JP5445940B2 - Magnetic circuit of micro rotating electrical machine - Google Patents

Magnetic circuit of micro rotating electrical machine Download PDF

Info

Publication number
JP5445940B2
JP5445940B2 JP2009283637A JP2009283637A JP5445940B2 JP 5445940 B2 JP5445940 B2 JP 5445940B2 JP 2009283637 A JP2009283637 A JP 2009283637A JP 2009283637 A JP2009283637 A JP 2009283637A JP 5445940 B2 JP5445940 B2 JP 5445940B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic circuit
magnetic
film
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009283637A
Other languages
Japanese (ja)
Other versions
JP2011130522A (en
Inventor
文敏 山下
真作 西村
昇 校條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2009283637A priority Critical patent/JP5445940B2/en
Publication of JP2011130522A publication Critical patent/JP2011130522A/en
Application granted granted Critical
Publication of JP5445940B2 publication Critical patent/JP5445940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微小回転電気機械の磁気回路に関する。さらに詳しくは、直径2 mm以下で、非磁性材を付与したソフト相とハード相とのナノスケール多結晶集合組織からなる残留磁化Mr 0.95 T以上の磁気的に等方性の磁石膜を所定数積層した後、当該磁石膜の面内方向に極対数2以上の多極磁化を施し、軸心方向に回転自在に支持された円柱の回転子磁石を備え、該回転子磁石と対向する励磁巻線を有する固定子鉄心との空隙パーミアンスPgを8以上とした高トルク型微小回転電気機械の磁気回路に関する。 The present invention relates to a magnetic circuit of a micro rotating electric machine. More specifically, a magnetically isotropic magnetic film having a diameter of 2 mm or less and a remanent magnetization Mr 0.95 T or more composed of a nanoscale polycrystalline texture of a soft phase and a hard phase imparted with a nonmagnetic material. after a predetermined number of stacked, subjected to a pole pairs 2 or more multi-pole magnetized in the in-plane direction of the magnetic film, provided with a rotor magnet of a cylinder rotatably supported in the axial direction, opposite to the said rotor magnet The present invention relates to a magnetic circuit of a high torque type micro rotating electric machine having a gap permeance Pg of 8 or more with respect to a stator core having an exciting winding.

回転電気機械の小型化に関して、例えば、情報通信機器などに利用される回転電気機械は体積約100 mmまで小型軽量化したものが市場を形成している。これらの回転電気機械のトルクは回転電気機械の体積とスケーリング則に基づく累乗近似が成立ち、著しいトルク低下があることが知られている。しかしながら、車載、情報家電、通信、精密計測、医療福祉機器分野の電気電子機器やロボットなどの駆動源として高トルク微小回転電気機械が求められている。 Regarding the downsizing of rotating electrical machines, for example, rotating electrical machines used for information communication equipment and the like have a market that is reduced in size and weight to about 100 mm 3 . It is known that the torque of these rotating electric machines has a power approximation based on the volume of the rotating electric machine and the scaling law, and there is a significant torque drop. However, a high-torque micro-rotating electric machine is required as a driving source for electric / electronic devices and robots in the fields of in-vehicle, information appliances, communication, precision measurement, medical welfare equipment.

例えば、特許文献1はスロットを設けた導電円筒状壁を有する円筒状本体を励磁巻線とし、外径1 mm以下、長さ2 mm以下の径方向空隙型ブラシレスDCモータの血管内超音波走査システムへの応用が開示されている。また、特許文献2では体内に位置する血液ポンプを駆動するために身体の脈管系内に導入できる外径8 mm以下の流体冷却式径方向空隙型ブラシレスDCモータが提案され、励磁巻線部分の熱放散を高めることで30,000 r/minで出力5 Wが得られるとしている。   For example, Patent Document 1 uses a cylindrical main body having a conductive cylindrical wall provided with a slot as an excitation winding, and an intravascular ultrasonic scanning of a radial gap type brushless DC motor having an outer diameter of 1 mm or less and a length of 2 mm or less. Application to the system is disclosed. Patent Document 2 proposes a fluid-cooled radial gap type brushless DC motor having an outer diameter of 8 mm or less that can be introduced into the vascular system of the body in order to drive a blood pump located in the body. It is said that an output of 5 W can be obtained at 30,000 r / min by increasing the heat dissipation.

上記にかかる微小回転電気機械としては、例えば、放電加工したNd2Fe14B焼結磁石部材を外径 0.76 mmの2極ロータとし、固定子鉄心と組合せて外径1.6 mm、長さ2 mmのブラシレスDCモータ[非特許文献1]。更に、H. Raisigel、M. Nakano、伊東らにより、外径6 mm、長さ2.2 mm [非特許文献2]、外径 5 mm、長さ1 mm [非特許文献3]、並びに、外径 0.8 mm、長さ1.2 mm [非特許文献4]などの微小回転電気機械が知られている。しかし、これらの微小回転電気機械はスケーリング則による体積減少に伴う著しいトルク減少が起こる[非特許文献5]。   As the micro rotating electric machine according to the above, for example, a discharge-processed Nd2Fe14B sintered magnet member is used as a two-pole rotor having an outer diameter of 0.76 mm, combined with a stator core, and an outer diameter of 1.6 mm and a length of 2 mm. Brushless DC motor [Non-Patent Document 1]. Further, H.C. Raisigel, M.M. By Nakano and Ito et al., Outer diameter 6 mm, length 2.2 mm [Non-patent document 2], outer diameter 5 mm, length 1 mm [non-patent document 3], and outer diameter 0.8 mm, long A micro-rotating electric machine having a thickness of 1.2 mm [Non-Patent Document 4] is known. However, in these micro rotating electric machines, significant torque reduction occurs due to volume reduction due to the scaling law [Non-Patent Document 5].

一方、上記のような微小回転電気機械の回転子磁石に関しても多くの提案がある。例えば、異方性Nd2Fe14B系焼結磁石を外径0.9 mmに研削加工した後、当該表面にDy, Tbなどのスパッタ膜を形成し、内部拡散を促す熱処理を施した残留磁化Mr ≦1.35 T、保磁力HcJ= 1.34 MA/m、(BH)max = 341 kJ/mのバルク状回転子磁石[特許文献3]、D. Hinzらは750℃でのdie upsetで残留磁化Mr = 1.25 T、保磁力HcJ= 1.06 MA/m、(BH)max = 290 kJ/mの異方性Nd2Fe14B系熱間加工磁石による厚さ300μmの磁石膜を示している[非特許文献6]。 On the other hand, there are many proposals regarding the rotor magnet of the micro rotating electric machine as described above. For example, after an anisotropic Nd2Fe14B sintered magnet is ground to an outer diameter of 0.9 mm, a sputtered film of Dy, Tb, etc. is formed on the surface, and a heat treatment that promotes internal diffusion is applied. .35 T, coercive force HcJ = 1.34 MA / m, (BH) max = 341 kJ / m 3 bulk rotor magnet [Patent Document 3], D.C. Hinz et al., An anisotropic Nd2Fe14B-based hot-working magnet with a die upset at 750 ° C. with residual magnetization Mr = 1.25 T, coercive force HcJ = 1.06 MA / m, (BH) max = 290 kJ / m 3 Shows a magnet film having a thickness of 300 μm [Non-patent Document 6].

また、J. Delamereらは16極着磁したSm−Co系磁石による回転子磁石、および対向する固定子で、100,000 rpmとしたとき10 μNmのトルク、或いは発電機として150,000 rpmで駆動したとき1 W の電力が得られるとしている[非特許文献7]。また、Topferら、およびT. Speliotisらは直径10 mm のFe−Si基板にスクリーン印刷した残留磁化Mr 0.42 T、15.8 kJ/m、厚さ500μmのNd2Fe14Bボンド磁石膜を回転子とし、トルク55 μNmのモータを報告している[非特許文献8]。 In addition, J.H. Delamere et al. Are a 16-pole magnetized Sm-Co-based rotor magnet and an opposing stator. When driven at 100,000 rpm, the torque is 10 μNm, or the generator is driven at 150,000 rpm. The power of W 2 is obtained [Non-patent Document 7]. Also, Topfer et al. Speriotis et al. Used a Nd2Fe14B bonded magnet film with a residual magnetization Mr 0.42 T, 15.8 kJ / m 3 , and a thickness of 500 μm printed on a 10 mm diameter Fe—Si substrate as a rotor, and a motor with a torque of 55 μNm. [Non-Patent Document 8].

以上のように微小回転電気機械の回転子磁石に関しては残留磁化Mrが0.42〜1.35 Tに至る広範な磁気特性、磁石膜からバルクに至る多様な形態のものが試行されているのが現状である。   As described above, with respect to the rotor magnet of a micro rotating electric machine, a wide variety of magnetic characteristics in which the remanent magnetization Mr ranges from 0.42 to 1.35 T, and various forms from the magnet film to the bulk have been tried. Is the current situation.

以下に、背景の技術の欄にて示した特許文献、および非特許文献を記載する。また、発明が解決しようとする課題の欄ほかにて引用する特許文献、並びに非特許文献を記載する。   Below, the patent document shown in the column of background art and a nonpatent literature are described. In addition, patent documents and non-patent documents cited in the column of problems to be solved by the invention are described.

特表平9−501820号公報JP-T 9-501820 特表2002−532047号公報Japanese translation of PCT publication No. 2002-532047 特開2005−210876号公報JP 2005-210876 A

太田 斎, 小原隆雄, 唐田行庸, 武田宗久,三菱電機技報 Vol.75, pp.703−708 (2001)Sai Ohta, Takao Ohara, Yuki Karada, Munehisa Takeda, Mitsubishi Electric Technical Report Vol. 75, pp. 703-708 (2001) H. Raisigel, O. Wiss, N. Achotte, O. Cugat, J. Delamare, Proc. of 18th Int. workshop on high performance magnets and their applications, Annecy, France, pp.942−944, (2004)H. Raisigel, O .; Wiss, N.M. Achotte, O .; Cugat, J.A. Delamare, Proc. of 18th Int. workshop on high performance magnets and their applications, Annecy, France, pp. 942-944, (2004) M. Nakano, S. Sato, R. Kato, H. Fukunaga, F. Yamashita, S. Hoefinger and J. Fidler, Proc. 18th Int. Workshop on High Performance Magnets and Their Applications, Annecy, France, pp.723−726 (2004)M.M. Nakano, S .; Sato, R.A. Kato, H.C. Fukunaga, F.A. Yamashita, S .; Hoefinger and J.H. Fiddler, Proc. 18th Int. Workshop on High Performance Magnets and Their Applications, Annecy, France, pp. 723-726 (2004) 伊東哲也,日本応用磁気学会誌, Vol.18, pp.922−927, (1994)Tetsuya Ito, Journal of Japan Society of Applied Magnetics, Vol. 18, pp. 922-927, (1994) 山下文敏、日本応用磁気学会 第143回研究会資料、中央大駿河台記念館(2005)Fumitoshi Yamashita, The Japan Society of Applied Magnetics, 143rd Meeting Material, Chuo Daisurugadai Memorial Hall (2005) D. Hinz, O. Gutfleisch and K. H. Muller, Proc. 18th Int. Workshop on High Performance Magnets and Their Applications, Annecy, France, pp. 76−83 (2004)D. Hinz, O .; Gutfleichech and K.C. H. Muller, Proc. 18th Int. Workshop on High Performance Magnets and Their Applications, Annecy, France, pp. 76-83 (2004) J. Delamare, G. Reyne, O. Cugat, Proc. of 18th Int. workshop on high performance magnets and their applications, Annecy, France, pp.767−778, (2004)J. et al. Delamare, G.M. Reyne, O .; Cugat, Proc. of 18th Int. workshop on high performance magnets and their applications, Annecy, France, pp. 767-778, (2004) Topfer, B. Pawlowski, D. Schabbel,Proc. of 18th Int. workshop on high performance magnets and their applications, pp.942−944, (2004)Topfer, B.M. Pawlowski, D.C. Schabbel, Proc. of 18th Int. workshop on high performance magnets and ther applications, pp. 942-944, (2004) H. Fukunaga, H. Nakayama, M. Nakano, M. Ishimaru, M. Itakura, and F.Yamashita, Intermag 2008, FG−06H. Fukunaga, H. et al. Nakayama, M .; Nakano, M .; Ishimaru, M .; Itakura, and F.R. Yamashita, Intermag 2008, FG-06 金清裕和、広沢哲,日本応用磁気学会誌,vol.22, pp.385−387 (1998)Hirokazu Kanei, Satoshi Hirosawa, Journal of Japan Society of Applied Magnetics, vol. 22, pp. 385-387 (1998)

ところで、永久磁石式回転電気機械のトルクTは極対数をPn、電流をI(Id, Iq)、インダクタンスをL(Ld, Lq)、及び鎖交磁束をΦaとすれば数式1で示される。
〈数式1〉
T = [Pn×Φa×Iq] + [Pn×(Ld−Lq)×Id]
By the way, the torque T of the permanent magnet type rotating electrical machine is expressed by Equation 1 if the number of pole pairs is Pn, the current is I (Id, Iq), the inductance is L (Ld, Lq), and the flux linkage is Φa.
<Formula 1>
T = [Pn × Φa × Iq] + [Pn × (Ld−Lq) × Id]

ここで、右辺第1項は磁石トルク、第2項はリラクタンストルクである。なお、本発明が対象とする微小回転電気機械は磁石回転子の直径が2 mm以下である。このような実寸法の制約から本発明が対象とする回転子は永久磁石と非磁性材料の回転軸のみで構成されて、回転子鉄心をもたない。このような回転子磁石のみで回転子鉄心のない微小回転電機機械の発生トルクTは右辺第1項の磁石トルク(Pn×Φa×Iq)のみとなり、第2項のリラクタンストルクはない。   Here, the first term on the right side is the magnet torque, and the second term is the reluctance torque. In addition, the micro rotary electric machine which this invention makes object is 2 mm or less in diameter of a magnet rotor. Due to such actual size restrictions, the rotor targeted by the present invention is composed only of a permanent magnet and a rotating shaft of a nonmagnetic material, and does not have a rotor core. The torque T generated in such a micro-rotary electric machine with only a rotor magnet and no rotor core is only the magnet torque (Pn × Φa × Iq) in the first term on the right side, and there is no reluctance torque in the second term.

なお、数式1から、磁石トルクは極対数Pn、鎖交磁束密度Φa、すなわち空隙磁束密度Φg、固定子励磁巻線の通電電流Iに比例する。また、モータのトルク定数Kt(Nm/A)は固定子励磁巻線の通電電流Iに対するトルク勾配であり、Ktが大きいほど回転駆動力が増し、電流制御が容易となる。このことから回転電気機械の微小化に伴うトルク減少を抑制し、さらにKtを増して回転駆動力や制御性を高める手段として、1) 極対数Pnを増加する。2)空隙パーミアンスPgを高めて磁気抵抗を低減する。3)励磁電流Iq、または励磁巻線の巻数nを増すことで固定子側の励磁力を強めるなどがある。   From Equation 1, the magnet torque is proportional to the pole pair number Pn, the interlinkage magnetic flux density Φa, that is, the gap magnetic flux density Φg, and the energization current I of the stator excitation winding. Further, the torque constant Kt (Nm / A) of the motor is a torque gradient with respect to the energization current I of the stator excitation winding, and the greater the Kt, the greater the rotational driving force and the easier the current control. From this, as a means for suppressing the torque reduction accompanying the miniaturization of the rotating electrical machine and further increasing the rotational driving force and controllability by increasing Kt, 1) the number of pole pairs Pn is increased. 2) Increase the air gap permeance Pg to reduce the magnetic resistance. 3) Increasing the excitation current Iq or the number of turns n of the excitation winding increases the excitation force on the stator side.

しかしながら、本発明が対象としている微小回転電気機械の回転子磁石の外径は2.0 mm以下である。このような外径2.0 mm以下の回転子磁石において、例えば 特許文献3では、残留磁化Mr = 1.35 Tの異方性NdFe14B系焼結磁石、すなわち、高い残留磁化Mrをもつ磁気異方性バルク回転子磁石を開示している。しかし、このような直径2.0 mm以下の一つのバルクから構成した磁気異方性磁石では極対数Pnが1に限定され、極対数Pnを増すことができない。また、磁極毎にバルクを分割し、これを組立てることも考えられるが、この場合には高度な機械的な寸法精度、並びに高度な異方性の方向を含む磁気特性の精度などが求められ、それらを勘案すると工業的規模での生産は困難であることは明白である。 However, the outer diameter of the rotor magnet of the micro rotating electric machine targeted by the present invention is 2.0 mm or less. In such a rotor magnet having an outer diameter of 2.0 mm or less, for example, in Patent Document 3, an anisotropic Nd 2 Fe 14 B-based sintered magnet having a residual magnetization Mr = 1.35 T, that is, a high residual magnetization Mr. Discloses a magnetic anisotropic bulk rotor magnet. However, in such a magnetic anisotropic magnet composed of one bulk having a diameter of 2.0 mm or less, the number of pole pairs Pn is limited to 1, and the number of pole pairs Pn cannot be increased. In addition, it is conceivable to divide the bulk for each magnetic pole and assemble this, but in this case, high mechanical dimensional accuracy, high accuracy of magnetic properties including the direction of high anisotropy, etc. are required. Considering these, it is clear that production on an industrial scale is difficult.

さらに、特許文献3では磁気異方性バルク回転子磁石の外径が1.2 、0.9 mmのとき、当該回転電気機械の外径を、それぞれ2.0、1.7 mmと開示している。ここで、スロットレス構造の励磁巻線を固定するハウジングを兼ねたソフト磁性材料(固定子鉄心)の厚さを0.1 mmと仮定すればソレノイド励磁巻線の収納空間を含む回転子磁石とソフト磁性材料(固定子鉄心)との空隙は0.3 mmとなる。   Further, Patent Document 3 discloses that when the outer diameter of the magnetic anisotropic bulk rotor magnet is 1.2 mm and 0.9 mm, the outer diameter of the rotating electric machine is 2.0 mm and 1.7 mm, respectively. ing. Here, assuming that the thickness of the soft magnetic material (stator core) that also serves as a housing for fixing the slotless structure excitation winding is 0.1 mm, the rotor magnet including the storage space for the solenoid excitation winding The gap with the soft magnetic material (stator core) is 0.3 mm.

回転子磁石の残留磁束密度Brを1.35 T、可逆(リコイル)透磁率μrを1.15、回転子磁石外径Doを1.2 mm、回転子磁石内径Diを0.3 mm、回転子磁石長Lを 4.8 mm、および極対数1の回転子磁石の磁極角度θmを180度としたとき、等価磁石長(厚み)Lmは(Do−Di)/2から0.45 mmとなる。さらに、固定子鉄心はスロットレスなので対向角θeを360度、鉄心内径Daを1.8 mm、鉄心長Laを5 mm、漏洩係数fを1.1、起磁力損失係数γを1と仮定して、スロットレス型固定子と永久磁石回転子で磁気回路を構成する微小回転電気機械の等価断面積Am、空隙断面積Ag、空隙長Lg、空隙パーミアンス係数Pgを、それぞれ 数式2、3、4、5から、さらに有効空隙磁束密度Φgを数式6から見積もった。すると、空隙パーミアンス係数Pgは2.4、空隙磁束密度φgは4.7×10−6 Wbと見積もられる。 The residual magnetic flux density Br of the rotor magnet is 1.35 T, the reversible (recoil) permeability μr is 1.15, the rotor magnet outer diameter Do is 1.2 mm, and the rotor magnet inner diameter Di is 0.3 mm. When the child magnet length L is 4.8 mm and the magnetic pole angle θm of the rotor magnet having a pole pair of 1 is 180 degrees, the equivalent magnet length (thickness) Lm is (Do-Di) / 2 to 0.45 mm. Become. Furthermore, since the stator core is slotless, the facing angle θe is 360 degrees, the core inner diameter Da is 1.8 mm, the core length La is 5 mm, the leakage coefficient f is 1.1, and the magnetomotive force loss coefficient γ is 1. The equivalent cross-sectional area Am, air-gap cross-sectional area Ag, air-gap length Lg, and air-gap permeance coefficient Pg of a micro-rotary electric machine that constitutes a magnetic circuit with a slotless stator and a permanent magnet rotor are expressed by equations 2, 3, 4 respectively. 5 and the effective air gap magnetic flux density Φg was estimated from Equation 6. Then, the air gap permeance coefficient Pg is estimated to be 2.4, and the air gap magnetic flux density φg is estimated to be 4.7 × 10 −6 Wb.

〈数式2〉
Am=((Do+Di)/2)×(π×θm/360)×L
〈数式3〉
Ag = ((Di+Da)/2)×(π×θe/360)×La
〈数式4〉
Lg = (Da−Di)/2
〈数式5〉
Pg = Lm×Ag×f/(Am×Lg×γ)
〈数式6〉
<Formula 2>
Am = ((Do + Di) / 2) × (π × θm / 360) × L
<Formula 3>
Ag = ((Di + Da) / 2) × (π × θe / 360) × La
<Formula 4>
Lg = (Da-Di) / 2
<Formula 5>
Pg = Lm × Ag × f / (Am × Lg × γ)
<Formula 6>

以上のようなスロットレス型固定子と永久磁石回転子で磁気回路を構成する微小回転電気機械の高トルク化手段としては、磁気異方性バルク回転子磁石の残留磁化Mrを更に高めることが有効である。しかしながら、特許文献3が開示する磁気異方性NdFe14B系焼結磁石のバルクを所定形状の回転子磁石の機械加工ののち、当該表面にDy、Tbなどを物理的に成膜し、熱処理により磁気特性を回復したのちの残留磁化Mrは既に1.35 Tである。このため、その値を大幅に超える高い残留磁化Mrを表面改質で得るのは困難である。また、仮に、NdFe14B金属間化合物の飽和磁化Msの理論値 1.6 Tを残留磁化Mrとした理想磁石を得たとしたとき、その空隙磁束密度Φgは5.5×10−6 Wbと見積もられる。つまり、式1における右辺第1項の磁石トルク(Pn×Φa×Iq)において回転子磁石にかかる極対数Pnを1とした状態で、磁気異方性NdFe14B焼結磁石の理論限界まで残留磁化Mrを高めたと仮定しても、当該微小回転電気機械の空隙磁束密度Φaの比から、これによる磁石トルクの向上は1.2倍未満にとどまる。 As a means for increasing the torque of a micro rotating electric machine that forms a magnetic circuit with the slotless stator and the permanent magnet rotor as described above, it is effective to further increase the residual magnetization Mr of the magnetic anisotropic bulk rotor magnet. It is. However, after the magnetic anisotropy Nd 2 Fe 14 B-based sintered magnet disclosed in Patent Document 3 is machined into a rotor magnet having a predetermined shape, Dy, Tb, etc. are physically deposited on the surface. The residual magnetization Mr after recovery of the magnetic properties by heat treatment is already 1.35 T. For this reason, it is difficult to obtain a high remanent magnetization Mr that greatly exceeds that value by surface modification. Also, assuming that an ideal magnet is obtained in which the theoretical value 1.6 T of the saturation magnetization Ms of the Nd 2 Fe 14 B intermetallic compound is the residual magnetization Mr, the gap magnetic flux density Φg is 5.5 × 10 −6. Estimated as Wb. That is, the theoretical limit of the magnetic anisotropy Nd 2 Fe 14 B sintered magnet with the number of pole pairs Pn applied to the rotor magnet set to 1 in the magnet torque (Pn × Φa × Iq) of the first term on the right side in Equation 1. Even if it is assumed that the remanent magnetization Mr is increased to the above, the improvement in the magnet torque due to the ratio of the gap magnetic flux density Φa of the micro rotating electric machine is less than 1.2 times.

なお、上記構成の微小回転電気機械を対象に、Topferら、およびT. Speliotisらの磁気的に等方性の残留磁化Mr 0.42 Tの磁石[非特許文献8]を回転子に適用すると、得られる空隙磁束密度Φaは1.4×10−6 Wb程度にとどまる。このため、極対数Pnを4以上としなければ相応の磁石トルクは得られない。例えば直径1.2 mmの回転子磁石で極対数4とした場合、その極間距離は0.5 mm未満となる。このような磁極間距離0.5 mm未満での多極飽和磁化は困難である。また、極対数を5としたとき、極対数1の異方性NdFe14B系焼結磁石回転子で得られる磁石トルクを概ね1.2倍に改善できることが期待できる。しかしながら、その磁極間距離は0.4 mm未満となり、多極飽和磁化が益々困難となる。加えて、特許文献5のようなブラシレスDCモータではスロット数の増加が不可避となるため固定子の構成が極めて複雑となり、微小回転電気機械の磁気回路の構成も困難となる。 Note that Topfer et al. And T.W. When the magnetically isotropic remanent magnetization Mr 0.42 T magnet [Non-patent Document 8] of Speriotis et al. Is applied to the rotor, the resulting magnetic flux density Φa remains at about 1.4 × 10 −6 Wb. . For this reason, the corresponding magnet torque cannot be obtained unless the number of pole pairs Pn is 4 or more. For example, when the number of pole pairs is 4 with a rotor magnet having a diameter of 1.2 mm, the distance between the poles is less than 0.5 mm. Such multipolar saturation magnetization with a distance between magnetic poles of less than 0.5 mm is difficult. Further, when the number of pole pairs is 5, it can be expected that the magnet torque obtained with the anisotropic Nd 2 Fe 14 B-based sintered magnet rotor having the number of pole pairs 1 can be improved by about 1.2 times. However, the distance between the magnetic poles is less than 0.4 mm, and multipolar saturation magnetization becomes more difficult. In addition, in the brushless DC motor as in Patent Document 5, an increase in the number of slots is unavoidable, so that the configuration of the stator becomes extremely complicated, and the configuration of the magnetic circuit of the micro rotating electric machine becomes difficult.

本発明は高トルク微小回転電気機械の磁気回路にかかる。具体的には、外径2 mm以下で、非磁性材を付与したソフト相とハード相とのナノスケール多結晶集合組織からなる等方性磁石膜を所定数積層した後、当該等方性磁石膜の面内方向に極対数2以上に磁化した円柱の回転子磁石をもつ。そして、当該回転子磁石と対向する励磁巻線を備えた固定子鉄心との平均空隙パーミアンス係数Pgを8以上とする構成の微小回転電気機械の磁気回路を基本とする。 The present invention relates to a magnetic circuit of a high torque micro rotating electric machine. Specifically, after stacking a predetermined number of isotropic magnet films having an outer diameter of 2 mm or less and comprising a nanoscale polycrystalline texture of a soft phase and a hard phase imparted with a non-magnetic material, the isotropic magnet It has a cylindrical rotor magnet that is magnetized in the in-plane direction of the film to a pole pair number of 2 or more. A magnetic circuit of a micro-rotating electric machine having a configuration in which an average air gap permeance coefficient Pg between the rotor magnet and a stator core having an exciting winding facing the rotor magnet is 8 or more is basically used.

本発明にかかる回転子磁石を構成するための好ましい磁石膜としてはR−TM−B(RはNd、Pr、TMはFe、Co)系合金、あるいはSm−Fe系溶湯合金の急冷凝固、あるいは物理的堆積法による基板成膜ののち、それらを必要に応じて適宜結晶化、あるいは窒化し、さらに、当該磁石膜表面に必要に応じて適宜、非磁性金属を物理的堆積法で付加したFe−B、αFeのソフト相、RTM14B、SmFe17系ハード相とのナノスケール多結晶集合組織から成る磁石膜を挙げることができる。また、さらに好ましい磁石膜として残留磁化Mrの50%程度が磁化反転しても残留磁化Mrの90%以上の磁化が回復するスプリングバック特性をもち、面内方向の残留磁化Mr 0.95 T以上、保磁力HcJ 150 kA/m以上の磁石膜を挙げることができる。 As a preferable magnetic film for constituting the rotor magnet according to the present invention, R-TM-B (R is Nd, Pr, TM is Fe, Co) type alloy, or Sm-Fe type molten alloy is rapidly solidified. After film formation of the substrate by the physical deposition method, they are appropriately crystallized or nitrided as required, and further, a nonmagnetic metal is appropriately added to the surface of the magnet film by physical deposition as necessary. A magnetic film composed of a nanoscale polycrystalline texture with -B, αFe soft phase, R 2 TM 14 B, and Sm 2 Fe 17 N 3 hard phase. Further, as a more preferable magnet film, it has a spring back characteristic in which the magnetization of 90% or more of the residual magnetization Mr is recovered even when about 50% of the residual magnetization Mr is reversed, and the residual magnetization Mr 0.95 T or more in the in-plane direction. And a magnetic film having a coercive force HcJ of 150 kA / m or more.

また、本発明にかかる回転子磁石は回転軸方向に磁石占積率70%以上となるように磁石膜を所定数積層した構成とし、一方の本発明にかかる前記回転子磁石に対向する固定子鉄心先端形状は、当該回転子磁石外周面に沿う円弧面に形成し、かつ各励磁巻線を互いに平行に形成した構成の微小回転電気機械の磁気回路が好ましい。   The rotor magnet according to the present invention has a structure in which a predetermined number of magnet films are laminated so that the magnet space factor is 70% or more in the rotation axis direction, and the stator facing the rotor magnet according to one of the present invention. A magnetic circuit of a micro rotary electric machine having a configuration in which the iron core tip shape is formed on an arc surface along the outer peripheral surface of the rotor magnet and the respective excitation windings are formed in parallel to each other is preferable.

以上のような、本発明にかかる微小回転子を備えた微小回転電気機械としては、スロット型径方向空隙型ブラシレスDCモータ、PM型ステッピングモータ、或いは発電機などとして情報機器、医療機器、産業機器、さらには内視鏡各種レンズ駆動用デバイス、細管内自走検査ロボット等マイクロマシン動力用デバイスとして、従来に比べ、高出力、低消費電流などの観点で小型電気電子機器の性能向上に貢献できる。   As described above, the micro rotary electric machine including the micro rotor according to the present invention includes a slot type radial gap type brushless DC motor, a PM stepping motor, a generator, and the like as information equipment, medical equipment, industrial equipment. Furthermore, as a device for driving micromachines such as various lens driving devices for endoscopes and self-propelled inspection robots in narrow tubes, it can contribute to improving the performance of small electric and electronic devices from the viewpoint of higher output and lower current consumption than conventional devices.

(a)(b)2種類のソフト相とハード相とのナノスケール多結晶集合組織を示す概念図(A) (b) Conceptual diagram showing nanoscale polycrystalline texture of two types of soft phase and hard phase (a)磁化のスプリングバックの定義、(b)その特性図(A) Definition of magnetization springback, (b) its characteristic diagram 微小回転電気機械磁気回路解析モデルを示す斜視図Perspective view showing an analysis model of a micro rotating electromechanical magnetic circuit (a)(b)空隙パーミアンス係数Pgの分布を示す特性図(A) (b) Characteristic diagram showing distribution of air gap permeance coefficient Pg 回転軸方向(積層方向)の磁石占積率と空隙パーミアンス係数Pgの関係を示す特性図Characteristic diagram showing the relationship between the magnet space factor in the rotation axis direction (stacking direction) and the air gap permeance coefficient Pg 微小回転電気機械の一例を示す断面構成図Cross-sectional configuration diagram showing an example of a micro rotating electric machine (a)磁石トルク発生の概念図、(b)寸法比L/Dと磁石トルクの関係を示す特性図(A) Conceptual diagram of magnet torque generation, (b) Characteristic diagram showing relationship between dimensional ratio L / D and magnet torque (a)相対磁石トルク分布を示す特性図、(b)相対トルク定数を示す特性図(A) Characteristic diagram showing relative magnet torque distribution, (b) Characteristic diagram showing relative torque constant

本発明は高トルク微小回転電気機械の磁気回路にかかる。具体的には、外径2 mm以下で、非磁性材を付与したソフト相とハード相とのナノスケール多結晶集合組織からなる等方性磁石膜を所定数積層した後、当該磁石膜の面内方向に極対数2以上に磁化した円柱の回転子磁石をもつ。そして、当該回転子磁石と対向する励磁巻線を備えた固定子鉄心との平均空隙パーミアンス係数Pgを8以上とする構成の微小回転電気機械の磁気回路にかかる。 The present invention relates to a magnetic circuit of a high torque micro rotating electric machine. Specifically, after laminating a predetermined number of isotropic magnet films having an outer diameter of 2 mm or less and comprising a nanoscale polycrystalline texture of a soft phase and a hard phase imparted with a nonmagnetic material, the surface of the magnet film It has a cylindrical rotor magnet that is magnetized in the inward direction to have two or more pole pairs. And it applies to the magnetic circuit of the micro rotary electric machine of the structure which makes the average space | gap permeance coefficient Pg with the stator core provided with the exciting winding facing the said rotor magnet 8 or more.

先ず、本発明で言う非磁性材を付与したソフト相とハード相とのナノスケール多結晶集合組織からなる等方性磁石膜について説明する。ハード相としてRTM14B(Rは希土類元素のうちNd、またはPr、TMは遷移金属元素のうちFe、Co)と交換結合する高い飽和磁化MsのαFeなどのソフト相が存在すると、逆磁界の下でソフト相から先に磁化反転し、高い保磁力HcJが得られない。しかし、ソフト相のサイズを磁壁の幅以下に抑えると、逆磁界における不均一磁化反転が抑制される。その結果、保磁力HcJがハード相の磁気異方性Haに支配されるようになり、保磁力HcJの低下が抑えられる。さらに、ソフト相から、より高い磁束を得るには、磁石中のソフト相の体積比を増す必要がある。そのためにはハード相のサイズをできる限り小さくする。ハード相の大きさは、やはり磁壁幅以下であればよいが、あまり狭いと保磁力HcJの維持が困難になるので磁壁幅程度に抑える。磁壁幅はπ(A/Ku)1/2、(A:交換スティッフネス定数、Ku:磁気異方性エネルギー)で見積もられる。 First, an isotropic magnet film composed of a nanoscale polycrystalline texture of a soft phase and a hard phase provided with a nonmagnetic material according to the present invention will be described. If a soft phase such as αFe of high saturation magnetization Ms that exchange-couples with R 2 TM 14 B (R is Nd among rare earth elements, or Pr, TM is Fe or Co among transition metal elements) as a hard phase, Under the magnetic field, the magnetization is reversed first from the soft phase, and a high coercive force HcJ cannot be obtained. However, if the size of the soft phase is suppressed to be equal to or smaller than the domain wall width, nonuniform magnetization reversal in a reverse magnetic field is suppressed. As a result, the coercive force HcJ is dominated by the magnetic anisotropy Ha of the hard phase, and a decrease in the coercive force HcJ is suppressed. Furthermore, in order to obtain a higher magnetic flux from the soft phase, it is necessary to increase the volume ratio of the soft phase in the magnet. For this purpose, the size of the hard phase is made as small as possible. The size of the hard phase may be equal to or less than the domain wall width, but if it is too small, it is difficult to maintain the coercive force HcJ, and therefore the hard phase is suppressed to about the domain wall width. The domain wall width is estimated by π (A / Ku) 1/2 (A: exchange stiffness constant, Ku: magnetic anisotropy energy).

例えば、ソフト相をαFe、ハード相をNdFe14Bとしたとき、それぞれ60 nm、及び数nm程度となる。つまり、図1(a)のようにソフト相12のαFeの大きさを60 nm 以下とし、前記αFeよりも小さなハード相11を、ソフト相12と交互に10以上堆積した多層構造の磁石膜、或いは図1(b)のようにソフト相12とハード相11とのランダムな多結晶集合組織から成る磁気的に等方性の磁石膜を言う。なお、本発明にかかる図1(a)の構成の残留磁化Mr 1 T以上の等方性磁石膜としてはPLD(パルスレーザディポジション)によるαFeとNdFe14BとがTaなどの非磁性基板にある磁石膜が例示できる[非特許文献9]。また、図1(b)の構成の残留磁化Mr 1 T以上の等方性磁石膜としては溶湯合金の急冷凝固によるFeBとNdFe14Bとの磁石膜が例示できる。[非特許文献10] なお、この場合は磁石膜の片面にイオンプレーティング、スパッタリングなどの物理的体積手段により、図1(a)と同様にAlなど、非磁性膜を付与した構成とする。なお、このような展延性の優れた非磁性金属材料との複合化は当該磁石膜のせん断加工性を向上するために不可欠である。 For example, when the soft phase is αFe and the hard phase is Nd 2 Fe 14 B, the thickness is about 60 nm and several nm, respectively. That is, as shown in FIG. 1A, the magnetic film having a multilayer structure in which the size of αFe of the soft phase 12 is set to 60 nm or less and the hard phase 11 smaller than the αFe is alternately deposited with the soft phase 12 by 10 3 or more. Alternatively, it refers to a magnetically isotropic magnet film composed of a random polycrystalline texture of soft phase 12 and hard phase 11 as shown in FIG. In addition, as an isotropic magnet film having a residual magnetization Mr 1 T or more having the configuration of FIG. 1A according to the present invention, αFe and Nd 2 Fe 14 B by PLD (pulse laser deposition) are nonmagnetic such as Ta. A magnet film on a substrate can be exemplified [Non-Patent Document 9]. An example of the isotropic magnet film having a residual magnetization Mr 1 T or more having the configuration shown in FIG. 1B is a magnet film of Fe 3 B and Nd 2 Fe 14 B by rapid solidification of a molten alloy. [Non-Patent Document 10] In this case, a non-magnetic film such as Al is provided on one surface of the magnet film by physical volume means such as ion plating and sputtering as in FIG. Such a composite with a non-magnetic metal material having excellent spreadability is indispensable for improving the shear workability of the magnet film.

ところで、ソフト相とハード相の大きさを20 nm程度に最適化した多結晶集合組織から成る磁気的に等方性の本発明にかかる磁石膜はレマネンスエンハンスメントによって残留磁化Mrは容易に1 T以上となる。また、一方の保磁力HcJは400 kA/mに達する。とくに、αFeとNdFe14Bとの接触界面で充分な磁気的結合を付与し、それぞれの厚さを磁壁幅程度にナノスケール組織制御した場合の詳細な計算機解析によれば、結晶粒径10 nm程度の均一なナノ複合組織が形成できれば、磁気的に等方性の磁石膜の(BH)max は200 kJ/m 程度まで期待できる。 By the way, the remanence enhancement of the magnetic film according to the present invention, which is a magnetically isotropic magnetic film composed of a polycrystalline texture in which the sizes of the soft phase and the hard phase are optimized to about 20 nm, can be easily obtained. T or more. One coercive force HcJ reaches 400 kA / m. In particular, according to a detailed computer analysis in which sufficient magnetic coupling is imparted at the contact interface between αFe and Nd 2 Fe 14 B, and the thickness of each is controlled to a nanoscale structure about the domain wall width, If a uniform nanocomposite structure of about 10 nm can be formed, the (BH) max of a magnetically isotropic magnet film can be expected to about 200 kJ / m 3 .

以上のように、本発明にかかる磁石膜はR−TM−B(RはNd、Pr、TMはFe、Co)系合金、あるいはSm−Fe系溶湯合金の物理的堆積法による基板成膜、或いは溶湯合金の急冷凝固ののち、それらを必要に応じて適宜結晶化、あるいは窒化し、さらに、当該磁石膜表面に、非磁性金属を物理的堆積法で付加したFe−B、αFeのソフト相、RTM14B、SmFe17系ハード相とのナノスケール多結晶集合組織から成る磁石膜が例示できる。 As described above, the magnet film according to the present invention is a substrate film formed by physical deposition of an R-TM-B (R is Nd, Pr, TM is Fe, Co) -based alloy, or Sm-Fe-based molten alloy. Alternatively, after rapid solidification of the molten alloy, they are appropriately crystallized or nitrided as necessary, and a soft phase of Fe-B or αFe in which a nonmagnetic metal is added to the surface of the magnet film by physical deposition. , R 2 TM 14 B, Sm 2 Fe 17 N 3 based hard phase and a magnetic film composed of a nanoscale polycrystalline texture.

次に、本発明にかかる、さらに好ましい磁石膜の特性として、磁化のスプリングバック特性について図2(a)(b)を用いて説明する。先ず、図2(a)で本発明で言う磁化のスプリングバック特性の定義を説明する。図のように、残留磁化Mrから減磁界−Hを印加し、任意の磁化Mまで磁化反転させる。その後、減磁界−Hを除いたときの磁化をMr’としたとき、磁化反転率をMr’/Mr、磁化の復元率を(Mr−M)/Mrとした。   Next, as a more preferable characteristic of the magnetic film according to the present invention, the springback characteristic of magnetization will be described with reference to FIGS. First, the definition of the springback characteristic of magnetization referred to in the present invention will be described with reference to FIG. As shown in the figure, a demagnetizing field -H is applied from the residual magnetization Mr, and the magnetization is reversed to an arbitrary magnetization M. Thereafter, when the magnetization when the demagnetizing field -H is removed is Mr ', the magnetization reversal rate is Mr' / Mr and the magnetization restoration rate is (Mr-M) / Mr.

図2(b)は本発明にかかるソフト相(FeB)とハード相(NdFe14B)とのナノスケール多結晶集合組織からなる等方性磁石膜の磁化反転率と復元率の関係を示す特性図である。また、比較例はハード相(NdFe14B)のみの単相磁石膜である。図から明らかなように、本発明例の磁石膜は残留磁化Mrの50%程度が磁化反転しても残留磁化Mrの90%以上の磁化が回復する強いスプリングバック特性をもつ。このような強いスプリングバック特性は、本発明にかかる微小回転電気機械の磁気回路において、回転軸が何らかの理由で拘束を受けたとき、励磁巻線の逆磁界−dHに暴露されるような回転子磁石の減磁耐力を確保するのに有効である。 FIG. 2 (b) shows the magnetization reversal rate and the recovery rate of an isotropic magnet film comprising a nanoscale polycrystalline texture of a soft phase (Fe 3 B) and a hard phase (Nd 2 Fe 14 B) according to the present invention. It is a characteristic view which shows a relationship. The comparative example is a single-phase magnet film having only a hard phase (Nd 2 Fe 14 B). As is apparent from the figure, the magnet film according to the present invention has a strong springback characteristic in which the magnetization of 90% or more of the residual magnetization Mr is recovered even when about 50% of the residual magnetization Mr is reversed. Such a strong springback characteristic is such that in the magnetic circuit of the micro rotating electrical machine according to the present invention, when the rotating shaft is constrained for some reason, the rotor is exposed to the reverse magnetic field -dH of the exciting winding. It is effective to secure the demagnetization resistance of the magnet.

次に、以上のような本発明にかかる磁気的に等方性の磁石膜を所定数積層して構成とした回転子鉄心と固定子鉄心との空隙パーミアンス係数Pgを8以上とするための当該微小回転電気機械の磁気回路について図面を用いて説明する。ただし、ここでは面内残留磁化Mr 1 T、保磁力HcJ 400 kA/mの等方性磁石膜を所定数積層した回転子磁石の回転軸方向の磁石占積率を10〜90%、極対数を2とする。   Next, the gap permeance coefficient Pg between the rotor core and the stator core configured by laminating a predetermined number of magnetically isotropic magnet films according to the present invention as described above is set to 8 or more. A magnetic circuit of a micro rotating electric machine will be described with reference to the drawings. However, in this case, the magnet space factor in the rotation axis direction of the rotor magnet in which a predetermined number of isotropic magnet films having in-plane residual magnetization Mr 1 T and coercive force HcJ 400 kA / m are stacked is 10 to 90%, the number of pole pairs Is 2.

図3は本発明にかかる微小回転電気機械磁気回路を803220要素に分割した3−D FEM解析モデルである。ただし、図中31は図1(a)、または(b)のナノスケール組織をもつ本発明にかかる外径1 mm、内径0.3 mm、厚さ100 μm(ただし、厚さ10μmの非磁性基板を含む)の中空円板状磁石膜を15枚積層し、接着固定した回転子磁石である。また、32は固定子鉄心、33は回転子磁石31を回転自在にするための固定子鉄心32との空隙である。なお、323は固定子鉄心32の内径変化による空隙33の変動域を示している。   FIG. 3 is a 3-D FEM analysis model obtained by dividing the micro rotating electromechanical magnetic circuit according to the present invention into 803220 elements. However, in the figure, 31 is an outer diameter of 1 mm, an inner diameter of 0.3 mm, and a thickness of 100 μm according to the present invention having the nanoscale structure of FIG. 1 (a) or (b). This is a rotor magnet in which 15 hollow disk-shaped magnet films (including a substrate) are laminated and bonded and fixed. Further, 32 is a stator core, and 33 is a gap with the stator core 32 for making the rotor magnet 31 rotatable. Reference numeral 323 denotes a fluctuation range of the gap 33 due to a change in the inner diameter of the stator core 32.

図4(a)(b)は、図3の3−D FEMモデルによる計算機解析結果を従来の構成例との比較で示す。ただし、従来例とは、極対数1に限定される残留磁化Mr 1.3 T、可逆(リコイル)透磁率μr 1.035の異方性NdFe14B系焼結磁石を回転子磁石としたもので、何れも空隙を50 μmとした場合の計算機解析の結果である。異方性NdFe14B系焼結磁石を回転子磁石とした微小回転電気機械はスロットレス型固定子構造を採るため空隙は0.3 mm程度に見積もられ、古典的磁気回路計算によれば空隙パーミアンス係数Pgは高々2.4程度であり、特許文献3ではPgの最小値を1.4と特定している。加えて、図4(a)(b)のように、空隙を50μmに狭めたとしても、本計算機解析結果から、そのPgは5未満にとどまる。これに対し、本発明にかかる微小回転電気機械の磁気回路で例示されるPgは、図から明らかなように平均値で18に達する。 4A and 4B show the results of computer analysis by the 3-D FEM model of FIG. 3 in comparison with a conventional configuration example. However, in the conventional example, an anisotropic Nd 2 Fe 14 B-based sintered magnet having a remanent magnetization Mr 1.3 T and a reversible (recoil) permeability μr 1.035 limited to the number of pole pairs 1 is a rotor magnet. These are the results of computer analysis when the gap is 50 μm. A micro rotating electric machine using an anisotropic Nd 2 Fe 14 B sintered magnet as a rotor magnet has a slotless stator structure, and therefore the gap is estimated to be about 0.3 mm. According to this, the gap permeance coefficient Pg is about 2.4 at most, and Patent Document 3 specifies the minimum value of Pg as 1.4. In addition, even if the gap is narrowed to 50 μm as shown in FIGS. 4 (a) and 4 (b), the Pg is less than 5 from the results of this computer analysis. On the other hand, Pg exemplified in the magnetic circuit of the micro rotating electric machine according to the present invention reaches 18 as an average value as is apparent from the drawing.

次に、上記のような構成の磁石膜を所定数積層して回転子磁石とする場合、形状磁気異方性の観点から好ましい磁石の占積率について、図3の3−D FEMモデルによる計算機解析に基づき説明する。図5は回転軸方向(積層方向)の磁石占積率と空隙パーミアンス係数Pgの関係を示す特性図である。図のように、空隙一定の条件下では磁石の占積率が70%を越えるとPgの向上が見られる。このような、Pgの向上は本発明にかかる微小回転電機機械の磁気回路において磁気抵抗の低減効果、換言すれば、形状磁気異方性が顕著に発現する条件が磁石の占積率が70%であると説明できる。   Next, when a predetermined number of magnet films having the above-described configuration are laminated to form a rotor magnet, the preferred space factor of the magnet from the viewpoint of shape magnetic anisotropy is calculated using the 3-D FEM model of FIG. This will be explained based on the analysis. FIG. 5 is a characteristic diagram showing the relationship between the magnet space factor in the rotation axis direction (stacking direction) and the air gap permeance coefficient Pg. As shown in the figure, when the space factor of the magnet exceeds 70% under the condition that the gap is constant, the Pg is improved. Such an improvement in Pg is the effect of reducing the magnetic resistance in the magnetic circuit of the micro rotating electrical machine according to the present invention, in other words, the condition that the shape magnetic anisotropy is remarkably exhibited is that the space factor of the magnet is 70%. It can be explained that.

次に、本発明にかかる微小回転電機機械の磁気回路の好ましい構成例について図面を用いて説明する。本発明では、例えば図6のように回転子磁石に対向する固定子鉄心先端形状を当該回転子磁石外周面に沿う円弧面に形成し、かつ各励磁巻線を互いに平行に形成した構成の微小回転電気機械の磁気回路を採ることが好ましい。ただし、図において、61は本発明にかかる回転子磁石、62は固定子鉄心、621は固定子鉄心62の先端、622は固定子鉄心62の励磁巻線、63は回転子磁石と固定子鉄心との空隙である。なお、ここでは、本発明にかかる微小回転電気機械として3相(UVW)駆動の4極6スロットブラシレスDCモータを例示している。この場合の回転駆動は、磁石回転子61を位置検出(図示せず)することで、磁石回転子61の位置に応じてUVWの各相の励磁巻線622への通電時期を制御して回転磁界を固定子62から発生させて回転子61を回転駆動する。   Next, a preferred configuration example of the magnetic circuit of the micro rotating electrical machine according to the present invention will be described with reference to the drawings. In the present invention, for example, as shown in FIG. 6, a stator core tip shape facing the rotor magnet is formed on an arc surface along the outer peripheral surface of the rotor magnet, and each excitation winding is formed in parallel to each other. It is preferable to take the magnetic circuit of a rotating electrical machine. However, in the figure, 61 is the rotor magnet according to the present invention, 62 is the stator core, 621 is the tip of the stator core 62, 622 is the excitation winding of the stator core 62, and 63 is the rotor magnet and stator core. And the gap. Here, a three-phase (UVW) drive 4-pole 6-slot brushless DC motor is illustrated as a micro rotating electric machine according to the present invention. In this case, the rotational drive is performed by detecting the position of the magnet rotor 61 (not shown) and controlling the timing of energizing the excitation windings 622 of each phase of UVW according to the position of the magnet rotor 61. A magnetic field is generated from the stator 62 to rotationally drive the rotor 61.

本発明にかかる固定子鉄心の形状自体は微小回転電気機械の設計思想に委ねるべき領域であるが、図6の固定子鉄心形状を採ることにより、Y軸方向の寸法を極めて薄くすることも可能である。   The shape of the stator core according to the present invention is an area that should be left to the design philosophy of the micro-rotary electric machine. However, by adopting the shape of the stator core shown in FIG. 6, the dimension in the Y-axis direction can be made extremely thin. It is.

本発明を実施例により更に詳しく説明する。ただし、本発明は実施例に限定されない。   The present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

表1は本発明にかかるソフト相(FeB)とハード相(NdFe14B)とのナノスケール多結晶集合組織からなる残留磁化Mr 1.03 T、保磁力HcJ 330 kA/mの等方性磁石膜を外径約1 mmとし、所定数積層したのち、面内方向に極対数1に磁化した円柱磁石の寸法を積層方向(回転軸方向)の磁石占有率とともに示す。また、比較例として示したものは残留磁化1.3 T、保磁力HcJ >1 MA/mの異方性NdFe14B系焼結磁石である。なお、何れも径方向に4.8 MA/mのパルス磁化を施している。 Table 1 shows a residual magnetization Mr 1.03 T composed of a nanoscale polycrystalline texture of a soft phase (Fe 3 B) and a hard phase (Nd 2 Fe 14 B) according to the present invention, and a coercive force HcJ 330 kA / m. An isotropic magnet film having an outer diameter of about 1 mm and a predetermined number of layers are stacked, and then the dimensions of the columnar magnet magnetized to the pole pair number 1 in the in-plane direction are shown together with the magnet occupation ratio in the stacking direction (rotating axis direction). A comparative example is an anisotropic Nd 2 Fe 14 B-based sintered magnet having a residual magnetization of 1.3 T and a coercive force HcJ> 1 MA / m. In all cases, pulse magnetization of 4.8 MA / m is performed in the radial direction.

図7(a)のように、表1のような2極円柱磁石が一様な外部磁界Hexに暴露されたとする。ここで、回転方向(トルクの発生方向)の反時計回りを正とし、Hex(固定子からの回転磁界)のS極中心が2極円柱磁石のN極の真上から反時計回りに回ると考える。するとHexのS極中心が試料のN極の真上にある場合、トルクはゼロであり、半時計回りにHexのS極中心が回転すると磁石トルクは徐々に増加し、90度回転した位置で最大トルクとなる。さらに回転するとトルクは再び徐々に減少し、180度でゼロになる。   As shown in FIG. 7A, it is assumed that a dipole cylindrical magnet as shown in Table 1 is exposed to a uniform external magnetic field Hex. Here, when the counterclockwise direction in the rotation direction (torque generation direction) is positive, and the center of the S pole of Hex (rotating magnetic field from the stator) rotates counterclockwise from directly above the N pole of the dipole cylindrical magnet. Think. Then, when the S pole center of Hex is directly above the N pole of the sample, the torque is zero, and when the S pole center of Hex rotates counterclockwise, the magnet torque gradually increases, and at a position rotated 90 degrees. Maximum torque. With further rotation, the torque gradually decreases again and becomes zero at 180 degrees.

図7(b)は、表1の本発明例で示した円柱磁石をHex 24 kA/mとした磁気トルク計で測定した磁石トルクを示す。2極円柱磁石長L(積層数が異なる)に対して、磁石トルクは良い直線性を示し、小さな磁石トルクを精度よく計測することができる。なお、図7(a)の負荷角θに対する磁石トルク(M×Hex sinθ)は式1右辺第1項の磁石トルク(Pn×Φa×Iq)である。ここで、PnとΦaは回転子磁石Mにかかり、IqはHexにかかることになる。そこで、計測した磁石トルクを直径1 mm (L/D=1.5)で規格化するため、2極円柱磁石の周長、積層長で補正するとともに、回転軸挿入孔を0.3 mmとしたとき、極対数1と2における表面磁束密度分布の積分値の比と極対数とで磁石トルクを補正した。このようにして本発明にかかる極対数2における相対磁石トルク分布を算出した。   FIG.7 (b) shows the magnet torque measured with the magnetic torque meter which set the column magnet shown by the example of this invention of Table 1 to Hex24kA / m. The magnet torque exhibits good linearity with respect to the dipole cylindrical magnet length L (the number of stacked layers is different), and a small magnet torque can be accurately measured. The magnet torque (M × Hex sin θ) with respect to the load angle θ in FIG. 7A is the magnet torque (Pn × Φa × Iq) in the first term on the right side of Equation 1. Here, Pn and Φa are applied to the rotor magnet M, and Iq is applied to Hex. Therefore, in order to normalize the measured magnet torque with a diameter of 1 mm (L / D = 1.5), the circumference of the dipole cylindrical magnet is corrected with the stacking length, and the rotation shaft insertion hole is set to 0.3 mm. When this was done, the magnet torque was corrected by the ratio of the integral value of the surface magnetic flux density distribution at the number of pole pairs 1 and 2 and the number of pole pairs. In this way, the relative magnet torque distribution at the pole pair number 2 according to the present invention was calculated.

図8(a)は補正した極対数2の本発明例にかかる回転子磁石が発現する相対磁石トルク分布を極対数1の異方性NdFe14B系焼結磁石の比較例とともに示す特性図である。図から明らかなように、本発明例の磁石トルク最大値は比較例の磁石トルク最大値に対して1.7倍であった。 FIG. 8A is a characteristic showing the relative magnet torque distribution expressed by the corrected rotor magnet according to the example of the present invention with the number of pole pairs of 2, together with a comparative example of the anisotropic Nd 2 Fe 14 B-based sintered magnet with the number of pole pairs of 1. FIG. As is apparent from the figure, the maximum magnet torque value of the present invention example was 1.7 times the maximum magnet torque value of the comparative example.

さらに、図8(b)は外部磁界Hexを8、24、40 kA/mとしたとき、Hexに対する直径1 mm (L/D=1.5)における相対磁石トルクを示す特性図である。図から明らかなように、Hexと相対磁石トルクは一次関数で近似できる。そして、図中に示した回帰式の傾き、dT/dH(μNm/kA/m)は本発明例では2.037、比較例では1.2368であった。この値は永久磁石回転子と固定子鉄心で構成する微小回転電気機械の磁気回路ではトルク定数(μNm/A)に対応する。したがって、同一磁気回路構成をもつ微小回転電気機械の本発明にかかるトルク定数は比較例に比べて1.86倍向上することを意味している。以上のように、本発明によれば、比較例として示した極対数1の異方性NdFe14B系焼結磁石の残留磁化Mrを高めて微小回転電気機械を高トルク化する手段に比べて、遥かに高い効果が得られることは明白である。 FIG. 8B is a characteristic diagram showing the relative magnet torque at a diameter of 1 mm (L / D = 1.5) with respect to Hex when the external magnetic field Hex is 8, 24, and 40 kA / m. As is apparent from the figure, Hex and the relative magnet torque can be approximated by a linear function. The slope of the regression equation shown in the figure, dT / dH (μNm / kA / m), was 2.037 in the present invention example and 1.2368 in the comparative example. This value corresponds to a torque constant (μNm / A) in a magnetic circuit of a micro rotating electric machine constituted by a permanent magnet rotor and a stator core. Therefore, it is meant that the torque constant according to the present invention of the micro rotating electric machine having the same magnetic circuit configuration is improved 1.86 times compared with the comparative example. As described above, according to the present invention, the means for increasing the residual magnetization Mr of the anisotropic Nd 2 Fe 14 B-based sintered magnet having the pole pair number of 1 shown as the comparative example and increasing the torque of the micro rotating electric machine is provided. It is clear that a much higher effect can be obtained.

11:ハード相、12:ソフト相、31: 回転子磁石、32:固定子鉄心、323: 空隙の変動域、61:回転子磁石、62:固定子鉄心、621:固定子鉄心先端部、622:励磁巻線、63:空隙
11: Hard phase, 12: Soft phase, 31: Rotor magnet, 32: Stator core, 323: Air gap fluctuation range, 61: Rotor magnet, 62: Stator core, 621: Stator core tip, 622 : Excitation winding, 63: Air gap

Claims (5)

外径2mm以下で、非磁性材を付与したソフト相とハード相とのナノスケール多結晶集合組織からなる等方性磁石膜を所定数積層した後、前記等方性磁石膜の面内方向に極対数2以上に磁化した円柱の回転子磁石を備え、該回転子磁石と対向する励磁巻線を有する固定子鉄心との平均空隙パーミアンスPgが8以上であることを特徴とする微小回転電気機械の磁気回路。 After laminating a predetermined number of isotropic magnet films having an outer diameter of 2 mm or less and comprising a nanoscale polycrystalline texture of a soft phase and a hard phase imparted with a nonmagnetic material, in the in- plane direction of the isotropic magnet film A micro-rotating electric machine comprising a cylindrical rotor magnet magnetized with two or more pole pairs , and having an average air gap permeance Pg of 8 or more between the rotor magnet and a stator core having an exciting winding facing the rotor magnet Magnetic circuit. 前記磁石膜がR−TM−B(RはNd、Pr、TMはFe、Co)系合金、あるいはSm−Fe系溶湯合金の急冷凝固、あるいは物理的堆積法による基板成膜ののち、それらを必要に応じて適宜結晶化、あるいは窒化し、さらに、当該磁石膜表面に必要に応じて適宜、非磁性金属を物理的堆積法で付加したFe−B、αFeのソフト相、RTM14B、SmFe17系ハード相とのナノスケール多結晶集合組織から成る磁石膜であることを特徴とする請求項1に記載微小回転電気機械の磁気回路。 After the magnet film is formed by rapid solidification of an R-TM-B (R is Nd, Pr, TM is Fe, Co) -based alloy, or Sm-Fe-based molten alloy, or a physical film deposition method is used. If necessary, it is crystallized or nitrided, and if necessary, a non-magnetic metal is appropriately added to the surface of the magnet film by physical deposition. Fe-B, αFe soft phase, R 2 TM 14 B The magnetic circuit of a micro rotating electric machine according to claim 1, wherein the magnetic circuit is a magnetic film made of a nanoscale polycrystalline texture with a hard phase of Sm 2 Fe 17 N 3 . 前記磁石膜が残留磁化Mrの50%程度が磁化反転しても残留磁化Mrの90%以上の磁化が回復する磁化のスプリングバック特性をもつことを特徴とする請求項1に記載微小回転電気機械の磁気回路。 2. The micro-rotation electricity according to claim 1, wherein the magnet film has a spring back characteristic of magnetization that recovers magnetization of 90% or more of the residual magnetization Mr even if about 50% of the residual magnetization Mr is reversed. The magnetic circuit of the machine. 面内方向の残留磁化Mr 0.95 T以上、保磁力HcJ 150 kA/m以上の磁石膜を軸方向占積率70%以上で所定数積層したことを特徴とする請求項1に記載微小回転電気機械の磁気回路。 2. The minute number according to claim 1, wherein a predetermined number of magnet films having a residual magnetization Mr 0.95 T or more in the in-plane direction and a coercive force HcJ 150 kA / m or more are laminated with an axial space factor of 70% or more. Magnetic circuit of a rotating electrical machine. 前記回転子磁石に対向する前記固定子鉄心の先端形状を前記回転子磁石の外周面に沿う円弧面に形成し、各励磁巻線部を互いに平行に形成したことを特徴とする請求項1に記載微小回転電気機械の磁気回路。 To claim 1, wherein the tip shape of the stator core opposing the rotor magnet is formed in a circular arc surface along the outer peripheral surface of the rotor magnet and each excitation winding portion in parallel to form one another the magnetic circuit of the micro rotary electric machine according.
JP2009283637A 2009-12-15 2009-12-15 Magnetic circuit of micro rotating electrical machine Expired - Fee Related JP5445940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283637A JP5445940B2 (en) 2009-12-15 2009-12-15 Magnetic circuit of micro rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283637A JP5445940B2 (en) 2009-12-15 2009-12-15 Magnetic circuit of micro rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2011130522A JP2011130522A (en) 2011-06-30
JP5445940B2 true JP5445940B2 (en) 2014-03-19

Family

ID=44292482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283637A Expired - Fee Related JP5445940B2 (en) 2009-12-15 2009-12-15 Magnetic circuit of micro rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5445940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504891A (en) * 2016-12-19 2017-03-15 电子科技大学 A kind of preparation method of quasi-isotropic magnetic core film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401475A (en) * 2017-12-14 2018-08-14 广东永丰智威电气有限公司 The manufacture craft that brush DC slowspeed machine, fan and magnet are combined with yoke band
CN110690770B (en) * 2019-11-04 2021-04-20 郑州轻工业学院 Method for solving complex air gap relative magnetic conductance and magnetic field of stator slotted permanent magnet motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215746A (en) * 1998-01-21 1999-08-06 Matsushita Electric Ind Co Ltd Exchange-spring magnet embedded type rotor
JP4977307B2 (en) * 2004-01-26 2012-07-18 並木精密宝石株式会社 Small motor
WO2007119271A1 (en) * 2006-03-20 2007-10-25 Namiki Seimitsu Houseki Kabushiki Kaisha Thin-film rare earth magnet and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504891A (en) * 2016-12-19 2017-03-15 电子科技大学 A kind of preparation method of quasi-isotropic magnetic core film

Also Published As

Publication number Publication date
JP2011130522A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP4169055B2 (en) Rotating electric machine
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
KR100891856B1 (en) Preparation Process of Radial Anisotropic Sintered Magnet
JP2010130818A (en) Method for manufacturing field element
JP5440079B2 (en) Rotor for axial gap type permanent magnet type rotating machine and axial gap type permanent magnet type rotating machine
JP5327433B2 (en) Method for manufacturing rotor magnet of micro rotating electric machine
US8269391B2 (en) Micro rotor and rotary electric machine incorporating same
JP3480733B2 (en) DC brush motor device and its permanent magnet
TW200913440A (en) Axial gap type rotating machine
WO2008018354A1 (en) Permanent magnet type rotary electric device rotor
JP2007236073A (en) Hybrid rotary electric machine
EP1956698B1 (en) Permanent magnet rotor and motor using the same
JP5445940B2 (en) Magnetic circuit of micro rotating electrical machine
US8044547B2 (en) Radial-direction gap type magnet motor
Yamashita et al. Investigation on magnetic torque of multi-polarly micro rotor using shape-magnetic-anisotropy
JP5660485B2 (en) Laminated magnet film mover
JP2004153867A (en) Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor
JP2010098863A (en) Cylindrical magnet material and surface magnet type motor
JP4599860B2 (en) Brushless motor
JP2011114990A (en) Isotropic film magnet laminated micro rotary electric machine
JPH10257702A (en) High-performance buried magnet reluctance motor
JP2000175387A (en) Multistage, long and multipole polarizing cylindrical magnet rotor and permanent magnet motor
JP3232489U (en) Brushless motor using a permanent magnet embedded rotor
JP2010098947A (en) Brushless motor
JP2002204542A5 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5445940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees