods in a lattice shape with substantially the same opening ratio. The weight can be halved. As a result, when the same number of sintered magnets S and the plate-like metal evaporating material v are stacked one above the other with the spacers 8 interposed in the processing box 7, the weight is greatly reduced and the heat capacity is reduced. The cycle time can be shortened because the rate of temperature rise to the vacuum vapor treatment temperature, the vacuum chamber 3 after the vacuum vapor treatment, and the cooling rate of the magnet can be increased.
また、本実施の形態では、スペーサー8に支持片9を一体形成した場合を例に説明したが、支持片9は、他の部材で構成してもよく、スペーサー8に立設する位置も問われない。また、金属蒸発材料vとして板状に形成したものを例に説明したが、これに限定されるものではなく、スペーサー部材上に載置された焼結磁石上面に、線材を格子状に組付けた他のスペーサーを載置し、このスペーサー上に粒状の金属蒸発材料を敷きつめるようにしてもよい(図4参照)。さらに、支持片9を用いるものを例に説明したが、支持片9を用いることなく、両者を積み重ねるようにしてもよい。即ち、板状の金属蒸発材料v上に、線材を格子状に組付けて構成したスペーサー8を設置した後、当該スペーサー8に複数個の焼結磁石Sを並置し、その上に、同一構成を有する他のスペーサー8を設置し、さらにその上に板状の金属蒸発材料vを設置する。そして、このようにして、処理箱7の上端部まで積み重ねていく(図5参照)。これにより、処理箱7への焼結磁石Sの積載量をさらに多くできる。 Further, in the present embodiment, the case where the support piece 9 is integrally formed with the spacer 8 has been described as an example. However, the support piece 9 may be formed of other members, and the position where the support piece 9 is erected on the spacer 8 is not limited. I will not. In addition, the metal evaporating material v has been described as an example of a plate-like material, but the present invention is not limited to this, and the wire is assembled in a lattice shape on the upper surface of the sintered magnet placed on the spacer member. Alternatively, another spacer may be placed and a granular metal evaporation material may be spread on the spacer (see FIG. 4). Furthermore, although what used the support piece 9 was demonstrated to the example, you may make it stack both, without using the support piece 9. FIG. That is, after a spacer 8 configured by assembling a wire rod in a lattice shape is installed on a plate-shaped metal evaporation material v, a plurality of sintered magnets S are juxtaposed on the spacer 8 and the same configuration is formed thereon. Another spacer 8 having the above is installed, and a plate-shaped metal evaporation material v is further installed thereon. And it accumulates to the upper end part of the process box 7 in this way (refer FIG. 5). Thereby, the loading amount of the sintered magnet S to the processing box 7 can be further increased.
さらに、本実施の形態では、焼結磁石Sの略全面に蒸発した金属原子が供給されるように焼結磁石Sと金属蒸発材料vとを処理箱7に収納する場合を例に説明したが、焼結磁石Sの逆磁界がかかる特定の面にのみ真空蒸気処理を施せばよい場合がある。即ち、モータを構成する回転軸とステータコアとの間に設られ、全体として筒体をなすように配置されるセグメント磁石(焼結磁石)S1ではその外周面のみ保磁力を高くすればよい場合がある。このような場合、金属蒸発材料vたるDyやTbは資源的に乏しいことから、その外周面にのみ金属原子が供給されるようにする必要がある。 Further, in the present embodiment, the case where the sintered magnet S and the metal evaporation material v are stored in the processing box 7 so as to supply evaporated metal atoms to substantially the entire surface of the sintered magnet S has been described as an example. In some cases, vacuum steam treatment may be performed only on a specific surface to which the reverse magnetic field of the sintered magnet S is applied. That is, in the segment magnet (sintered magnet) S1 provided between the rotating shaft constituting the motor and the stator core and arranged so as to form a cylindrical body as a whole, there is a case where the coercive force only needs to be increased only on the outer peripheral surface thereof. is there. In such a case, Dy and Tb, which are metal evaporation materials v, are scarce in terms of resources, so it is necessary to supply metal atoms only to the outer peripheral surface thereof.
そこで、図6及び図7に示すように、金属蒸発材料vとセグメント磁石S1とが相互に接触しないようにスペーサーを介在させて上下方向で交互に積み重ねていくとき、セグメント磁石S1内面側に位置するスぺーサー12aを板材から構成し、セグメント磁石S1外周面に当接するスペーサー12bを上記実施の形態と同様に金属原子の通過を許容するものから構成しておけばよい。これにより、金属蒸発材料vと焼結磁石Sとの相互接触を防止する一方のスペーサー12aが、焼結磁石Sの片面への金属原子の付着を防止するマスクとしての役割を果たす。その結果、必要な面にのみ金属原子が供給できる構成を簡単に実現でき、その上、別個のマスク等の部品が不要になって積載量も多くできる。 Therefore, as shown in FIGS. 6 and 7, when the metal evaporating material v and the segment magnet S1 are alternately stacked in the vertical direction with spacers interposed therebetween so that they do not contact each other, they are positioned on the inner surface side of the segment magnet S1. The spacer 12a to be formed may be made of a plate material, and the spacer 12b in contact with the outer peripheral surface of the segment magnet S1 may be made of a material that allows the passage of metal atoms as in the above embodiment. Thereby, one spacer 12a that prevents mutual contact between the metal evaporation material v and the sintered magnet S serves as a mask that prevents adhesion of metal atoms to one surface of the sintered magnet S. As a result, it is possible to easily realize a configuration in which metal atoms can be supplied only to a necessary surface, and further, parts such as a separate mask are not required, and the load can be increased.
他方、ラジアル異方性リング磁石や極異方性リング磁石などのリンク形状の磁石(リング磁石)S2においてその外周面を極として着磁して使用するためにその外周面のみ保磁力を高くするような場合には、図8に示すように、Mo製の線材13aを格子状に組付けた基台と縦横の線材13aが交差する箇所にそれぞれ立設した中実円筒形状の支持体13bとから構成される治具13を用いればよい。そして、リング磁石S2の内径より小さい径の各支持体13bにリング磁石S2をその上方から挿設すると共に、リング磁石S2の外周面が相互に接触しないように金属原子の通過を許容する他のスペーサー14を配置して処理箱7の収納する。この場合、処理箱7内で、上記のようにリング磁石S2を設置した治具13を上記と同じ構成のスペーサー8を介して上下に積み重ねるようにしてもよい。 On the other hand, in a link-shaped magnet (ring magnet) S2, such as a radial anisotropic ring magnet or a polar anisotropic ring magnet, the outer peripheral surface is magnetized and used as a pole, so that only the outer peripheral surface has a high coercive force. In such a case, as shown in FIG. 8, a solid cylindrical support 13b erected at a location where a base in which a wire 13a made of Mo is assembled in a grid and a vertical and horizontal wire 13a intersect with each other, and What is necessary is just to use the jig | tool 13 comprised from these. Then, the ring magnet S2 is inserted into each support 13b having a diameter smaller than the inner diameter of the ring magnet S2 from above, and other metal atoms are allowed to pass so that the outer peripheral surfaces of the ring magnet S2 do not contact each other. Spacers 14 are arranged to accommodate the processing box 7. In this case, the jig 13 in which the ring magnet S2 is installed as described above may be stacked vertically in the processing box 7 via the spacer 8 having the same configuration as described above.
また、図9に示すように、リング磁石S2をその外周面がスぺーサー8に当接するように並設し、この並設した各リング磁石S2の内側に、リング磁石S2の内径より小さい径の中実円筒形状の内挿体15を挿設して配置するようにしてもよい。そして、上記と同様に、金属蒸発材料v、スペーサー8、リング磁石S2、スぺーサー8及び金属蒸発材料vの順序で上下に積み重ねて処理箱7に収納する。この場合、スペーサー8が、焼結磁石の片面たるリング磁石S2外周面への金属の通過を許容するものとなる一方、内挿体15が、焼結磁石Sの他面たる各リング磁石S内周面への金属原子の付着を防止するマスクとしての役割を果たす。 Further, as shown in FIG. 9, the ring magnets S2 are arranged in parallel so that the outer peripheral surface thereof abuts against the spacer 8, and the inner diameter of each of the arranged ring magnets S2 is smaller than the inner diameter of the ring magnet S2. A solid cylindrical insert 15 may be inserted and arranged. In the same manner as described above, the metal evaporating material v, the spacer 8, the ring magnet S2, the spacer 8, and the metal evaporating material v are stacked up and down and stored in the processing box 7. In this case, the spacer 8 allows the metal to pass to the outer peripheral surface of the ring magnet S2 which is one side of the sintered magnet, while the insert 15 is in each ring magnet S which is the other surface of the sintered magnet S. It plays the role of a mask that prevents adhesion of metal atoms to the peripheral surface.
次に、上記真空蒸気処理装置1を用い、金属蒸発材料vとしてDyを用いた真空蒸気処理について説明する。上述したように焼結磁石Sと板状の金属蒸発材料vとをスペーサー8を介して交互に積み重ねて箱部71に両者を先ず設置する(これにより、処理室70内で焼結磁石Sと金属蒸発材料vとが離間して配置される)。そして、箱部71の開口した上面に蓋部72を装着した後、真空チャンバ3内で加熱手段4によって囲繞された空間5内でテーブル6上に処理箱7を設置する(図1参照)。真空排気手段2を介して真空チャンバ3を所定圧力(例えば、1×10−4Pa)に達するまで真空排気して減圧し、(処理室70は略半桁高い圧力まで真空排気される)、真空チャンバ3が所定圧力に達すると、加熱手段4を作動させて処理室70を加熱する。 Next, vacuum vapor processing using the vacuum vapor processing apparatus 1 and using Dy as the metal evaporation material v will be described. As described above, the sintered magnet S and the plate-like metal evaporating material v are alternately stacked via the spacers 8 and are first installed in the box portion 71 (thereby, the sintered magnet S and the inside of the processing chamber 70). The metal evaporating material v is spaced apart). And after attaching the cover part 72 to the upper surface which the box part 71 opened, the process box 7 is installed on the table 6 in the space 5 enclosed by the heating means 4 in the vacuum chamber 3 (refer FIG. 1). The vacuum chamber 3 is evacuated and depressurized until it reaches a predetermined pressure (for example, 1 × 10 −4 Pa) via the vacuum evacuation means 2 (the processing chamber 70 is evacuated to a pressure approximately half digit higher), When the vacuum chamber 3 reaches a predetermined pressure, the heating means 4 is operated to heat the processing chamber 70.
減圧下で処理室70内の温度が所定温度に達すると、処理室70のDyが、処理室70と略同温まで加熱されて蒸発を開始し、処理室70内にDy蒸気雰囲気が形成される。その際、ガス導入手段を作動させて一定の導入量で真空チャンバ3内に不活性ガスを導入する。このとき、不活性ガスが処理箱7内にも導入され、当該不活性ガスにより処理室70内で蒸発した金属原子が拡散される。 When the temperature in the processing chamber 70 reaches a predetermined temperature under reduced pressure, the Dy in the processing chamber 70 is heated to substantially the same temperature as the processing chamber 70 to start evaporation, and a Dy vapor atmosphere is formed in the processing chamber 70. The At that time, the gas introduction means is operated to introduce the inert gas into the vacuum chamber 3 with a constant introduction amount. At this time, an inert gas is also introduced into the processing box 7, and the metal atoms evaporated in the processing chamber 70 are diffused by the inert gas.
Dyが蒸発を開始した場合、焼結磁石SとDyとを相互に接触しないように配置されているため、溶けたDyが、表面Ndリッチ相が溶けた焼結磁石Sに直接付着することはない。そして、処理箱内で拡散されたDy蒸気雰囲気中のDy原子が、直接または衝突を繰返して複数の方向から、Dyと略同温まで加熱された焼結磁石S表面略全体に向かって供給されて付着し、この付着したDyが焼結磁石Sの結晶粒界及び/または結晶粒界相に拡散されて永久磁石Mが得られる。 When Dy starts to evaporate, the sintered magnets S and Dy are arranged so as not to contact each other, so that the melted Dy directly adheres to the sintered magnet S in which the surface Nd-rich phase is melted. Absent. Then, the Dy atoms in the Dy vapor atmosphere diffused in the processing box are supplied from a plurality of directions, directly or repeatedly, toward the substantially entire surface of the sintered magnet S heated to substantially the same temperature as Dy. The adhered Dy is diffused into the crystal grain boundaries and / or crystal grain boundary phases of the sintered magnet S to obtain the permanent magnet M.
ここで、Dy層(薄膜)が形成されるように、Dy蒸気雰囲気中のDy原子が焼結磁石Sの表面に供給されると、焼結磁石S表面で付着して堆積したDyが再結晶したとき、永久磁石M表面を著しく劣化させ(表面粗さが悪くなる)、また、処理中に略同温まで加熱されている焼結磁石S表面に付着して堆積したDyが溶解して焼結磁石S表面に近い領域における粒界内に過剰に拡散し、磁気特性を効果的に向上または回復させることができない。 Here, when Dy atoms in the Dy vapor atmosphere are supplied to the surface of the sintered magnet S so that a Dy layer (thin film) is formed, the Dy adhered and deposited on the surface of the sintered magnet S is recrystallized. When this occurs, the surface of the permanent magnet M is remarkably deteriorated (surface roughness is deteriorated), and Dy deposited and deposited on the surface of the sintered magnet S heated to substantially the same temperature during the treatment is dissolved and baked. It diffuses excessively in the grain boundary in the region close to the surface of the magnet S, and the magnetic properties cannot be improved or recovered effectively.
つまり、焼結磁石S表面にDyの薄膜が一度形成されると、薄膜に隣接した焼結磁石表面Sの平均組成はDyリッチ組成となり、Dyリッチ組成になると、液相温度が下がり、焼結磁石S表面が溶けるようになる(即ち、主相が溶けて液相の量が増加する)。その結果、焼結磁石S表面付近が溶けて崩れ、凹凸が増加することとなる。その上、Dyが多量の液相と共に結晶粒内に過剰に侵入し、磁気特性を示す最大エネルギー積及び残留磁束密度がさらに低下する。 That is, once a Dy thin film is formed on the surface of the sintered magnet S, the average composition of the sintered magnet surface S adjacent to the thin film becomes a Dy rich composition. The surface of the magnet S is melted (that is, the main phase is melted and the amount of the liquid phase is increased). As a result, the vicinity of the surface of the sintered magnet S melts and collapses, and the unevenness increases. In addition, Dy excessively penetrates into the crystal grains together with a large amount of liquid phase, and the maximum energy product and the residual magnetic flux density showing the magnetic characteristics are further lowered.
本実施の形態では、金属蒸発材料vがDyであるとき、このDyの蒸発量をコントロールするため、加熱手段4を制御して処理室70内の温度を800℃〜1050℃、好ましくは850℃〜950℃の範囲に設定することとした(例えば、処理室内温度が900℃〜1000℃のとき、Dyの飽和蒸気圧は約1×10−2〜1×10−1Paとなる)。 In the present embodiment, when the metal evaporation material v is Dy, in order to control the evaporation amount of Dy, the heating means 4 is controlled so that the temperature in the processing chamber 70 is 800 ° C. to 1050 ° C., preferably 850 ° C. It was decided to set in the range of ˜950 ° C. (for example, when the processing chamber temperature is 900 ° C. to 1000 ° C., the saturated vapor pressure of Dy is about 1 × 10 −2 to 1 × 10 −1 Pa).
処理室70内の温度(ひいては、焼結磁石Sの加熱温度)が800℃より低いと、焼結磁石S表面に付着したDy原子の結晶粒界及び/または結晶粒界層への拡散速度が遅くなり、焼結磁石S表面に薄膜が形成される前に焼結磁石の結晶粒界及び/または結晶粒界相に拡散させて均一に行き渡らせることができない。他方、1050℃を超えた温度では、Dyの蒸気圧が高くなって蒸気雰囲気中のDy原子が焼結磁石S表面に過剰に供給される虞がある。また、Dyが結晶粒内に拡散する虞があり、Dyが結晶粒内に拡散すると、結晶粒内の磁化を大きく下げるため、最大エネルギー積及び残留磁束密度がさらに低下することになる。それに併せて、バルブ11の開閉度を変化させて、真空チャンバ3内の導入した不活性ガスの分圧が3Pa〜50000Paとなるようにした。3Paより低い圧力では、DyやTbが局所的に焼結磁石Sに付着し、減磁曲線の角型性が悪化する。また、50000Paを超えた圧力では、金属蒸発材料vの蒸発が抑制されてしまい、処理時間が過剰に長くなる。 When the temperature in the processing chamber 70 (and thus the heating temperature of the sintered magnet S) is lower than 800 ° C., the diffusion rate of Dy atoms adhering to the surface of the sintered magnet S to the grain boundaries and / or grain boundary layers is increased. It becomes slow and cannot be uniformly distributed by diffusing into the crystal grain boundary and / or the grain boundary phase of the sintered magnet before the thin film is formed on the surface of the sintered magnet S. On the other hand, at a temperature exceeding 1050 ° C., the vapor pressure of Dy increases, and there is a risk that Dy atoms in the vapor atmosphere are excessively supplied to the surface of the sintered magnet S. Further, there is a possibility that Dy diffuses into the crystal grains, and when Dy diffuses into the crystal grains, the magnetization in the crystal grains is greatly reduced, so that the maximum energy product and the residual magnetic flux density are further lowered. At the same time, the degree of opening and closing of the valve 11 was changed so that the partial pressure of the inert gas introduced into the vacuum chamber 3 was 3 Pa to 50000 Pa. At a pressure lower than 3 Pa, Dy and Tb are locally attached to the sintered magnet S, and the squareness of the demagnetization curve is deteriorated. Further, at a pressure exceeding 50000 Pa, the evaporation of the metal evaporation material v is suppressed, and the processing time becomes excessively long.
これにより、Arなどの不活性ガスの分圧を調節してDyの蒸発量をコントロールし、当該不活性ガスの導入によって蒸発したDy原子を処理箱内で拡散させることで、焼結磁石SへのDy原子の供給量を抑制しながらその表面全体にDy原子を付着させることと、焼結磁石Sを所定温度範囲で加熱することによって拡散速度が早くなることとが相俟って、焼結磁石S表面に付着したDy原子を、焼結磁石S表面で堆積してDy層(薄膜)を形成する前に焼結磁石Sの結晶粒界及び/または結晶粒界相に効率よく拡散させて均一に行き渡らせることができる(図1参照)。その結果、永久磁石M表面が劣化することが防止され、また、焼結磁石表面に近い領域の粒界内にDyが過剰に拡散することが抑制され、結晶粒界相にDyリッチ相(Dyを5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyが拡散することで、磁化および保磁力が効果的に向上または回復し、その上、仕上げ加工が不要な生産性に優れた永久磁石Mが得られる。 Thereby, the partial pressure of the inert gas such as Ar is adjusted to control the evaporation amount of Dy, and the Dy atoms evaporated by the introduction of the inert gas are diffused in the processing box, so that the sintered magnet S can be diffused. Sintering of Dy atoms on the entire surface while suppressing the supply amount of Dy atoms and heating the sintered magnet S in a predetermined temperature range increases the diffusion rate, thereby sintering. Dy atoms adhering to the surface of the magnet S are efficiently diffused to the grain boundaries and / or grain boundary phases of the sintered magnet S before being deposited on the surface of the sintered magnet S to form a Dy layer (thin film). It can be evenly distributed (see FIG. 1). As a result, it is possible to prevent the surface of the permanent magnet M from being deteriorated, to suppress excessive diffusion of Dy into the grain boundary in the region close to the surface of the sintered magnet, and to form a Dy rich phase (Dy) in the grain boundary phase. In addition, the diffusion and diffusion of Dy only in the vicinity of the surface of the crystal grains effectively improves or recovers the magnetization and the coercive force. A permanent magnet M excellent in unnecessary productivity can be obtained.
それに加えて、当該処理箱7内で蒸発した金属原子が拡散されて存在し、焼結磁石Sが、細い線材81を格子状に組付けたスペーサー8に載置され、当該焼結磁石Sと金属蒸発材料vとの間の間隔が狭い場合でも、線材81の影となる部分まで蒸発したDyやTbが回り込んで付着する。その結果、局所的に保磁力の高い部分と低い部分とが存在することが抑制でき、焼結磁石に上記真空蒸気処理を施しても減磁曲線の角型性が損なわれることを防止でき、高い量産性を達成できる。 In addition, the metal atoms evaporated in the processing box 7 are diffused and present, and the sintered magnet S is placed on a spacer 8 in which thin wires 81 are assembled in a lattice shape. Even when the distance from the metal evaporation material v is narrow, the evaporated Dy and Tb wrap around and adhere to the shadowed portion of the wire 81. As a result, it is possible to suppress the presence of locally high and low coercivity portions and prevent the squareness of the demagnetization curve from being impaired even if the vacuum vapor treatment is applied to the sintered magnet. High mass productivity can be achieved.
最後に、上記処理を所定時間(例えば、4〜48時間)だけ実施した後、加熱手段4の作動を停止させると共に、ガス導入手段による不活性ガスの導入を一旦停止する。引き続き、不活性ガスを再度導入し(100kPa)、金属蒸発材料vの蒸発を停止させる。なお、不活性ガスの導入を停止せず、その導入量のみを増加させて蒸発を停止させるようにしてもよい。そして、処理室70内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段4を再度作動させ、処理室70内の温度を450℃〜650℃の範囲に設定し、一層保磁力を向上または回復させるために、熱処理を施す。そして、略室温まで急冷し、処理箱7を真空チャンバ3から取り出す。 Finally, after performing the above process for a predetermined time (for example, 4 to 48 hours), the operation of the heating unit 4 is stopped and the introduction of the inert gas by the gas introduction unit is temporarily stopped. Subsequently, an inert gas is again introduced (100 kPa), and evaporation of the metal evaporation material v is stopped. Note that the evaporation may be stopped by increasing only the introduction amount without stopping the introduction of the inert gas. Then, the temperature in the processing chamber 70 is temporarily lowered to 500 ° C., for example. Subsequently, the heating means 4 is operated again, the temperature in the processing chamber 70 is set in the range of 450 ° C. to 650 ° C., and heat treatment is performed to further improve or recover the coercive force. Then, it is rapidly cooled to approximately room temperature, and the processing box 7 is taken out from the vacuum chamber 3.
本実施の形態では、金属蒸発材料としてDyを用いるものを例として説明したが、最適な拡散速度を早くできる焼結磁石Sの加熱温度範囲で蒸気圧が低いTbを用いた場合、処理室70を900℃〜1150℃の範囲で加熱すればよい。900℃より低い温度では、焼結磁石S表面にTb原子を供給できる蒸気圧に達しない。他方、1150℃を超えた温度では、Tbが結晶粒内に過剰に拡散してしまい、最大エネルギー積及び残留磁束密度を低下させる。 In this embodiment, the example using Dy as the metal evaporation material has been described as an example. However, when Tb having a low vapor pressure is used in the heating temperature range of the sintered magnet S that can increase the optimum diffusion rate, the processing chamber 70 is used. May be heated in the range of 900 ° C to 1150 ° C. At a temperature lower than 900 ° C., the vapor pressure that can supply Tb atoms to the surface of the sintered magnet S is not reached. On the other hand, at a temperature exceeding 1150 ° C., Tb is excessively diffused in the crystal grains, thereby reducing the maximum energy product and the residual magnetic flux density.
また、DyやTbを結晶粒界及び/または結晶粒界相に拡散させる前に焼結磁石S表面に吸着した汚れ、ガスや水分を除去するために、真空排気手段11を介して真空チャンバ3を所定圧力(例えば、1×10−5Pa)まで減圧し、処理室70が真空チャンバ3より略半桁高い圧力(例えば、5×10−4Pa)まで減圧した後、所定時間保持するようにしてもよい。その際、加熱手段4を作動させて処理室70内を例えば300℃に加熱し、所定時間保持するようにしてもよい。 Further, in order to remove dirt, gas and moisture adsorbed on the surface of the sintered magnet S before diffusing Dy and Tb to the crystal grain boundaries and / or crystal grain boundary phases, the vacuum chamber 3 is provided via the vacuum exhaust means 11. Is reduced to a predetermined pressure (for example, 1 × 10 −5 Pa), and the processing chamber 70 is decreased to a pressure (for example, 5 × 10 −4 Pa) approximately half an order higher than that of the vacuum chamber 3 and then held for a predetermined time. It may be. At that time, the heating means 4 may be operated to heat the inside of the processing chamber 70 to, for example, 300 ° C. and hold it for a predetermined time.
さらに、本実施の形態では、箱部71の上面に蓋部72を装着して処理箱7を構成するものについて説明したが、真空チャンバ3と隔絶されかつ真空チャンバ3を減圧するのに伴って処理室70が減圧されるものであれば、これに限定されるものではなく、例えば、箱部71に金属蒸発材料vと焼結磁石Sを収納した後、その上面開口を例えばMo製の箔で覆うようにしてもよい。他方、例えば、真空チャンバ3内で処理室70を密閉できるようにし、真空チャンバ3とは独立して所定圧力に保持できるように構成してもよい。 Further, in the present embodiment, the description has been given of the case in which the lid 72 is attached to the upper surface of the box portion 71 to constitute the processing box 7, but the processing chamber 7 is isolated from the vacuum chamber 3 and the vacuum chamber 3 is decompressed. For example, after the metal evaporation material v and the sintered magnet S are accommodated in the box portion 71, the upper surface opening thereof is made of, for example, a Mo foil. You may make it cover with. On the other hand, for example, the processing chamber 70 may be sealed in the vacuum chamber 3 and may be configured to be maintained at a predetermined pressure independently of the vacuum chamber 3.
尚、焼結磁石Sとしては、酸素含有量が少ない程、DyやTbの結晶粒界及び/または結晶粒界相への拡散速度が早くなるため、焼結磁石S自体の酸素含有量が3000ppm以下、好ましくは2000ppm以下、より好ましくは1000ppm以下であればよい。 As the sintered magnet S, the smaller the oxygen content, the faster the diffusion rate of Dy and Tb to the crystal grain boundaries and / or the crystal grain boundary phases, so the oxygen content of the sintered magnet S itself is 3000 ppm. Hereinafter, it is preferably 2000 ppm or less, more preferably 1000 ppm or less.
実施例1では、図2に示す真空蒸気処理装置1を用い、次の焼結磁石Sに真空蒸気処理を施して永久磁石Mを得た。焼結磁石Sとしては、工業用純鉄、金属ネオジウム、低炭素フェロボロン、電解コバルト、純銅を原料として、配合組成(重量%)で、
25Nd−7Pr−1B−0.05Cu−0.05Ga−0.05Zr−Bal.Fe(試料1)、
7Nd−25Pr−1B−0.03Cu−0.3Al−0.1Nb−Bal.Fe(試料2)、
28Nd−1B−0.05Cu−0.01Ga−0.02Zr−Bal.Fe(試料3)、
27Nd−2Dy−1B−0.05Cu−0.05Al−0.05Nb−Bal.Fe(試料4)、
29Nd−0.95B−0.01Cu−0.02V−0.02Zr−Bal.Fe(試料5)、
32Nd−1.1B−0.03Cu−0.02V−0.02Nb−Bal.Fe(試料6)、
32Nd−1.1B−0.03Cu−0.02V−0.02Nb−Bal.Fe(試料7)、
となるようにして、真空誘導溶解を行い、ストリップキャスティング法で厚さ約0.3mmの薄片状インゴットを得た。次に、水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得た。
In Example 1, a permanent magnet M was obtained by subjecting the next sintered magnet S to vacuum vapor treatment using the vacuum vapor treatment apparatus 1 shown in FIG. As the sintered magnet S, industrial pure iron, metallic neodymium, low carbon ferroboron, electrolytic cobalt, pure copper as a raw material, with a composition (weight%),
25Nd-7Pr-1B-0.05Cu-0.05Ga-0.05Zr-Bal. Fe (sample 1),
7Nd-25Pr-1B-0.03Cu-0.3Al-0.1Nb-Bal. Fe (sample 2),
28Nd-1B-0.05Cu-0.01Ga-0.02Zr-Bal. Fe (sample 3),
27Nd-2Dy-1B-0.05Cu-0.05Al-0.05Nb-Bal. Fe (sample 4),
29Nd-0.95B-0.01Cu-0.02V-0.02Zr-Bal. Fe (sample 5),
32Nd-1.1B-0.03Cu-0.02V-0.02Nb-Bal. Fe (sample 6),
32Nd-1.1B-0.03Cu-0.02V-0.02Nb-Bal. Fe (sample 7),
Then, vacuum induction melting was performed, and a flaky ingot having a thickness of about 0.3 mm was obtained by a strip casting method. Next, it was roughly pulverized by a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain an alloy raw material powder.
次に、公知の構造を有する横磁場圧縮成形装置を用いて、成形体を得て、次いで真空焼結炉にて1050℃の温度下で2時間焼結させて焼結磁石Sを得た。そして、ワイヤカットにより焼結磁石を2×40×40mmの形状に加工した後、表面粗さが10μm以下となるように仕上げ加工した後、希硝酸によって表面をエッチングした。 Next, a compact was obtained using a transverse magnetic field compression molding apparatus having a known structure, and then sintered in a vacuum sintering furnace at a temperature of 1050 ° C. for 2 hours to obtain a sintered magnet S. Then, the sintered magnet was processed into a shape of 2 × 40 × 40 mm by wire cutting, and then finished to have a surface roughness of 10 μm or less, and then the surface was etched with dilute nitric acid.
次に、図1に示す真空蒸気処理装置1を用い、上記のようにそれぞれ作製した焼結磁石Sに対し(各10個をずつ)、真空蒸気処理を施した。この場合、金属蒸発材料vとして厚さ0.5mmで板状に形成したDy(99%)を用い、当該金属蒸発材料vと焼結磁石SとをW製の処理箱7に収納することとした。そして、真空チャンバ3内の圧力が10−4Paに達した後、加熱手段4を作動させ、処理室70内の温度を800℃〜950℃、処理時間を3〜15時間に設定して上記処理を行った。 Next, using the vacuum vapor processing apparatus 1 shown in FIG. 1, vacuum vapor treatment was performed on the sintered magnets S produced as described above (10 pieces each). In this case, Dy (99%) formed in a plate shape with a thickness of 0.5 mm is used as the metal evaporating material v, and the metal evaporating material v and the sintered magnet S are stored in the W processing box 7. did. Then, after the pressure in the vacuum chamber 3 reaches 10 −4 Pa, the heating means 4 is operated, the temperature in the processing chamber 70 is set to 800 ° C. to 950 ° C., the processing time is set to 3 to 15 hours, and the above Processed.
図10は、処理箱2内での焼結磁石Sと金属蒸発材料vとの間の間隔と、真空蒸気処理中に導入する不活性ガスのガス種と、そのときの不活性ガスの分圧とを変化させて最適な処理条件を求め、永久磁石を得たときのその最高の値の磁気特性(BHカーブトレーサーにより測定)、及び処理条件を示す表である。ここで、表中の角型比(%)は、角型減磁曲線の第二象限において、磁化の値が一定の比率まで減少するまでに必要な減磁界の大きさであって、本実施例では10%減少した場合の磁界の大きさをHkとし、Hk/iHcを100分率で表したものである。 FIG. 10 shows the distance between the sintered magnet S and the metal evaporation material v in the processing box 2, the gas type of the inert gas introduced during the vacuum vapor processing, and the partial pressure of the inert gas at that time. Is a table showing the optimum magnetic characteristics (measured by a BH curve tracer) and the processing conditions when the optimum processing conditions are obtained by changing the above and the permanent magnet is obtained. Here, the squareness ratio (%) in the table is the magnitude of the demagnetizing field necessary for the magnetization value to decrease to a certain ratio in the second quadrant of the square demagnetization curve. In the example, the magnitude of the magnetic field when it is reduced by 10% is represented by Hk, and Hk / iHc is represented in 100 fractions.
これによれば、処理箱7内での焼結磁石Sと金属蒸発材料vとの間の間隔を10mmとした場合、不活性ガスを導入しない方が保磁力(iHc)を高めることできたことが判る。他方で、上記間隔が5mm以下になると、不活性ガスを導入しないで真空蒸気処理を施すと、磁気特性を示す最大エネルギー積が約半分になり、角型比が74%以下になっている。それに対して、適宜所定の不活性ガスを導入すれば、98%以上の高い角型比が得られていることが判る。これにより、処理箱7内での焼結磁石Sと金属蒸発材料vとの間の間隔を小さくし、焼結磁石Sの積載量を増加させて量産性を高めるには、不活性ガスの導入が有効であることが判る。 According to this, when the interval between the sintered magnet S and the metal evaporation material v in the processing box 7 is 10 mm, the coercive force (iHc) can be increased without introducing the inert gas. I understand. On the other hand, when the interval is 5 mm or less, when the vacuum vapor treatment is performed without introducing the inert gas, the maximum energy product showing the magnetic characteristics becomes about half and the squareness ratio is 74% or less. On the other hand, it can be seen that a high squareness ratio of 98% or more is obtained if a predetermined inert gas is appropriately introduced. Accordingly, in order to increase the productivity by reducing the interval between the sintered magnet S and the metal evaporation material v in the processing box 7 and increasing the load of the sintered magnet S, the introduction of an inert gas is required. It turns out that is effective.
1 真空蒸気処理装置
2 真空排気手段
3 真空チャンバ
4 加熱手段
7 処理箱
71 箱部
72 蓋体
8 スペーサー
81 線材
9 支持片
10 ガス導入管(ガス導入手段)
11 バルブ
S 焼結磁石
M 永久磁石
v 金属蒸発材料
DESCRIPTION OF SYMBOLS 1 Vacuum vapor processing apparatus 2 Vacuum exhaust means 3 Vacuum chamber 4 Heating means 7 Processing box 71 Box part 72 Cover body 8 Spacer 81 Wire 9 Supporting piece 10 Gas introduction pipe (gas introduction means)
11 Valve S Sintered magnet M Permanent magnet v Metal evaporation material
Claims (4)
線材を格子状に組付けた基台と縦横の線材が交差する箇所にそれぞれ立設した支持体とから構成される治具を有し、リング磁石の各々が各支持体にその上方から挿設され、リング磁石の各々が相互に接触しないように金属原子の通過を許容するスペーサーを配置して処理箱に収納するように構成したことを特徴とする永久磁石の製造方法。 A metal evaporation material containing at least one of Dy and Tb and a ring magnet are stored in the processing box, and after the processing box is placed in a vacuum chamber, the processing box is heated to a predetermined temperature in a vacuum atmosphere. A method for producing a permanent magnet in which a metal evaporation material is evaporated and adhered to a sintered magnet, and the adhered metal atoms of Dy and Tb are diffused into the crystal grain boundary and / or the grain boundary phase of the sintered magnet. ,
It has a jig composed of a base with wire rods assembled in a lattice shape and supports that stand upright at the intersections of vertical and horizontal wires, and each ring magnet is inserted into each support member from above A method of manufacturing a permanent magnet, wherein a spacer that allows passage of metal atoms is arranged so that the ring magnets do not contact each other and is stored in a processing box .
4. The method of manufacturing a permanent magnet according to claim 1 , wherein an inert gas is introduced into the vacuum chamber while the metal evaporating material is evaporating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008041555A JP5117220B2 (en) | 2007-10-31 | 2008-02-22 | Method for manufacturing permanent magnet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007284312 | 2007-10-31 | ||
JP2007284312 | 2007-10-31 | ||
JP2008041555A JP5117220B2 (en) | 2007-10-31 | 2008-02-22 | Method for manufacturing permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009135393A JP2009135393A (en) | 2009-06-18 |
JP5117220B2 true JP5117220B2 (en) | 2013-01-16 |
Family
ID=40866979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008041555A Active JP5117220B2 (en) | 2007-10-31 | 2008-02-22 | Method for manufacturing permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5117220B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5053105B2 (en) * | 2008-01-18 | 2012-10-17 | 株式会社アルバック | Permanent magnet and method for manufacturing permanent magnet |
RU2490367C2 (en) | 2008-10-08 | 2013-08-20 | Улвак, Инк. | Evaporating material and its manufacturing method |
JP5471698B2 (en) * | 2010-03-26 | 2014-04-16 | 日立金属株式会社 | Manufacturing method of RTB-based sintered magnet and jig for RH diffusion treatment |
JP5088596B2 (en) | 2010-09-30 | 2012-12-05 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
JP5284394B2 (en) | 2011-03-10 | 2013-09-11 | 株式会社豊田中央研究所 | Rare earth magnet and manufacturing method thereof |
JP5871172B2 (en) * | 2011-04-28 | 2016-03-01 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
JP5888503B2 (en) * | 2012-03-16 | 2016-03-22 | Tdk株式会社 | Manufacturing method of rare earth sintered magnet |
EP2833376A4 (en) * | 2012-03-30 | 2015-06-03 | Intermetallics Co Ltd | NdFeB-BASED SINTERED MAGNET |
JP2014135441A (en) * | 2013-01-11 | 2014-07-24 | Ulvac Japan Ltd | Method for manufacturing permanent magnet |
JP2014135442A (en) * | 2013-01-11 | 2014-07-24 | Ulvac Japan Ltd | Method for manufacturing permanent magnet |
WO2014108950A1 (en) * | 2013-01-11 | 2014-07-17 | 株式会社アルバック | Permanent magnet producing method |
CN107251169A (en) * | 2015-03-27 | 2017-10-13 | 日立金属株式会社 | R TM B systems sintered magnet |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025842A (en) * | 2000-05-02 | 2002-01-25 | Sumitomo Special Metals Co Ltd | Method for manufacturing rare-earth sintered magnet |
JP2002260942A (en) * | 2001-02-27 | 2002-09-13 | Sumitomo Special Metals Co Ltd | Inorganic covering formation method to bond magnet surface |
WO2006100968A1 (en) * | 2005-03-18 | 2006-09-28 | Ulvac, Inc. | Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet |
KR101336744B1 (en) * | 2006-03-03 | 2013-12-04 | 히다찌긴조꾸가부시끼가이사 | RFeB RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME |
-
2008
- 2008-02-22 JP JP2008041555A patent/JP5117220B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009135393A (en) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5117220B2 (en) | Method for manufacturing permanent magnet | |
JP5247717B2 (en) | Method for manufacturing permanent magnet and permanent magnet | |
JP5277179B2 (en) | Method for manufacturing permanent magnet and permanent magnet | |
JP5401328B2 (en) | Recycling method of scrap magnet | |
WO2008023731A1 (en) | Permanent magnet and process for producing the same | |
JP5275043B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP2011035001A (en) | Method for manufacturing permanent magnet | |
JP5205278B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP2009088191A (en) | Sintered compact manufacturing method, and neodymium iron boron based sintered magnet manufactured using the same | |
JP5117219B2 (en) | Method for manufacturing permanent magnet | |
JP5053105B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP5117357B2 (en) | Method for manufacturing permanent magnet | |
JP4999661B2 (en) | Method for manufacturing permanent magnet | |
WO2008075712A1 (en) | Permanent magnet and method for producing permanent magnet | |
JP6408284B2 (en) | Method for manufacturing permanent magnet | |
JP2014135441A (en) | Method for manufacturing permanent magnet | |
JP2008071904A (en) | Permanent magnet and manufacturing method of permanent magnet | |
JP4860491B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP2014135442A (en) | Method for manufacturing permanent magnet | |
JP2010245392A (en) | Sintered magnet for neodymium iron boron base | |
WO2014108950A1 (en) | Permanent magnet producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5117220 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |