JP4977307B2 - Small motor - Google Patents

Small motor Download PDF

Info

Publication number
JP4977307B2
JP4977307B2 JP2004017622A JP2004017622A JP4977307B2 JP 4977307 B2 JP4977307 B2 JP 4977307B2 JP 2004017622 A JP2004017622 A JP 2004017622A JP 2004017622 A JP2004017622 A JP 2004017622A JP 4977307 B2 JP4977307 B2 JP 4977307B2
Authority
JP
Japan
Prior art keywords
magnet
cylindrical
small motor
volume
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004017622A
Other languages
Japanese (ja)
Other versions
JP2005210876A (en
Inventor
一也 中村
絵理 福島
憲一 町田
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2004017622A priority Critical patent/JP4977307B2/en
Publication of JP2005210876A publication Critical patent/JP2005210876A/en
Application granted granted Critical
Publication of JP4977307B2 publication Critical patent/JP4977307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Description

本発明は、Nd-Fe-B系又はPr-Fe-B系などの焼結磁石を用いた小型モータに関する。 The present invention relates to a small type motor using a sintered magnet such as Nd-Fe-B system or Pr-Fe-B system.

詳しくは、上記Nd-Fe-B系などの焼結磁石において、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にY及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上を磁石表面から拡散浸透させた磁石を用いた小型モータに関する。 Specifically, in a sintered magnet such as the Nd-Fe-B system, Y and Nd, Dy, Pr, and more inside the magnet than the depth corresponding to the radius of the crystal particles exposed on the outermost surface of the magnet. Ho, relates to a small motor using one or magnet which two or more diffuse infiltration from the magnet surface of a rare earth element selected from Tb.

Nd-Fe-B系焼結磁石は、永久磁石の中でも最も高性能磁石として知られており、モータなどに広く使用されている。また、この磁石は内部組織がNd2Fe14B主相の周りを薄いNdリッチ副相が取り囲んだミクロ組織を持つことによって保磁力を発生させ、高い磁気エネルギー積を示すことが知られている。
一方、上記磁石をモータに使用する場合には、研削加工等の機械加工によって最終形状としているが、この際に微小なクラックや酸化などによって磁石表面層のNdリッチ相が損傷を受け、その結果として磁石表面部分の磁気特性が磁石内部の数分の1まで低下してしまう。加工劣化層はおよそ数十μm程度とされ、磁石全体を考えた場合、体積が小さいほど、また比表面積(表面積/体積)が大きいほど、その特性が低下するという欠点を有していた。つまり、全体積に対する、加工損傷部の占める割合が増加することに起因する。
上記のような欠点を改善するため、本発明者等は、先に特願2003-096866にて「超小型製品用の微小、高性能希土類磁石とその製造方法」として特許出願をした。
先の特許出願では、超小型製品用の微小、高性能希土類磁石を対象に、表面積/体積比が2mm-1以上(好ましくは3mm-1以上)で、かつ体積が100mm3以下(好ましくは20mm3以下)であり、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にY及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上を磁石表面から拡散浸透させることにより、前記加工による変質損傷部を改質して(BH)maxが280kJ/m3以上の磁気特性を有することを特徴とする磁石およびその製造方法を提案している。
本発明者等は、ここで提案されている焼結磁石を小型モータ用に研究し、小型モータに実装し、そのモータ特性について、一般的にモータ特性を表す指標であるトルク定数に着目して、研究と対策実験を重ねた結果、モータ磁石としての特性に着目し、磁石を開発し、超小型モータを得ることが出来た。
Nd-Fe-B based sintered magnets are known as the highest performance magnets among permanent magnets and are widely used in motors and the like. In addition, this magnet is known to have a high magnetic energy product by generating a coercive force by having a microstructure in which the internal structure is surrounded by a thin Nd-rich subphase around the Nd 2 Fe 14 B main phase. .
On the other hand, when the magnet is used in a motor, the final shape is obtained by machining such as grinding. At this time, the Nd-rich phase of the magnet surface layer is damaged by minute cracks or oxidation, and as a result, As a result, the magnetic properties of the magnet surface portion are reduced to a fraction of the inside of the magnet. The work-deteriorated layer has a thickness of about several tens of μm. When the entire magnet is considered, the smaller the volume and the larger the specific surface area (surface area / volume), the lower the characteristics. In other words, this is due to an increase in the proportion of the processing damaged portion with respect to the total volume.
In order to remedy the above drawbacks, the present inventors previously filed a patent application as “a microscopic, high performance rare earth magnet for a micro product and a manufacturing method thereof” in Japanese Patent Application No. 2003-096866.
In the previous patent application, the surface area / volume ratio is 2 mm -1 or more (preferably 3 mm -1 or more) and the volume is 100 mm 3 or less (preferably 20 mm) for micro, high performance rare earth magnets for micro products. 3 or less), and one kind of rare earth elements selected from Y and Nd, Dy, Pr, Ho, Tb inside the magnet more than the depth corresponding to the radius of the crystal grains exposed on the outermost surface of the magnet Alternatively, two or more kinds are diffused and permeated from the surface of the magnet to modify the damaged part due to the processing, and (BH) max has a magnetic property of 280 kJ / m 3 or more, and a method for producing the magnet Has proposed.
The inventors of the present invention have studied the sintered magnet proposed here for a small motor, mounted it on a small motor, and focused on the torque constant, which is an index that generally represents the motor characteristic. As a result of repeated research and countermeasures, we focused on the characteristics of a motor magnet, developed a magnet, and obtained an ultra-small motor.

Nd−Fe−B系の焼結磁石は、永久磁石の中でも最も高性能磁石とされており、ハードデスクドライブのボイスコイルモータ(VCM)や磁気断層撮影装置(MRI)用の磁気回路などに幅広く使用されている。また、この磁石は内部組織がNd2 Fe14 B主相の周りを薄いNdリッチ副相が取り囲んだミクロ組織を持つことによって保磁力を発生させ、高い磁気エネルギー積を示すことが知られている。 Nd-Fe-B based sintered magnets are considered to be the most powerful magnets among permanent magnets, and are widely used in magnetic circuits for hard disk drive voice coil motors (VCM) and magnetic tomography (MRI). in use. In addition, this magnet is known to have a high magnetic energy product by generating a coercive force by having a microstructure in which the internal structure is surrounded by a thin Nd-rich subphase around the Nd 2 Fe 14 B main phase. .

また、焼結磁石を実際のモータ等に使用する場合には、研削加工によって最終的な寸法と同心度などを得ることが実際行われているが、この際に微小な研削クラックや酸化などによって磁石表面層のNdリッチ相が損傷を受け、その結果として磁石表面部分の磁気特性が磁石内部の数分の1にまで低下してしまう。   Also, when using sintered magnets in actual motors, etc., the final dimensions and concentricity are actually obtained by grinding, but at this time, due to minute grinding cracks, oxidation, etc. The Nd-rich phase of the magnet surface layer is damaged, and as a result, the magnetic properties of the magnet surface portion are reduced to a fraction of the inside of the magnet.

この現象は、特に、体積に対する表面積比率が大きな微小磁石において著しく、例えば、(BH)maxが360kJ/m3である一辺が10mmの角ブロック磁石を1mm×1mm×2mmに切断・研削した場合、(BH)maxは240kJ/m3程度に低下し、Nd−Fe−B系希土類磁石本来の特性が得られない。 This phenomenon is particularly noticeable in micro magnets with a large surface area ratio relative to volume. For example, when a square block magnet (BH) max of 360 kJ / m 3 and a side of 10 mm is cut and ground to 1 mm × 1 mm × 2 mm, (BH) max decreases to about 240 kJ / m 3 , and the original characteristics of the Nd—Fe—B rare earth magnet cannot be obtained.

Nd−Fe−B系焼結磁石のこのような欠点を改善するため、機械加工によって生じた変質層を、機械的研磨や化学的研磨で除去する方法が提案されている(例えば、特許文献1)。また、研削加工した磁石表面に希土類金属を被着して拡散熱処理をする方法が提案されている(例えば、特許文献2)。また、Nd−Fe−B系磁石表面にSmCo膜を形成する方法が見られる(例えば、特許文献3)。   In order to improve such a defect of the Nd—Fe—B based sintered magnet, there has been proposed a method of removing the altered layer generated by machining by mechanical polishing or chemical polishing (for example, Patent Document 1). ). In addition, a method has been proposed in which a rare earth metal is deposited on a ground magnet surface and subjected to diffusion heat treatment (for example, Patent Document 2). In addition, a method of forming an SmCo film on the surface of an Nd—Fe—B magnet can be seen (for example, Patent Document 3).

特開平9−270310号公報JP 9-270310 A 特開昭62−74048号(特公平6−63086号)公報Japanese Patent Laid-Open No. Sho 62-74048 (Japanese Patent Publication No. 6-63086) 特開2001−93715号公報JP 2001-93715 A

上記の特許文献1記載の方法は、変質層はおよそ10μm以上と推定されるため研磨に時間がかかること、高速研磨をすると変質層を新たに生じてしまうこと、さらに、化学研磨では酸液が焼結磁石の空孔に残存して腐食痕を発生しやすいこと、等の問題があった。   In the method described in Patent Document 1, it is estimated that the deteriorated layer is about 10 μm or more, so that it takes time for polishing, a new deteriorated layer is generated when high-speed polishing is performed, and an acid solution is generated in chemical polishing. There existed problems, such as remaining in the hole of a sintered magnet and being easy to generate | occur | produce a corrosion mark.

特許文献2には、焼結磁石体の被研削加工面の加工変質層に希土類金属薄膜層を形成し、拡散反応により改貿層を形成することが開示されているが、具体的には、長さ20mm×幅5mm×厚み0.15mmの薄い試験片にスパッタ膜を形成した実験結果が記載されているだけで、得られる(BH)maxは高々200kJ/m3である。 Patent Document 2 discloses that a rare earth metal thin film layer is formed on a work-affected layer of a surface to be ground of a sintered magnet body, and a trade layer is formed by a diffusion reaction. Specifically, By merely describing the experimental results of forming a sputtered film on a thin test piece of length 20 mm × width 5 mm × thickness 0.15 mm, the (BH) max obtained is at most 200 kJ / m 3 .

さらに、特許文献3記載の方法は、単に成膜したままではNdFe14B相やNdリッチ相への金属的な反応がないために磁気特性の回復は困難であり、また、熱処理によってSmが磁石内部に拡散するとNdFe14B相の結晶磁気異方性を低下させるために特性回復は難しい。さらに、成膜時は試料を裏返して2回スパッタする方法がとられているため、成膜の生産性と膜厚の均一性などに難点がある。 Further, in the method described in Patent Document 3, it is difficult to recover the magnetic characteristics because there is no metallic reaction to the Nd 2 Fe 14 B phase or the Nd rich phase if the film is formed as it is. When it diffuses in the magnet, the crystal magnetic anisotropy of the Nd 2 Fe 14 B phase is lowered, so that it is difficult to recover the characteristics. Furthermore, since a method is used in which the sample is turned over and sputtered twice during film formation, there are difficulties in film formation productivity and film thickness uniformity.

近年、例えば、携帯電話用振動モータには外径約4mmのNd−Fe−B系円筒状焼結磁石が多く使用されているが、その磁気特性を実測すると230kJ/m3前後であるため、振動強度を低下させずさらに小型化することが困難である。さらに、今後マイクロロボットや体内診断用マイクロモータに要求される高出力・超小型アクチュエータヘの適用は一層難しい状況にある。
本発明では、上記のような従来技術の問題を解決し、高性能な磁石を用いた超小型モータを提供することを目的とする。
In recent years, for example, Nd-Fe-B-based cylindrical sintered magnets having an outer diameter of about 4 mm are often used for vibration motors for mobile phones, but when measuring their magnetic properties, they are around 230 kJ / m 3 , It is difficult to further reduce the size without reducing the vibration intensity. Furthermore, it will be more difficult to apply to high-power, ultra-compact actuators that will be required for micro-robots and micro motors for in-vivo diagnosis.
An object of the present invention is to solve the above-described problems of the prior art and provide an ultra-small motor using a high-performance magnet.

本発明者等は、焼結磁石ブロックを切断、穴あけ、研削、研磨等により機械加工した微小磁石を製造する際の加工損傷による磁気特性の劣化について鋭意調査と対策実験を重ねた結果、希土類磁石本来の磁気特性を回復させた超小型製品用の微小、高性能磁の開発に成功した。 As a result of intensive investigation and countermeasure experiment on the deterioration of magnetic properties due to processing damage when manufacturing a micro magnet machined by cutting, drilling, grinding, polishing, etc., the sintered magnet block has been obtained as a result of rare earth magnets. minute for the ultra-small products that were allowed to recover the original magnetic properties, has succeeded in the development of high-performance magnet.

本発明は、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状又は円盤形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石を用い、該磁石は、比表面積(表面積/体積)の値が4mm-1以上で、かつ体積が10mm3以下であり、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を、磁石表面から拡散浸透させることによって前記変質損傷部を改質して(BH)maxが280kJ/m3の以上の磁気特性を有することを特徴とする。
また、本発明に用いる小型モータ用焼結磁石を製造する方法、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状又は円盤形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石を、減圧槽内に支持し、該減圧槽内で物理的手法によって蒸気又は微粒子化したR金属又はR金属を含む合金(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を、該磁石の表面の全部又は一部に3次元的に飛来させて成膜しかつ該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属を磁石表面から拡散浸透させることによって前記機械加工による変質損傷部を改質することを特徴とする。
さらに、本発明に用いる小型モータ用焼結磁石を製造する方法、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状又は円盤形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石を、減圧槽内に支持し、該減圧槽内で物理的手法によって蒸気又は微粒子化したR金属又はR金属を含む合金(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を、該磁石の表面の全部又は一部に3次元的に飛来させて成膜し、かつ該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属を磁石表面から、900乃至1000℃で、拡散浸透させることによって前記機械加工による変質損傷部を改質することを特徴とする。
本発明に用いる小型モータ用焼結磁石を製造する方法、該磁石内部にR金属を磁石表面から、900℃で、拡散浸透させることによって前記機械加工による変質損傷部を改質することを特徴とする。
本発明に用いる小型モータ用焼結磁石を製造する方法、前記物理的手法が、該磁石周辺に配置したR金属又はR金属を含む合金(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)から成る複数のターゲットを、イオン衝撃によって微粒子化させて、該磁石表面に膜を形成するスパックリング法であることを特徴とする。
本発明に用いる小型モータ用焼結磁石を製造する方法、前記物理的手法が、該焼結磁石周辺に配置したR金属又はR金属を含む合金(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)から成る複数のターゲットを、溶融蒸発させて発生した粒子をイオン化させて、該磁石表面に膜を形成するイオンプレーティング法であることを特徴とする。
The present invention uses a cylindrical or disk-shaped Nd-Fe-B-based or Pr-Fe-B-based sintered magnet having a holed inner surface having a surface that has been altered and damaged by machining. The value of the specific surface area (surface area / volume) is 4 mm -1 or more and the volume is 10 mm 3 or less, and the inside of the magnet exceeds the depth corresponding to the radius of the crystal grains exposed on the outermost surface of the magnet. The alteration damage portion is modified by diffusing and infiltrating R metal (where R is Y or one or more of rare earth elements selected from Nd, Dy, Pr, Ho, and Tb) from the magnet surface. Te (BH) max is it characterized by having a magnetic characteristic of more than 280 kJ / m 3.
A method of producing a sintered magnet for small motors used in the present invention, the cylindrical or disk shape having an inner surface with holes having a surface alteration damaged by machining Nd-Fe-B system or Pr-Fe -B-based sintered magnet is supported in a vacuum chamber and vaporized or finely divided by a physical method in the vacuum chamber, or an alloy containing R metal or R metal (provided that R is Y and Nd, Dy, One or more rare earth elements selected from Pr, Ho, and Tb) are three-dimensionally deposited on all or part of the surface of the magnet, and are exposed to the outermost surface of the magnet. It is characterized in that the damaged part due to machining is modified by diffusing and penetrating R metal from the surface of the magnet beyond the depth corresponding to the radius of the crystal grains.
Further, a method for producing a sintered magnet for small motors used in the present invention, the cylindrical or disk shape having an inner surface with holes having a surface alteration damaged by machining Nd-Fe-B system or Pr-Fe -B-based sintered magnet is supported in a vacuum chamber and vaporized or finely divided by a physical method in the vacuum chamber, or an alloy containing R metal or R metal (provided that R is Y and Nd, Dy, One or more rare earth elements selected from Pr, Ho, and Tb are three-dimensionally deposited on all or part of the surface of the magnet to form a film, and exposed to the outermost surface of the magnet. The modified damaged portion due to the machining is modified by diffusing and infiltrating R metal into the magnet at a temperature of 900 to 1000 ° C. beyond the depth corresponding to the radius of the crystal grains. To do.
Method of manufacturing a miniature motor sintered magnet used in the present invention, wherein the magnet interior R metal magnet surface at 900 ° C., to modify the altered damaged part by the machining by cementation And
Method for producing a sintered magnet for small motors used in the present invention, the physical approach, R metals or alloys containing R metal and disposed around the magnet (wherein, R is, Y and Nd, Dy, Pr, This is a spackling method in which a plurality of targets composed of one or more rare earth elements selected from Ho and Tb are atomized by ion bombardment to form a film on the magnet surface.
Method for producing a sintered magnet for small motors used in the present invention, the physical means is an alloy containing R metals or R metal and disposed around the sintered magnet (wherein, R is, Y and Nd, Dy, An ion plating method in which particles generated by melting and evaporating a plurality of targets composed of one or more rare earth elements selected from Pr, Ho, and Tb are ionized to form a film on the surface of the magnet. It is characterized by being.

本発明は、ハウジングと、該ハウジングの内側に設けられた界磁巻線と、軸受部によって回転可能に支持されたシャフトと、該シャフトに設けられ、シャフト軸と直交する方向に着磁された円筒形ロータ磁石とを具えた小型モータであって、該円筒形ロータ磁石は、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石であって、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を、磁石表面から拡散浸透させることによって前記変質損傷部を改質して(BH)maxを280kJ/m 3 以上とした焼結磁石からなり、さらに該小型モータにおいて、パーミアンス係数(動作点)が1以上、前記ロータ磁石の比表面積(表面積/体積)が4mm-1以上、前記ロータ磁石の体積が10mm3以下に選定されていることを特徴とする。
本発明は、円筒状巻線コイルの軸方向開口一端部を回転軸に固着しているカップ型ロータと、該カップ型ロータの内部に配置され、円筒形ヨークに設けられて、回転軸と直交する方向に着磁された円筒形ステータ磁石とを具えた小型モータであって、該円筒形ステ-タ磁石は、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石であって、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を、磁石表面から拡散浸透させることによって前記変質損傷部を改質して(BH)maxを280kJ/m 3 以上とした焼結磁石からなり、さらに該小型モータにおいて、パーミアンス係数(動作点)が1以上、前記ステータ磁石の比表面積(表面積/体積)が4mm-1以上、前記ステータ磁石の体積が10mm3以下に選定されていることを特徴とする。
本発明は、小型モータにおいて、パーミアンス係数(動作点)が1.4以上であることを特徴とする。
本発明は、小型モータにおいて、前記磁石表面に拡散浸透で形成された被膜の厚さを0.02乃至2μmとしたことを特徴とする。
本発明は、小型モータにおいて、前記R金属が、Dyであって、前記磁石表面に拡散浸透で形成された被膜の厚さを1.4μmとしたことを特徴とする。
本発明は、小型モータにおいて、前記モータの外径寸法が、3mm以下に選定されることを特徴とする。
The present invention includes a housing, a field winding provided inside the housing, a shaft rotatably supported by a bearing portion, and provided on the shaft and magnetized in a direction perpendicular to the shaft axis. A small motor comprising a cylindrical rotor magnet, the cylindrical rotor magnet comprising a cylindrical Nd-Fe-B system or Pr-Fe having a perforated inner surface having a surface that is altered and damaged by machining -B-based sintered magnet, which has an R metal (provided that R is Y and Nd, Dy, R) within the magnet at a depth equal to or greater than the radius corresponding to the radius of the crystal grains exposed on the outermost surface of the magnet. A rare earth element selected from Pr, Ho and Tb is diffused and infiltrated from the surface of the magnet to modify the damaged part (BH) with a max of 280 kJ / m 3 or more. consists sintered magnet, in yet the small motor, the permeance coefficient (Operating point) is 1 or more, the specific surface area of the rotor magnet (surface area / volume) 4 mm -1 or more, the volume of the rotor magnet, characterized in that it is selected to 10 mm 3 or less.
The present invention relates to a cup-type rotor in which one end of an axial opening of a cylindrical winding coil is fixed to a rotating shaft, and is disposed inside the cup-shaped rotor and provided in a cylindrical yoke, and is orthogonal to the rotating shaft. A small-sized motor comprising a cylindrical stator magnet magnetized in a direction in which the cylindrical stator magnet has a cylindrical Nd with a perforated inner surface having a surface that has been altered and damaged by machining. -Fe-B-based or Pr-Fe-B-based sintered magnet, and an R metal (provided that the depth of the magnet corresponds to the radius of the crystal grains exposed on the outermost surface of the magnet) R is Y or a rare earth element selected from Nd, Dy, Pr, Ho, and Tb, and diffuses and penetrates from the magnet surface to modify the damaged portion (BH) max. the a sintered magnet was 280 kJ / m 3 or more, and in yet the small motor, Pami Nsu factor (operating point) is 1 or more, the specific surface area (surface area / volume) of the stator magnet 4 mm -1 or more, the volume of the stator magnet is characterized in that it is selected to 10 mm 3 or less.
The present invention is characterized in that a small motor has a permeance coefficient (operating point) of 1.4 or more.
The present invention is characterized in that, in the small motor, the thickness of the film formed by diffusion and penetration on the surface of the magnet is set to 0.02 to 2 μm.
The present invention is characterized in that in the small motor, the R metal is Dy, and the thickness of the coating formed by diffusion and penetration on the magnet surface is 1.4 μm.
The present invention is characterized in that, in a small motor, the outer diameter of the motor is selected to be 3 mm or less.

磁石ブロックを切断、穴あけ、研削、研磨等により機械加工すると、磁石表面部は変質損傷し、磁気特性が低下する。この変質損傷した表面を有する磁石表面にY及びNdを始めとしてDy、Pr、Ho、Tbから選ばれる希土類金属の一種以上の単独又は各金属を相当量含有する合金を成膜して磁石内部に拡散させると、例えば、Nd−Fe−B系希土類磁石についてみると、これらの希土類金属はNdFe14B主相及びNdリッチ粒界相のNdと同種の希土類金属であるためにNdと親和性が良く、Ndリッチ相と主に反応して機械加工によって変質損傷した部分を容易に修復し磁気特性を回復する機能を果たす。 If the magnet block is machined by cutting, drilling, grinding, polishing, or the like, the magnet surface portion is altered and damaged, and the magnetic properties deteriorate. An alloy containing a considerable amount of one or more rare earth metals selected from Dy, Pr, Ho, and Tb, as well as Y and Nd, or a substantial amount of each metal is formed on the surface of the magnet having the damaged surface. When diffused, for example, in the case of Nd-Fe-B rare earth magnets, these rare earth metals are compatible with Nd because they are the same kind of rare earth metals as Nd 2 Fe 14 B main phase and Nd rich grain boundary phase. It has a good function, and reacts mainly with the Nd-rich phase to easily repair parts damaged by machining and restore the magnetic properties.

また、これらの希土類金属の一部が拡散によってNdFe14 B主相に入り込んでNd元素と置換した場合には、いずれの希土類金属も主相の結晶磁気異方性を増加させ、保磁力が増加して磁気特性を回復させる働きを有している。特に、Tbが主相のNd元素を全て置換したTb2 Fe14 Bの室温における結晶磁気異方性はNdFe14Bの約3倍であるために大きな保磁力が得られ易い。Pr−Fe−B系磁石についても同様な回復機能が得られる。 In addition, when some of these rare earth metals enter the Nd 2 Fe 14 B main phase by diffusion and are substituted for the Nd element, any rare earth metal increases the magnetocrystalline anisotropy of the main phase and increases the coercive force. Has a function of increasing the magnetic properties and restoring the magnetic properties. In particular, Tb 2 Fe 14 B in which Tb is substituted for all Nd elements in the main phase has a crystal magnetic anisotropy at room temperature that is about three times that of Nd 2 Fe 14 B, and thus a large coercive force can be easily obtained. A similar recovery function can be obtained for Pr-Fe-B magnets.

希土類金属が拡散処理によって浸透する深さは、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上とする。例えば、Nd−Fe−B系焼結磁石の結晶粒径はおよそ6〜10μmであるので、磁石最表面に露出している結晶粒子の半径に相当する3μm以上が最低限必要である。これ未満では結晶粒子を包むNdリッチ相との反応が不充分となり、磁気特性の回復がわずかなものとなる。3μm以上深くなると保磁力が緩やかに増加し、NdFe14B主相のNdと置換して保磁力をさらに高める効果があるが、過度に深く拡散すると残留磁化を下げる場合があるため、拡散処理条件を調整して所望の磁気特性とする深さが望ましい。 The depth at which the rare earth metal penetrates by the diffusion treatment is set to be equal to or greater than the depth corresponding to the radius of the crystal grains exposed on the outermost surface of the magnet. For example, since the crystal grain size of the Nd—Fe—B based sintered magnet is about 6 to 10 μm, the minimum is required to be 3 μm or more corresponding to the radius of the crystal grain exposed on the outermost surface of the magnet. If it is less than this, the reaction with the Nd-rich phase enclosing the crystal grains becomes insufficient, and the recovery of the magnetic properties becomes slight. When it becomes deeper than 3 μm, the coercive force increases slowly, and it has the effect of further increasing the coercive force by substituting Nd of the Nd 2 Fe 14 B main phase. It is desirable that the processing conditions be adjusted to achieve a desired magnetic characteristic.

本発明において、表面改質による磁気特性の回復は、体積が小さい磁石ほど、また、体積に対する表面積比の大きい磁石ほど顕著な効果を示す。本発明者らのNd−Fe−B系焼結磁石のサイズと磁気特性についてのこれまでの研究によれば、磁石サイズがおよそ2mm角ブロック以下になると、減磁曲線の角型性が悪くなって保磁力の低下を生じることが明らかになっている。 In the present invention, the recovery of the magnetic properties by surface modification, as the magnet volume is small, also shows a significant effect larger magnet surface area to volume ratio. According to our research on the size and magnetic properties of Nd-Fe-B sintered magnets, the squareness of the demagnetization curve deteriorates when the magnet size is about 2 mm square block or less. It has become clear that the coercive force is reduced.

このサイズにおいては、磁石体積が8mm3で表面積/体積比が3mm−1であることが簡単に計算される。また、円筒形状磁石の場合には、表面積/体積比がさらに増加することになり角型性や保磁力の低下が著しくなる。例として、市販の携帯電話用振動モータに搭載されている磁石の外径、内径、長さはそれぞれ2.5mm、1mm、4mm程度であり、その体積は約16.5mm3に相当する At this size, it is simply calculated that the magnet volume is 8 mm 3 and the surface area / volume ratio is 3 mm −1 . In the case of a cylindrical magnet, the surface area / volume ratio further increases, and the squareness and coercive force are significantly reduced. As an example, the outer diameter, inner diameter, and length of a magnet mounted on a commercially available mobile phone vibration motor are about 2.5 mm, 1 mm, and 4 mm, respectively, and the volume corresponds to about 16.5 mm 3

したがって、比表面積(表面積/体積)が4mm-1以上で、かつ体積がおよそ10mm3以下の小型磁石において、特に表面改質による効果が著しく、市販の振動モータに搭載されているNd−Fe−B系磁石の(BH)maxがおよそ240kJ/m3に対して、本明のものにおいては、280kJ/m3以上、例えば300〜360kJ/m3の高特性が得られる。 Thus, a specific surface area (surface area / volume) 4Mm- 1 or more, and the volume of approximately 10 mm 3 or less of the small magnet, Nd-Fe- being particularly effective significantly by surface modification, mounted to a commercially available vibration motor against (BH) max of approximately 240kJ / m 3 of B magnets, in those of the onset bright, 280 kJ / m 3 or more, such as high characteristics of 300~360kJ / m 3 is obtained.

本発明によれば、機械加工によって変質損傷した磁石表面に希土類金属を成膜して拡散することにより、変質損傷した磁石表面層のNd等の希土類金属リッチ相を修復し、磁気特性を十分に回復させることができる。また、その結果として、微小で、高性能磁石を用いた超小型・高出力モータの実現が可能になる   According to the present invention, the rare earth metal rich phase such as Nd in the altered magnet surface layer is repaired by depositing and diffusing the rare earth metal on the surface of the magnet damaged by the machining, and the magnetic properties are sufficiently improved. Can be recovered. As a result, it is possible to realize a micro, high-power motor using a small, high-performance magnet.

以下、先ず、本発明に用いる小型モータ用磁石の製造方法を製作工程にしたがって更に詳しく説明する。
本発明の方法で対象とする磁石ブロック素材は、原料粉末の焼結法や原料粉末をホットプレスした後に熱間塑性加工法によって製作されたものである。
これらの磁石ブロック素材を切断、穴あけ、研削、研磨等により機械加工して穴のあいた内表面を有する円筒形状又は円盤形状の小型磁石を製作する。
これにより、表面積/体積の比が4mm-1以上で、かつ体積が10mm3以下の微小磁石を製作する。小型磁石として好適な合金系としては、Nd−Fe−B系やPr−Fe−B系などが代表的なものとして例示される。なかでも、Nd−Fe−B系焼結磁石は最も磁気特性が高いにもかかわらず機械加工による特性低下が大きいものである。
Hereinafter, first, it is described in more detail in accordance with manufacturing process a method for manufacturing a miniature motor magnet Ru used in the present invention.
The magnet block material that is the object of the method of the present invention is manufactured by a raw powder sintering method or a hot plastic working method after hot pressing the raw material powder.
These magnet block materials are machined by cutting, drilling, grinding, polishing, etc. to produce a cylindrical or disk-shaped small magnet having an inner surface with a hole.
Thus, a micro magnet having a surface area / volume ratio of 4 mm −1 or more and a volume of 10 mm 3 or less is manufactured. Nd—Fe—B and Pr—Fe—B systems are typical examples of alloy systems suitable as small magnets. Among these, Nd—Fe—B based sintered magnets have the greatest deterioration in properties due to machining, despite the highest magnetic properties.

変質損傷した表面を有する磁石表面に成膜する金属は、磁石を構成するNd等の希土類金属リッチ相の修復強化を目的とするために、Y及びNdを始めとしてDy、Pr、Ho、Tbから選ばれる希土類金属の一種以上の単独又はY、Nd、Dy、Pr、Ho、Tbなどの希土類金属を相当量含有する合金、例えば、Nd−Fe合金やDy−Co合金等を用いる。   The metal deposited on the surface of the magnet having a damaged surface is from Dy, Pr, Ho, Tb, including Y and Nd, for the purpose of strengthening the repair of rare earth metal-rich phases such as Nd constituting the magnet. One or more of the selected rare earth metals or an alloy containing a considerable amount of rare earth metals such as Y, Nd, Dy, Pr, Ho, Tb, for example, an Nd—Fe alloy or a Dy—Co alloy is used.

磁石表面への成膜法については特に限定されるものではなく、蒸着、スパッタリング、イオンプレーティング、レーザーデポジション等の物理的成膜法や、CVDやMO−CVD等の化学的気相蒸着法、及びメッキ法などの適用が可能である。但し、成膜ならびに加熱拡散の各処理においては、10-7Torr以外ならびに酸素、水蒸気等の大気由来ガスが数十ppm以下の清浄雰囲気内で行うことが好適である。 The film formation method on the magnet surface is not particularly limited, and physical film formation methods such as vapor deposition, sputtering, ion plating, and laser deposition, and chemical vapor deposition methods such as CVD and MO-CVD. , And plating methods can be applied. However, it is preferable that the film forming process and the heat diffusion process are performed in a clean atmosphere other than 10 −7 Torr and air-derived gases such as oxygen and water vapor of several tens of ppm or less.

R金属を加熱により磁石表面から拡散浸透させる際の雰囲気が、通常入手される高純度アルゴンガス程度の純度の場合は、アルゴンガス内に含まれる大気由来ガス、すなわち、酸素、水蒸気、二酸化炭素、窒素等により、該磁石加熱時に表面に被着させたR金属が、酸化物、炭化物、窒化物となり、効率よく内部組織相まで拡散到達しないことがある。従って、R金属の加熱拡散時の雰囲気に含まれる大気由来不純物ガス濃度を50ppm程度以下、望ましくは10ppm程度以下とするのが好適である。   When the atmosphere when the R metal is diffused and infiltrated from the magnet surface by heating is about the purity of the high-purity argon gas that is usually obtained, the atmosphere-derived gas contained in the argon gas, that is, oxygen, water vapor, carbon dioxide, The R metal deposited on the surface when the magnet is heated by nitrogen or the like becomes oxides, carbides or nitrides, and may not efficiently diffuse and reach the internal tissue phase. Therefore, it is preferable that the concentration of the air-derived impurity gas contained in the atmosphere during the heat diffusion of the R metal is about 50 ppm or less, preferably about 10 ppm or less.

円筒や円盤などの形状をした微小磁石の表面の全部又は一部に極力均一な膜を形成するには、複数のターゲットから磁石表面に3次元的に金属成分を成膜させるスバッタリング法、又は金属成分をイオン化させて、静電気的な吸引強被着特性を利用して成膜させるイオンプレーティング法が特に有効である。   In order to form a uniform film as much as possible on all or part of the surface of a micro magnet shaped like a cylinder or a disk, a sputtering method in which metal components are three-dimensionally deposited on the magnet surface from multiple targets, Alternatively, an ion plating method in which a metal component is ionized and a film is formed using electrostatic attraction and strong deposition characteristics is particularly effective.

また、スバッタリング作業における希土類磁石のプラズマ空間内の保持については、一個あるいは複数個の磁石を線材や板材で回転自在に保持する方法や、複数個の磁石を金網製の籠に装填して転動自在に保持する方法を採用することができる。このような保持方法により三次元的に微小磁石の表面全体に均一な膜を形成することができる。   As for holding the rare earth magnet in the plasma space in the sputtering operation, one or a plurality of magnets can be rotatably held by a wire or a plate, or a plurality of magnets can be loaded into a metal mesh cage. It is possible to adopt a method of holding the roll freely. By such a holding method, a uniform film can be formed three-dimensionally on the entire surface of the micro magnet.

上記の成膜用希土類金属は、磁石表面に単に被覆されているだけでは磁気特性の回復が認められないため、成膜した希土類金属成分の少なくとも一部が磁石内部に拡散してNdなどの希土類金属リッチ相と反応していることが必須である。このため、通常は成膜した後に500〜1000℃において短時間の熱処理を行って成膜金属を拡散させる。スパッタリングの場合には、スパッタリング時のRF及びDC出力を上げて成膜することにより成膜中の磁石を上記温度範囲、例えば800℃位にまで上昇させることができるため、実質的に成膜させながら同時に拡散を行うこともできる。   In the above-mentioned rare earth metal for film formation, recovery of magnetic properties is not observed only by simply covering the magnet surface, so that at least a part of the deposited rare earth metal component diffuses inside the magnet and rare earth such as Nd. It is essential to react with the metal rich phase. For this reason, normally, after the film formation, a short-time heat treatment is performed at 500 to 1000 ° C. to diffuse the metal film. In the case of sputtering, since the magnet during film formation can be raised to the above temperature range, for example, about 800 ° C. by increasing the RF and DC output during sputtering, the film is substantially formed. However, diffusion can be performed simultaneously.

図1に、本発明に用いて好適な3次元スパッタ装置の説明図を示す。図1において、輪状をした成膜金属からなるターゲット1およびターゲット2を対向させて配置し、その間に水冷式の銅製高周波コイル3を配置する。円筒形状磁石4の筒内部には、電極線5が挿入されており、該電極線5はモータ6の回転軸に固定されて円筒形状磁石4を回転できるように保持している。 FIG. 1 is an explanatory view of a three-dimensional sputtering apparatus suitable for use in the present invention. In FIG. 1, a target 1 and a target 2 made of a ring-shaped metal film are placed facing each other, and a water-cooled copper high-frequency coil 3 is placed between them. An electrode wire 5 is inserted inside the cylinder of the cylindrical magnet 4, and the electrode wire 5 is fixed to the rotating shaft of the motor 6 and holds the cylindrical magnet 4 so that it can rotate.

ここで、円筒形状磁石4の筒内部と電極線5との回転時の滑り防止のために、電極線5は微細な波形にねじられて筒内部に接触している。微小磁石の重さは数十mg程度なので電極線5と円筒形状磁石4との回転時の滑りはほとんど起きない。   Here, in order to prevent slippage during rotation between the inside of the cylindrical magnet 4 and the electrode wire 5, the electrode wire 5 is twisted into a fine waveform and is in contact with the inside of the tube. Since the weight of the micro magnet is about several tens of mg, there is almost no slip when the electrode wire 5 and the cylindrical magnet 4 are rotated.

さらに、陰極切り替えスイッチ(A)により円筒形状磁石4の逆スパッタが実施可能な機構を有している。逆スパッタ時は電極線5を通じて磁石4を負電位にして、磁石4の表面のエッチングをする。通常スパッタ作業時はスイッチ(B)に切り替えて行う。
通常スパッタ時は電極線5に電位を与えずにスパッタ成膜をするのが一般的であるが、成膜する金属の種類や膜質制御のため、場合によっては電極線5を通じて磁石4に正のバイアス電位を与えてスバッタ成膜をすることもある。通常スパッタ中は、Arイオンとターゲット1、2から発生する金属粒子、及び金属イオンが混在したプラズマ空間7を形成して、円筒形状磁心4の表面の上下左右前後から3次元的に金属粒子が飛来して成膜される。
Furthermore, it has a mechanism capable of performing reverse sputtering of the cylindrical magnet 4 by the cathode changeover switch (A). During reverse sputtering, the surface of the magnet 4 is etched by setting the magnet 4 to a negative potential through the electrode wire 5. Switch to switch (B) during normal sputtering.
Normally, sputtering is generally performed without applying a potential to the electrode wire 5 during sputtering, but in order to control the type of metal to be deposited and the film quality, in some cases, a positive electrode is applied to the magnet 4 through the electrode wire 5. A sputtering potential may be formed by applying a bias potential. During normal sputtering, a plasma space 7 in which Ar ions, metal particles generated from the targets 1 and 2 and metal ions are mixed is formed, and the metal particles are three-dimensionally viewed from the top, bottom, left, and right of the surface of the cylindrical magnetic core 4. The film comes in flight.

このような方法で成膜した磁石は、成膜しながら拡散させていない場合は、スパッタ装置内を大気圧に戻した後にスパッタ装置に連結したグロープボックスに大気に触れずに移送して、同じく該グローブボックス内に設置した小型電気炉に装填して膜を磁石内部に拡散させるために熱処理を行う。   When the magnet formed by such a method is not diffused while forming a film, the magnet is transferred to a glove box connected to the sputtering apparatus after returning to the atmospheric pressure without touching the atmosphere. Heat treatment is performed to load the film in a small electric furnace installed in the glove box and diffuse the film into the magnet.

なお、一般に希土類金属は酸化され易いため、成膜後の磁石表面にNiやAlなどの耐食性金属や撥水性のシラン系被膜を形成して実用に供することが望ましい。また、改質表面金属がDyやTbの場合にはNdと比較して空気中での酸化進行が著しく遅いため、磁石の用途によっては耐食性被膜を設けることを省略することも可能である。   In general, since rare earth metals are easily oxidized, it is desirable to form a corrosion-resistant metal such as Ni or Al or a water-repellent silane-based film on a magnet surface after film formation for practical use. In addition, when the modified surface metal is Dy or Tb, the progress of oxidation in air is significantly slower than that of Nd. Therefore, depending on the application of the magnet, it is possible to omit providing a corrosion-resistant coating.

先ず、本発明に用いる磁石の製造方法について説明する。
(参考例1)
Nd12.5Fe78.5Co1B8組成の合金インゴットからストリップキャスト法によって厚さ0.2〜0.3mmの合金薄片を製作した。次に、この薄片を容器内に充填し、500kPaの水素ガスを室温で吸蔵させた後に放出させることにより、大きさ約015〜0.2mmの不定形粉末を得て、引き続きジェットミル粉砕をして約3μmの微粉末を製作した。
First, a method for manufacturing a magnet Ru used in the present invention.
(Reference Example 1)
An alloy flake having a thickness of 0.2 to 0.3 mm was manufactured from an alloy ingot having a composition of Nd 12.5 Fe 78.5 Co 1 B 8 by strip casting. Next, this thin piece is filled in a container, and hydrogen gas of 500 kPa is occluded at room temperature and then released, so that the size is about 0 . An amorphous powder of 15 to 0.2 mm was obtained, and was subsequently pulverized by jet mill to produce a fine powder of about 3 μm.

この微粉末にステアリン酸カルシウムを0.05wt%添加混合した後に磁界中プレス成形をし、真空炉に装填して1080℃で1時間焼結をして、18mm角の立方体磁石ブロック素材を得た。   After adding 0.05 wt% of calcium stearate to this fine powder, it was press-molded in a magnetic field, charged in a vacuum furnace and sintered at 1080 ° C. for 1 hour to obtain an 18 mm square cubic magnet block material.

次いで、この立方体磁石ブロック素材に砥石切断と外径研削、及び超音波穴あけ加工をして外径1mm、内径0.3mm、長さ3mmの円筒形状磁石を製作した。この状態のままのものを比較例試料(1)とした。体積2.14mm、表面積13.67mm、比表面積(表面積/体積)は6.4mm−1である。 Next, this cubic magnet block material was subjected to grinding wheel cutting, outer diameter grinding, and ultrasonic drilling to produce a cylindrical magnet having an outer diameter of 1 mm, an inner diameter of 0.3 mm, and a length of 3 mm. The sample in this state was used as a comparative sample (1). The volume is 2.14 mm 3 , the surface area is 13.67 mm 2 , and the specific surface area (surface area / volume) is 6.4 mm −1 .

次に、図1に示す3次元スパック装置を用い、この円筒形状磁石表面へ金属膜を成膜した。ターゲットとして、ディスプロシウム(Dy)金属を用いた。円筒形状磁石の筒内部には、電極線として直径0.2mmのタングステン線を挿入させた。用いた輪状ターゲットの大きさは、外径80mm、内径30mm、厚さ20mmとした。   Next, a metal film was formed on the surface of the cylindrical magnet using the three-dimensional spuck apparatus shown in FIG. As the target, dysprosium (Dy) metal was used. Inside the cylinder of the cylindrical magnet, a tungsten wire having a diameter of 0.2 mm was inserted as an electrode wire. The size of the used ring-shaped target was 80 mm in outer diameter, 30 mm in inner diameter, and 20 mm in thickness.

成膜作業は以下の手順で行った。上記円筒形状磁石の筒内部にタングステン線を挿入してセットし、スパッタ装置内を5×10−5Paまで真空排気した後、高純度Arガスを導入して装置内を3Paに維持した。次に、陰極切り替えスイッチを(A)側にして、RF出力20WとDC出力2Wを加えて10分間の逆スパッタを行って磁石表面の酸化膜を除去した。続いて、切り替えスイッチを(B)・側にして、RF出力80WとDC出力120Wを加えて6分間の通常スパッタを行った。 The film forming operation was performed according to the following procedure. A tungsten wire was inserted and set inside the cylinder of the cylindrical magnet, and the inside of the sputtering apparatus was evacuated to 5 × 10 −5 Pa, and then high purity Ar gas was introduced to maintain the inside of the apparatus at 3 Pa. Next, the cathode changeover switch was set to the (A) side, RF output 20 W and DC output 2 W were added, and reverse sputtering was performed for 10 minutes to remove the oxide film on the magnet surface. Subsequently, with the changeover switch set to the (B) side, RF output 80 W and DC output 120 W were added, and normal sputtering was performed for 6 minutes.

得られた成膜磁石は、装置内を大気圧に戻した後にスパッタ装置に連結したグローブボックスに大気に触れずに移送して、同じく該グローブボックス内に設置した小型電気炉に装填して、初段を700〜850℃で10分間、2段目を600℃で30分間の熱処理を行った。   The obtained film-forming magnet was transferred to the glove box connected to the sputtering apparatus without returning to the atmospheric pressure after returning the inside of the apparatus to the small electric furnace, which was also installed in the glove box, The first stage was heat-treated at 700 to 850 ° C. for 10 minutes and the second stage at 600 ° C. for 30 minutes.

これらを参考例試料(1)〜(4)とした。なお、熱処理における磁石の酸化を防止するため、グローブボックス内は精製Arガスを循環させ、酸素濃度を2ppm以下に、露点を−75℃以下に維持した。 These were used as reference example samples (1) to (4). In order to prevent the magnet from being oxidized during the heat treatment, purified Ar gas was circulated in the glove box to maintain the oxygen concentration at 2 ppm or less and the dew point at −75 ° C. or less.

各試料の磁気特性は、4.8MA/mのパルス着磁を印加した後に振動試料型磁力計を用いて測定した。表1に、各試料の磁気特性値を、図2に、比較例試料(1)及び参考例試料(1)と(3)の減磁曲線を抜粋して示す。 The magnetic properties of each sample were measured using a vibrating sample magnetometer after applying a pulse magnetization of 4.8 MA / m. Table 1 shows the magnetic characteristic values of each sample, and FIG. 2 shows the demagnetization curves of the comparative example sample (1) and the reference example samples (1) and (3).

表1から明らかなように、Dy金属成膜とその後の熱処理によって参考例試料はいずれも比較例試料より高いエネルギー積(BH)maxを示し、特に、試料(3)においては比較例試料(1)と比較して38%の回復が認められた。この理由は、機械加工によって損傷を受けたNdリッチ層が修復強化されたことによると推察され、その結果として、図2の減磁曲線の形状から明らかなように、未処理の比較例試料と比較して表面改質された参考例試料の角型性(Hk/Hcj)が著しく改善されている。ここで、Hkは、減磁曲線上において磁化の値が残留磁化の90%に相当するときの磁界を意味する。 As is apparent from Table 1, the reference sample showed a higher energy product (BH) max than the comparative sample by the Dy metal film formation and the subsequent heat treatment, and in particular, the sample (3) had the comparative sample (1 ), A recovery of 38% was observed. The reason for this is presumed to be that the Nd-rich layer damaged by machining was repaired and strengthened. As a result, as is apparent from the shape of the demagnetization curve in FIG. In comparison, the squareness (Hk / Hcj) of the reference example surface-modified is remarkably improved. Here, Hk means a magnetic field when the magnetization value corresponds to 90% of the residual magnetization on the demagnetization curve.

Figure 0004977307
Figure 0004977307

上記測定後の試料についてDyの観察を行った。まず、参考例試料(1)について、樹脂に埋め込み研磨した後に硝酸アルコールで軽くエッチングをし、500倍の光学顕微鏡で観察した。その結果、約2μmの皮膜が試料の外周全面に均一に形成されていることがわかった。 The Dy film was observed for the sample after the measurement. First, the reference example sample (1) was embedded and polished in a resin, and then lightly etched with nitric alcohol and observed with a 500-fold optical microscope. As a result, it was found that a film of about 2 μm was uniformly formed on the entire outer periphery of the sample.

また、参考例試料(2)については、分析型走査型電子顕微鏡を用いて磁石の内部構造を観察した。その結果、図3(a)の反射電子像に示すように、試料表面部はDy成膜とその後の熱処理によって内部と異なった構造を呈していた。また、図3(b)のDy元素像によれば、表面層に高濃度のDyが存在すると同時に、試料内部にもDy元素が拡散浸透していることがわかり、拡散深さはおよそ10μmであることがわかった。なお、像中央部に見られるDy高濃度箇所は研磨時に剥がれた表層が一部転写したためと推測される。 Moreover, about the reference example sample (2), the internal structure of the magnet was observed using the analytical scanning electron microscope. As a result, as shown in the backscattered electron image of FIG. 3A, the sample surface portion exhibited a structure different from the inside by Dy film formation and subsequent heat treatment. Further, according to the Dy element image of FIG. 3B, it can be seen that a high concentration of Dy exists in the surface layer, and at the same time, the Dy element diffuses and penetrates into the sample, and the diffusion depth is about 10 μm. I found out. In addition, it is presumed that the surface layer peeled off at the time of polishing was partially transferred at the Dy high density portion seen in the center of the image.

参考例2)
参考例1において製作した外径1mm、内径0.3mm、長さ3mmの円筒形状磁石に、Nd、Dy、Pr、Tb、及びAlの各金属をそれぞれ成膜した。ここでNdとAlのターゲット寸法は、参考例1のDyと同じく外径80mm、内径30mm、厚さ20mmとし、PrとTbターゲットは、上記Alターゲットの試料に対向する面にのみ厚さ2mmの各金属を貼付固定して製作した。
( Reference Example 2)
Nd, Dy, Pr, Tb, and Al metals were formed on the cylindrical magnets having an outer diameter of 1 mm, an inner diameter of 0.3 mm, and a length of 3 mm manufactured in Reference Example 1, respectively. Here, the target dimensions of Nd and Al are 80 mm in outer diameter, 30 mm in inner diameter, and 20 mm in thickness, similar to Dy in Reference Example 1. The Pr and Tb targets are 2 mm in thickness only on the surface of the Al target facing the sample. Each metal was attached and fixed.

これらの各金属ターゲットを3次元スパッタ装置に取り付けた後、円筒形状磁石をタングステン電極線に2個セットし、順次ターゲット交換をして各金属をそれぞれ成膜した。成膜作業は、装置内にArガスを導入して装置内圧力を3Paに維持し、RF出力20WとDC出力2Wを加えて10分間の逆スパッタを行い、続いてRF出力100WとDC出力200Wを加えて5分間スパッタを行った。   After attaching each of these metal targets to a three-dimensional sputtering apparatus, two cylindrical magnets were set on the tungsten electrode wire, and the respective targets were exchanged to form each metal film. In the film forming operation, Ar gas was introduced into the apparatus to maintain the pressure in the apparatus at 3 Pa, RF output 20 W and DC output 2 W were added, and reverse sputtering was performed for 10 minutes, followed by RF output 100 W and DC output 200 W. And was sputtered for 5 minutes.

各金属皮膜の厚さは、磁石2個の内1個を樹脂に埋め込んで顕微鏡観察した結果、Alが3.5μm、希土類金属は、0.02〜2μmの範囲であった。一方、他の磁石はグローブボックス内の小型電気炉に装填し、800℃で10分間と600℃で30分間の拡散熱処理を行って参考例試料(5)から(8)、及び比較例試料(2)とした。 As for the thickness of each metal film, one of the two magnets was embedded in a resin and observed with a microscope. As a result, Al was 3.5 μm, and the rare earth metal was in the range of 0.02 to 2 μm. On the other hand, the other magnets were loaded into a small electric furnace in the glove box and subjected to diffusion heat treatment at 800 ° C. for 10 minutes and 600 ° C. for 30 minutes, and the reference sample samples (5) to (8) and the comparative sample sample ( 2).

なお、比較例試料(1)は表1より再掲載し、比較例試料(3)はNdを成膜したまま熱処理を施さない試料である。得られた磁石試料の磁気特性を表2に示す。表2から明らかなように、成膜金属がAlの場合には金属膜のない比較例試料(1)とほぼ同等の特性であり、表面改質の効果が見られない。また、比較例試料(3)は拡散熱処理を実施しないために拡散層が形成されず、磁気特性の特性の回復はみられない。一方、参考例試料はいずれも保磁力Hcjとエネルギー積(BH)maxが大幅に回復した。 The comparative sample (1) is listed again from Table 1, and the comparative sample (3) is a sample that is not subjected to heat treatment while Nd is deposited. Table 2 shows the magnetic properties of the obtained magnet sample. As is apparent from Table 2, when the deposited metal is Al, the characteristics are almost the same as those of the comparative sample (1) having no metal film, and the effect of surface modification is not observed. Further, since the comparative sample (3) is not subjected to the diffusion heat treatment, the diffusion layer is not formed, and the recovery of the magnetic characteristics is not observed. On the other hand, in all of the reference example samples, the coercive force Hcj and the energy product (BH) max recovered significantly.

Figure 0004977307
Figure 0004977307

参考
Nd12.5Fe78.5Co組成の合金から、参考例1と同様の工程で外径5.2mm、内径1.9mm、厚さ3mmの円盤形状をした焼結磁石を製作した。この磁石に外径研削と内径研削加工を施した後、平面研削盤を使用して外径5mm、内径2mm、厚さが0.1mm、0.2mm、0.5mm、0.8mm、1.2mm、1.8mmの各種寸法の円盤状磁石を得た。体積は約2mm〜30mm、比表面積(表面積/体積)は約21mm−l〜4mm−1の範囲である。
( Reference Example 3 )
A sintered magnet having an outer diameter of 5.2 mm, an inner diameter of 1.9 mm, and a thickness of 3 mm was manufactured from an alloy of Nd 12.5 Fe 78.5 Co 1 B 8 composition in the same process as in Reference Example 1. . This magnet is subjected to outer diameter grinding and inner diameter grinding, and then using a surface grinder, the outer diameter is 5 mm, the inner diameter is 2 mm, and the thickness is 0.1 mm, 0.2 mm, 0.5 mm, 0.8 mm. Disk-shaped magnets with various dimensions of 2 mm and 1.8 mm were obtained. Volume approximately 2mm 3 ~30mm 3, specific surface area (surface area / volume) is in the range of about 21mm -l ~4mm -1.

これらの磁石をステンレス鋼電極線に通して保持し、アーク放電型イオンプレーティング装置に取り付けた。そして、装置内を1×10−4Paまで真空排気した後に高純度Arガスを導入して装置内を2Paに維持した。上記ステンレス鋼線に−600Vの電圧を印加して20rpmで回転させながら、電子銃によって溶解蒸発させ、かつ熱電子放射電極とイオン化電極によってイオン化したDy粒子を、15分間磁石表面に堆積させて膜厚2μmの磁石試料を製作した。 These magnets were held through stainless steel electrode wires and attached to an arc discharge ion plating apparatus. Then, after evacuating the inside of the apparatus to 1 × 10 −4 Pa, high-purity Ar gas was introduced to maintain the inside of the apparatus at 2 Pa. While applying a voltage of −600 V to the stainless steel wire and rotating at 20 rpm, Dy particles dissolved and evaporated by an electron gun and ionized by a thermionic emission electrode and an ionization electrode are deposited on the magnet surface for 15 minutes to form a film. A magnet sample having a thickness of 2 μm was manufactured.

次に、この試料をグローブボックス内の小型電気炉に装填して、初段目を850℃で10分間、2段目を550℃で60分間の拡散熱処理を行って、試料厚さ0.1mmの参考例試料(14)から厚さ1.8mmの参考例試料(19)とした。なお、研削加工後の磁石を厚さ順に比較例試料(7)〜(12)とした。 Next, this sample was loaded into a small electric furnace in the glove box, and the first stage was subjected to diffusion heat treatment at 850 ° C. for 10 minutes and the second stage at 550 ° C. for 60 minutes to obtain a sample thickness of 0.1 mm. A reference example sample (19) having a thickness of 1.8 mm was obtained from the reference example sample (14). In addition, the magnet after grinding was used as comparative example samples (7) to (12) in order of thickness.

図4に、これら試料の厚さ寸法、比表面積(表面積/体積)、体積をパラメータにしたときの磁気特性(BH)maxの結果を示す。図4より、Dy金属を成膜して拡散熱処理をした参考例試料(14)〜(19)は、未処理の比較例試料(7)〜(12)に対していずれの寸法においても(BH)maxの回復が見られた。特に、体積が10mmより小さく、かつ表面積に対する体積比4mm−1より大きい場合において、表面改質による磁気特性の回復効果が著しいことが判った。 FIG. 4 shows the results of magnetic properties (BH) max when the thickness dimension, specific surface area (surface area / volume), and volume of these samples are used as parameters. As shown in FIG. 4, the reference sample samples (14) to (19) obtained by forming a Dy metal film and subjecting it to diffusion heat treatment are (BH) in any dimension compared to the untreated comparative sample samples (7) to (12). ) A recovery of max was seen. In particular, when the volume is smaller than 10 mm 3 and the volume ratio to the surface area is larger than 4 mm −1, it has been found that the effect of recovering the magnetic properties by the surface modification is remarkable.

ここで、磁石の改質特性について、特にDy膜厚と磁気特性について説明する。
図8は、Dy膜厚と磁気特性との関係を示しており、膜厚が、1.4μmが最適であることを示している。
更にモータ用磁石の熱処理温度については、図9は、熱処理温度と磁気特性との関係を示しており、特にモータ用磁石としては、900℃から1000℃が好適であり、特に900℃が、最適であることを見出した。1100℃では、特性が落ちることが確認された。
Here, the modification characteristics of the magnet, particularly the Dy film thickness and the magnetic characteristics will be described.
FIG. 8 shows the relationship between the Dy film thickness and the magnetic characteristics, and shows that the optimum film thickness is 1.4 μm.
Further, regarding the heat treatment temperature of the motor magnet, FIG. 9 shows the relationship between the heat treatment temperature and the magnetic properties. Particularly, 900 ° C. to 1000 ° C. is suitable as the motor magnet, and 900 ° C. is particularly optimum. I found out. It was confirmed that the characteristics deteriorated at 1100 ° C.

次に、上記のようにして得られた磁石を具えた本発明に係る小型モータについて説明する。
図6は、ロータに本発明に係る磁石を設けた小型モータの実施例である。
11は、ハウジング、12は、フランジで、ハウジング11内に界磁巻線15が、装着されている。
ロータ磁石14は、円筒状に形成され、軸13に固定され、シャフト軸と直交する方向に着磁されている。
軸13は、フランジ12に固着された軸受16に保持されている。17は、給電のための配線基板である。
It will now be described small motor according to the present invention provided with a magnet obtained as described above.
FIG. 6 shows an example of a small motor in which a magnet according to the present invention is provided on a rotor.
11 is a housing, 12 is a flange, and a field winding 15 is mounted in the housing 11.
The rotor magnet 14 is formed in a cylindrical shape, is fixed to the shaft 13, and is magnetized in a direction orthogonal to the shaft axis.
The shaft 13 is held by a bearing 16 fixed to the flange 12. Reference numeral 17 denotes a wiring board for supplying power.

ここで、パーミアンス係数は、次のように定義される。
図5において、反磁界Hdに対して対応するB-H曲線上の磁束密度の値Bdで表される点(Hd,Bd)を動作点という。そして、B-H減磁曲線における動作点と原点とを通る直線を動作線と言い、−B/H =Pcをパーミアンス係数と言う。
例えば、モータの場合、パーミアンス係数Pcは、次のような関係になる。
(Lm・Ag)/(Am・Lg)・(Kf/Kr) (1)
式(1)において、
Lm は、磁石の厚さ
Ag は、磁気ギャップ断面積
Am は、有効磁石断面積
Lg は、磁気ギャップ長
Kf は、漏洩係数
Kr は、起磁力損失係数
そして、モータの磁気回路を考える場合,逆磁界或いは熱の影響により、磁石が著しい不可逆減磁を起こさないように動作点における磁束密度が、変曲点以下にならないようにパーミアンス係数を設定する。そして、パーミアンス係数を1以上、好ましくは、1.4以上の設定する
このようにして小型モータ全体の外径寸法が、4mmの小型モータを得ることができる。
Here, the permeance coefficient is defined as follows.
In FIG. 5, the point (Hd, Bd) represented by the magnetic flux density value Bd on the BH curve corresponding to the demagnetizing field Hd is called an operating point. A straight line passing through the operating point and the origin in the BH demagnetization curve is referred to as an operating line, and −B / H = Pc is referred to as a permeance coefficient.
For example, in the case of a motor, the permeance coefficient Pc has the following relationship.
(Lm · Ag) / (Am · Lg) · (Kf / Kr) (1)
In equation (1),
Lm is the magnet thickness Ag is the magnetic gap cross-sectional area Am is the effective magnet cross-sectional area Lg is the magnetic gap length Kf is the leakage coefficient Kr is the magnetomotive force loss coefficient. The permeance coefficient is set so that the magnetic flux density at the operating point does not fall below the inflection point so that the magnet does not cause significant irreversible demagnetization due to the influence of the magnetic field or heat. Then, the permeance coefficient is set to 1 or more, preferably 1.4 or more. In this way, a small motor having an outer diameter of 4 mm as a whole can be obtained.

図7は、前記した磁石をステータに用いた小型モータの実施例である。
円筒状巻線25の軸方向開口一端部を回転軸23に固着しているカップ型ロータと、
該カップ型ロータの内部に配置され、円筒型ハウジング21に設けられて、回転軸と直交する方向に着磁された円筒形ステータ磁石24とにより構成している。22は、フランジである。
FIG. 7 shows an embodiment of a small motor using the above-described magnet as a stator.
A cup-type rotor in which one end of the axial opening of the cylindrical winding 25 is fixed to the rotary shaft 23;
The cylindrical stator magnet 24 is disposed inside the cup-shaped rotor, provided in the cylindrical housing 21 and magnetized in a direction perpendicular to the rotation axis. 22 is a flange.

Figure 0004977307

表4は、本発明と比較例の磁石仕様による(BH)max向上率と、それぞれの磁石を実装したモータのトルク定数(Kt)の向上率を示す。
Figure 0004977307

Table 4 shows the (BH) max improvement rate according to the magnet specifications of the present invention and the comparative example, and the improvement rate of the torque constant (Kt) of the motor on which each magnet is mounted.

表4から、磁石の比表面積とKt向上率との関係からその変曲点を求めると、比表面積が、4mm−1であり、一方体積とKt向上率との関係から、その変曲点を求めると、体積が10mmにあることが求まり、その変曲点から本発明の限定範囲が特定される。また体積が小さく比表面積が大きいほど、つまり磁石が小さいほど、加工劣化部の割合が多く、Dyによる修復による、(BH)max向上率が増大する。表4に示されるように、比較例D、Eに対して、実施例A、B、Cのものが優れていることが判る。
そして、本発明では、パーミアンス係数(動作点)を1以上、磁石の比表面積(表面積/体積)を4mm-1以上、磁石の体積を10mm3以下に選定するとモータの外径寸法は、3mm以下に製造できる。
From Table 4, when the inflection point is obtained from the relationship between the specific surface area of the magnet and the Kt improvement rate, the specific surface area is 4 mm −1 , while the inflection point is obtained from the relationship between the volume and the Kt improvement rate. If it calculates | requires, it will obtain | require that a volume exists in 10 mm < 3 > and the limited range of this invention is specified from the inflection point. In addition, the smaller the volume and the larger the specific surface area, that is, the smaller the magnet, the greater the ratio of the processing deteriorated portion, and the (BH) max improvement rate due to the repair by Dy increases. As shown in Table 4, it can be seen that Examples A, B and C are superior to Comparative Examples D and E.
In the present invention , when the permeance coefficient (operating point) is 1 or more, the specific surface area (surface area / volume) of the magnet is 4 mm -1 or more, and the magnet volume is 10 mm 3 or less, the outer diameter of the motor is 3 mm or less. Can be manufactured.

表面改質した円筒状Nd-Fe-B系焼結磁石(外径φ0.9mmおよびφ1.2mm)の保磁力(Hcj=〜1.18 MA/m)は、Dy金属の成膜と内部拡散を促す熱処理によりHcj=〜1.39 MA/mまで却って上昇し、得られた(BH)max値は加工前の磁石バルク材のそれとほぼ同等であった((BH)max=〜379 kJ/m3)。また表5は、本発明の試作モータの諸特性を、当社製市販モータ(外径φ2.0mm)のそれと併せて示している。ここで、表5の試作モータは、表4の磁石を実装したもので、実施例Bの磁石は、外径φ1.7mm試作モータに、実施例Cの磁石は、外径φ2.0mm試作モータに適用したものである。外径φ2.0mm試作モータは、当社製市販モータ(ロータにSm-Co系磁石使用:(BH)max=〜225kJ/m3、他の仕様は同一)と比較し、起動トルクが約26%、トルク定数が約23%、最大効率が約11%向上することが明らかになった。また、前記改質磁石と特殊界磁コイルの適用により、外径φ1.7mmにて、前記当社製市販モータ(外径φ2.0mm)と同等以上の起動トルクを得ることができた。 The coercive force (H cj = ~ 1.18 MA / m) of the surface-modified cylindrical Nd-Fe-B sintered magnet (outer diameter φ0.9mm and φ1.2mm) The accelerated heat treatment rose to H cj = ~ 1.39 MA / m, and the obtained (BH) max value was almost equivalent to that of the magnet bulk material before processing ((BH) max = ~ 379 kJ / m 3 ). Table 5 shows various characteristics of the prototype motor of the present invention, together with that of a commercially available motor (outside diameter φ2.0 mm) manufactured by our company. Here, the prototype motor of Table 5 is the one in which the magnet of Table 4 is mounted. The magnet of Example B is a prototype motor with an outer diameter of φ1.7 mm, and the magnet of Example C is an prototype motor with an outer diameter of φ2.0 mm. Is applied. Compared with our commercially available motor (using Sm-Co magnet for the rotor: (BH) max = ~ 225kJ / m 3 , other specifications are the same) The torque constant was improved by about 23% and the maximum efficiency was improved by about 11%. In addition, by using the modified magnet and special field coil, it was possible to obtain a starting torque equal to or greater than that of the above-mentioned commercially available motor (outer diameter φ2.0 mm) at an outer diameter φ1.7 mm.

Figure 0004977307

本発明の外径φ2.0mm試作モータと当社製市販モータの比較(同サイズでの比較)にて
トルク定数、最大効率及び起動トルク、特にトルク定数が顕著に向上している。
また、外径寸法がφ1.7mmのものについても、大きな起動トルクを得ることができた。
Figure 0004977307

The torque constant, the maximum efficiency and the starting torque, especially the torque constant are remarkably improved by comparing the prototype motor of the present invention with an outer diameter of φ2.0 mm and a commercially available motor manufactured by our company (comparison with the same size).
In addition, a large starting torque could be obtained even with an outer diameter of φ1.7 mm.

〔発明の効果〕
先ず、超小型モータのトルク定数が向上する。
すなわち、低回転/高トルクであり、低消費電流で済むことになる。機械的時定数が小さいことにより、応答性が向上することになり、さらに負荷に対する回転数変動を小さくすることができる。
更に改質効果として、ロータ磁石またはステータ磁石の保磁力が改善できることから、熱あるいは外部磁場に対して、減磁しにくく、高信頼性化が期待できる。かくして
超小型モータ、外径寸法1.7mmの駆動用モータを得ることができた。
〔The invention's effect〕
First, the torque constant of the micro motor is improved.
That is, low rotation / high torque and low current consumption are sufficient. Since the mechanical time constant is small, the responsiveness is improved, and the fluctuation in the rotational speed with respect to the load can be further reduced.
Furthermore, since the coercive force of the rotor magnet or stator magnet can be improved as a modification effect, it is difficult to demagnetize against heat or an external magnetic field, and high reliability can be expected. Thus, a micro motor and a driving motor having an outer diameter of 1.7 mm could be obtained.

本発明によれば、希土類金属を機械加工によって変質損傷した磁石表面に成膜拡散することにより、切断、穴あけ、研削、研磨等の機械加工によって変質損傷した磁石表面層を修復し、磁気特性を大幅に回復させることができる。また、その結果として、微小で、高性能磁石を用いた超小型モータの製造に役立つものである。   According to the present invention, a rare-earth metal film is diffused on the surface of a magnet that has been altered and damaged by machining, thereby repairing the magnet surface layer that has been altered and damaged by machining such as cutting, drilling, grinding, and polishing. It can be recovered significantly. Moreover, as a result, it is useful for manufacturing a micro motor using a small, high-performance magnet.

そしてこの小型モータは、医療機器、産業機器等など、さらには内視鏡各種レンズ駆動用デバイス、細管内自走検査ロボット等マイクロマシン動力用デバイス等として使用出来、従来に比べ、高出力、低消費電流、高応答性で超小型の機器が得られる。
また、今後主流となるであろう超小型モータのリフローによる基板実装に適用できる。
This small motor can be used as medical devices, industrial devices, etc., as well as devices for driving various types of endoscopes, micromachine power devices such as self-propelled inspection robots in narrow tubes, etc. An ultra-compact device with current and high response can be obtained.
It can also be applied to board mounting by reflow of ultra-small motors that will become the mainstream in the future.

本発明に好適に使用できる3次元スパッタ装置のターゲット周辺の模式図である。 To the onset bright is a schematic view of a target near suitably three-dimensional sputtering apparatus can be used. 参考例試料(1)と(3)、及び比較例試料(1)の減磁曲線を示すグラフである。It is a graph which shows the demagnetization curve of reference example samples (1) and (3), and a comparative example sample (1). Dy成膜後に熱処理した参考例試料(2)のSEM像(a:反射電子像、b:Dy元素像)を示す図面代用写真である。It is a drawing substitute photograph which shows the SEM image (a: reflected electron image, b: Dy element image) of the reference example sample (2) heat-processed after Dy film-forming. 参考例及び比較例試料の、磁石試料寸法と(BH)maxの関係図である。It is a related figure of a magnet sample size and (BH) max of a reference example and a comparative example sample. パーミアンス係数の説明図であるIt is explanatory drawing of a permeance coefficient. 石をロータに用いた本発明に係る小型モータの断面図である。The magnet is a cross-sectional view of a miniature motor according to the present invention used in the rotor. 石をステータに用いた本発明に係る小型モータの断面図である。The magnet is a cross-sectional view of a miniature motor according to the present invention used in the stator. Dy膜厚と磁気特性との関係を示す図である。It is a figure which shows the relationship between Dy film thickness and a magnetic characteristic. 熱処理温度と磁気特性との関係を示す図である。It is a figure which shows the relationship between heat processing temperature and a magnetic characteristic.

符号の説明Explanation of symbols

1 ターゲット
2 ターゲット
3 高周波コイル
4 磁石
5 電極線
6 モータ
7 プラズマ空間
11 ハウジング
12 フランジ
13 シャフト
14 円筒状ロータ磁石
15 界磁巻線
16 軸受
17 配線基板
21 ハウジング
22 フランジ
23 シャフト
24 円筒状ステ-タ磁石
25 円筒状巻線
DESCRIPTION OF SYMBOLS 1 Target 2 Target 3 High frequency coil 4 Magnet 5 Electrode wire 6 Motor 7 Plasma space 11 Housing 12 Flange 13 Shaft 14 Cylindrical rotor magnet 15 Field winding 16 Bearing 17 Wiring board 21 Housing 22 Flange 23 Shaft 24 Cylindrical stator Magnet 25 Cylindrical winding

Claims (6)

ハウジングと、該ハウジングの内側に設けられた界磁巻線と、軸受部によって回転可能に支持されたシャフトと、該シャフトに設けられ、シャフト軸と直交する方向に着磁された円筒形ロータ磁石とを具えた小型モータであって、
該円筒形ロータ磁石は、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石であって、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を磁石表面から拡散浸透させることによって、前記変質損傷部を改質して(BH)maxを280kJ/m 3 以上とした焼結磁石からなさらに該小型モータにおいて、
パーミアンス係数(動作点)が1以上、
前記ロータ磁石の比表面積(表面積/体積)が4mm-1以上、
前記ロータ磁石の体積が10mm3以下
に選定されていることを特徴とする小型モータ。
A housing, a field winding provided inside the housing, a shaft rotatably supported by a bearing portion, and a cylindrical rotor magnet provided on the shaft and magnetized in a direction perpendicular to the shaft axis A small motor with
The cylindrical rotor magnet is a cylindrical Nd-Fe-B-based or Pr-Fe-B-based sintered magnet having a perforated inner surface having a surface that has been damaged by machining. An R metal (where R is one of rare earth elements selected from Y and Nd, Dy, Pr, Ho, Tb) or more than a depth corresponding to the radius of the crystal grain exposed on the outermost surface. by cementation of two or more) from the magnet surface, the altered lesion Ri Do sintered magnet was by reforming (BH) max 280kJ / m 3 or more, and in yet the small motor,
Permeance coefficient (operating point) is 1 or more,
The specific surface area (surface area / volume) of the rotor magnet is 4 mm −1 or more,
A small motor, wherein the volume of the rotor magnet is selected to be 10 mm 3 or less.
円筒状巻線コイルの軸方向開口一端部を回転軸に固着しているカップ型ロータと、
該カップ型ロータの内部に配置され、円筒形ヨークに設けられて、回転軸と直交する方向に着磁された円筒形ステータ磁石とを具えた小型モータであって、
該円筒形ステータ磁石は、機械加工によって変質損傷した表面を有する穴のあいた内表面を有する円筒形状のNd−Fe−B系又はPr−Fe−B系の焼結磁石であって、該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にR金属(但し、Rは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を磁石表面から拡散浸透させることによって、前記変質損傷部を改質して(BH)maxを280kJ/m 3 以上とした焼結磁石からなさらに該小型モータにおいて、
パーミアンス係数(動作点)が1以上、
前記ステータ磁石の比表面積(表面積/体積)が4mm-1以上、
前記ステータ磁石の体積が10mm3以下
に選定されていることを特徴とする小型モータ。
A cup-type rotor in which one end of an axial opening of a cylindrical winding coil is fixed to a rotating shaft;
A small motor comprising a cylindrical stator magnet disposed inside the cup-shaped rotor, provided on a cylindrical yoke, and magnetized in a direction perpendicular to the rotation axis;
The cylindrical stator magnet is a cylindrical Nd-Fe-B-based or Pr-Fe-B-based sintered magnet having a perforated inner surface having a surface that has been altered and damaged by machining. An R metal (where R is one of rare earth elements selected from Y and Nd, Dy, Pr, Ho, Tb) or more than a depth corresponding to the radius of the crystal grain exposed on the outermost surface. by cementation of two or more) from the magnet surface, the altered lesion Ri Do sintered magnet was by reforming (BH) max 280kJ / m 3 or more, and in yet the small motor,
Permeance coefficient (operating point) is 1 or more,
The specific surface area (surface area / volume) of the stator magnet is 4 mm -1 or more,
A small motor, wherein a volume of the stator magnet is selected to be 10 mm 3 or less.
パーミアンス係数(動作点)が1.4以上であることを特徴とする請求項又はのいずれか1項に記載の小型モータ。 Small motor according to any one of claims 1 or 2, characterized in that the permeance coefficient (operating point) is 1.4 or more. 前記磁石表面に拡散浸透で形成された被膜の厚さを0.02乃至2μmとしたことを特徴とする請求項乃至のいずれか1項に記載の小型モータ。 The small motor according to any one of claims 1 to 3 , wherein a thickness of a film formed by diffusion penetration on the magnet surface is set to 0.02 to 2 µm. 前記R金属が、Dyであつて、前記磁石表面に拡散浸透で形成された被膜の厚さを1.4μmとしたことを特徴とする請求項乃至のいずれか1項に記載の小型モータ。 Wherein R metals, Dy der connexion, miniature motor according to any one of claims 1 to 4, characterized in that a 1.4μm thickness of the coating formed by diffusion coating on the surface of the magnet . 前記モータの外径寸法が、3mm以下に選定されることを特徴とする請求項乃至のいずれか1項に記載の小型モータ。 Small motor according to any one of claims 1 to 5 the outer diameter of the motor, characterized in that it is chosen to 3mm or less.
JP2004017622A 2004-01-26 2004-01-26 Small motor Expired - Lifetime JP4977307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017622A JP4977307B2 (en) 2004-01-26 2004-01-26 Small motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017622A JP4977307B2 (en) 2004-01-26 2004-01-26 Small motor

Publications (2)

Publication Number Publication Date
JP2005210876A JP2005210876A (en) 2005-08-04
JP4977307B2 true JP4977307B2 (en) 2012-07-18

Family

ID=34902381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017622A Expired - Lifetime JP4977307B2 (en) 2004-01-26 2004-01-26 Small motor

Country Status (1)

Country Link
JP (1) JP4977307B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445940B2 (en) * 2009-12-15 2014-03-19 ミネベア株式会社 Magnetic circuit of micro rotating electrical machine
JP5692496B2 (en) 2010-04-28 2015-04-01 ミネベア株式会社 LAMINATED RESIN COMPOSITE MAGNETIC MEMBRANE MANUFACTURING METHOD AND DIAMETER VERTICAL GAP
DE102012221448A1 (en) * 2012-11-23 2014-06-12 Hochschule Aalen Magnetic material and process for its production
JP6239825B2 (en) * 2013-01-25 2017-11-29 アイチエレック株式会社 Permanent magnet and method for manufacturing permanent magnet
CN105185498B (en) * 2015-08-28 2017-09-01 包头天和磁材技术有限责任公司 Rare earth permanent-magnet material and its preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663086B2 (en) * 1985-09-27 1994-08-17 住友特殊金属株式会社 Permanent magnet material and manufacturing method thereof
JPH10317109A (en) * 1997-05-22 1998-12-02 Sumitomo Special Metals Co Ltd Production of thin permanent magnet
JP4723741B2 (en) * 2001-03-16 2011-07-13 昭和電工株式会社 Rare earth magnet alloy ingot quality determination method, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy

Also Published As

Publication number Publication date
JP2005210876A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP3897724B2 (en) Manufacturing method of micro, high performance sintered rare earth magnets for micro products
JP3960966B2 (en) Method for producing heat-resistant rare earth magnet
JP4737431B2 (en) Permanent magnet rotating machine
JP2005011973A (en) Rare earth-iron-boron based magnet and its manufacturing method
JP4748163B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP4698581B2 (en) R-Fe-B thin film magnet and method for producing the same
WO2006064848A1 (en) Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
EP3226262B1 (en) Permanent magnet, motor, and generator
WO2007119271A1 (en) Thin-film rare earth magnet and method for manufacturing the same
JP2010135529A (en) Nd BASED SINTERED MAGNET, AND METHOD OF MANUFACTURING THE SAME
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP2000223306A (en) R-t-b rare-earth sintered magnet having improved squarene shape ratio and its manufacturing method
EP3121820B1 (en) Permanent magnet, motor and generator
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP4977307B2 (en) Small motor
WO2007077809A1 (en) Rare earth magnet and method for producing same
JP2006179963A (en) Nd-Fe-B MAGNET
JP4803398B2 (en) Multilayer permanent magnet
JP3953498B2 (en) Cylindrical or disk-shaped sintered rare earth magnets for micro products
US10892091B2 (en) Permanent magnet, motor, and generator
JP2010267790A (en) Method of manufacturing permanent magnet
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine
WO2006085581A1 (en) Ultra small rare earth magnet and method for manufacturing same
JP2005285795A (en) Rare-earth magnet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250