JP2004153867A - Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor - Google Patents

Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor Download PDF

Info

Publication number
JP2004153867A
JP2004153867A JP2002310880A JP2002310880A JP2004153867A JP 2004153867 A JP2004153867 A JP 2004153867A JP 2002310880 A JP2002310880 A JP 2002310880A JP 2002310880 A JP2002310880 A JP 2002310880A JP 2004153867 A JP2004153867 A JP 2004153867A
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
cylindrical
powder
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310880A
Other languages
Japanese (ja)
Other versions
JP4238971B2 (en
Inventor
Koji Sato
孝治 佐藤
Mitsuo Kawabata
光雄 川端
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002310880A priority Critical patent/JP4238971B2/en
Publication of JP2004153867A publication Critical patent/JP2004153867A/en
Application granted granted Critical
Publication of JP4238971B2 publication Critical patent/JP4238971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radial anisotropic sintered magnet which has excellent magnetic properties without cracks or cracking at sintering or aging cooling even in such a form that the inner-outer diameter ratio is small. <P>SOLUTION: This radial anisotropic sintered magnet contains a section which is formed cylindrical and oriented in a direction inclined at an angle of 30°or larger relative to the radial direction, not less than 2% and not more than 50% of a magnet volume, and the residual section of the magnet volume is oriented in the radial direction or with its inclination to the radial direction at angle of 30°or smaller. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ラジアル異方性焼結磁石及びラジアル異方性焼結磁石の製造方法に関する。また、本発明は、サーボモータ、スピンドルモータ等の同期式永久磁石モータ用円筒磁石ロータ及びこれを用いた永久磁石式モータの改良に関する。
【0002】
【従来の技術】
フェライトや希土類合金のような結晶磁気異方性材料を粉砕し、特定の磁場中でプレス成形を行って作製される異方性磁石は、スピーカ、モータ、計測器、その他の電気機器等に広く使用されている。このうち特にラジアル方向に異方性を有する磁石は、磁気特性に優れ、自由な着磁が可能であり、またセグメント磁石のような磁石固定用の補強の必要もないため、ACサーボモータ、DCブラシレスモータ等に使用されている。特に近年はモータの高性能化にともない、長尺のラジアル異方性磁石が求められてきた。
【0003】
ラジアル配向を有する磁石は、垂直磁場垂直成形法又は後方押し出し法により製造される。垂直磁場垂直成形法は、プレス方向より、コアを介して磁場を対抗方向から印加し、ラジアル配向を得ることを特徴とするものである。即ち、垂直磁場垂直成形法は、図2に示されるように、配向磁場コイル2において発生させた磁場をコア4及び5を介して対抗させ、コアよりダイス3を通過し、成形機架台1を経て循環するような磁気回路にて、充填磁石粉8をラジアル配向させるものである。なお、図中6は上パンチ、7は下パンチである。
【0004】
このように、この垂直磁場垂直成形装置において、コイルにより発生した磁界はコア、ダイス、成形機架台、コアとなる磁路を形成させている。この場合、磁場漏洩損失低下のため、磁路を形成する部分の材料には強磁性体を用い、主に鉄系金属が使われる。しかし、磁石粉を配向させるための磁場強度は、以下のようにして決まってしまう。コア径をB(磁石粉充填内径)、ダイス径をA(磁石粉充填外径)、磁石粉充填高さをLとする。上下コアを通過した磁束がコア中央でぶつかり対抗し、ダイスに至る。コアを通った磁束量はコアの飽和磁束密度で決定され、鉄製コアで磁束密度が20kG程度である。従って磁石粉充填内外径での配向磁場は、上下コアの通った磁束量を磁石粉充填部の内面積及び外面積で割ったものとなり、
2・π・(B/2)・20/(π・B・L)=10・B/L…内周、
2・π・(B/2)・20/(π・A・L)=10・B/(A・L)…外周
となる。外周での磁場は内周より小さいので、磁石粉充填部すべてにおいて良好な配向を得るには、外周で10kOe以上必要であり、このため、10・B/(A・L)=10となり、従って、L=B/Aとなる。成形体高さは充填粉の高さの約半分で、焼結時、更に8割程度になるので、磁石の高さは非常に小さくなる。このようにコアの飽和が配向磁界の強度を決定するためコア形状により配向可能な磁石の大きさ即ち高さが決まってしまい、円筒軸方向に長尺品を製造することが困難であった。特に、径が小さな円筒磁石では非常に短尺品しか製造することができなかった。
【0005】
また、後方押し出し法は設備が大掛かりで、歩留まりが悪く、安価な磁石を製造することが困難であった。
【0006】
このようにラジアル異方性磁石は、いかなる方法においても製造が困難であり、安く大量に製造することは更に難しく、ラジアル異方性磁石を用いたモータも非常にコストが高くなってしまうという不利があった。
【0007】
焼結磁石でラジアル異方性リング磁石を製造する場合、異方性化に伴い、焼結及び時効冷却過程において、磁石のC軸方向とC軸垂直方向との線膨張係数の差により発生する応力が磁石の機械的強度より大きい場合、割れやクラックが発生し問題となる。このため、R−Fe−B系焼結磁石では内外径比0.6以上の磁石形状でのみ製造が可能であった(日立金属技報Vol.6,p33〜36)。更に、R−(Fe,Co)−B系焼結磁石では、Feを置換したCoは合金組織中主相の2−14−1相に含まれるだけでなく、Rリッチ相中でRCoを形成し、機械的強度を著しく低減する。しかもキュリー温度が高いため、冷却時のキュリー温度〜室温間におけるC軸方向及びC軸垂直方向の熱膨張率変化量も大きくなり、割れ、クラックの発生原因である残留応力が増大する。このためR−(Fe,Co)−B系ラジアル異方性リング磁石はCoの入らないR−Fe−B系磁石より更に形状制限が厳しく、内外径比0.9以上の形状でしか、安定した磁石生産が行えなかった。また、フェライト磁石、Sm−Co系磁石においても同じ理由により、割れ、クラックが発生し、安定生産できていない状態である。
【0008】
ラジアル異方性化に伴う焼結及び時効冷却過程で発生する割れ又はクラックの原因となる周方向の残留応力は、フェライト磁石に関するKoolsの検討結果(F.Kools:Science of Ceramics.Vol.7,(1973),29−45)に示され、式(1)のように表される。
σθ=ΔTΔαEK/(1−K)・(KβηK−1−Kβ−Kη−K−1−1)‥‥‥(1)
σθ: 周方向の応力
ΔT: 温度差
Δα: 線膨張係数の差(α‖−α⊥)
E : 配向方向のヤング率
: ヤング率の異方性比(E⊥/E‖)
η : 位置(r/外径)
β :(1−ρ1+K)/(1−ρ2K
ρ : 内外径比(内径/外径)
【0009】
上記式のうち、割れ又はクラックの原因に最も大きな影響を与える項は、Δα:線膨張係数の差(α‖−α⊥)であり、フェライト磁石、Sm−Co系希土類磁石、Nd−Fe−B系希土類磁石では、結晶方向による熱膨張率の差(熱膨張異方性)はキュリー温度より発現し、冷却時の温度低下により増大する。このとき、残留応力が磁石の機械強度以上となり、割れに至る。
【0010】
上記式による、配向方向と配向方向に垂直な方向における熱膨張の違いによる応力は、円筒磁石が、径方向にラジアル配向するがゆえに発生する。従って、一部がラジアル配向と異なる配向を有する円筒磁石を製造すれば割れが発生することはない。例えば、水平磁場垂直成形法によって作製された、円筒軸に垂直な一方向に配向された円筒磁石は、フェライト磁石、Sm−Co系希土類磁石、Nd−Fe(Co)−B系希土類磁石のどのタイプの磁石においても割れることはない。
【0011】
個々のラジアル異方性磁石を用いずとも円筒磁石に多極着磁が行え、磁束密度が高く、かつ極間における磁束密度のばらつきが小さければ、高性能の永久磁石モータ用の磁石となりうる。水平磁場垂直成形法により円筒軸に垂直な一方向に配向させた磁石を、着磁のみを多極にすることにより、ラジアル異方性磁石を用いずに永久磁石モータ用円筒多極磁石を作製する方法が提案されている(電気学会マグネティクス研究会資料MAG−85−120、1985)。水平磁場垂直成形法により製造された、円筒軸に垂直な一方向に配向された磁石(以下、径方向配向円筒磁石と呼ぶ)は、プレス機のキャビティが許すかぎりの長尺化(50mm以上)に加えて多連プレスが行えるので、1度のプレスで多数個の成形体が得られ、高価なラジアル異方性磁石の代わりに廉価にモータ用円筒磁石を供給することができる。
【0012】
しかし、実際には水平磁場垂直成形法により作製された径方向配向の円筒磁石に多極着磁を行った磁石は、配向磁場方向近傍の極では磁束密度が高く、配向磁場方向に垂直な極では磁束密度が小さいため、モータに組みモータを回転させると、極間の磁束密度のばらつきを反映したトルクむらが生じてしまい、実用に耐えうるモータ用磁石とはいえなかった。
【0013】
この課題を解決するために、特許文献1では、水平磁場垂直成形法によって作製された、円筒軸に垂直な一方向に配向された円筒磁石における周方向の着磁極数が2n(nは1より大きく50より小さい正の整数)個のとき、この円筒磁石と組み合わせるステータの歯の数が3m(mは1より大きく33より小さい正の整数)個とする提案がなされている。特許文献2では、着磁極数がk(kは4以上の正の偶数)個のとき、この円筒磁石と組み合わせるステータの歯数が3k・j/2(jは1以上の正の整数)個とする提案がなされている。また、特許文献3では、円筒軸に垂直な一方向に配向された円筒磁石で角度をずらして段積みすることでトルクむらを軽減する提案がなされている。
【0014】
しかし、特許文献1〜3とも、トルクむらは低減するものの、リング磁石内で径方向に配向した部分が少なく、同じ磁気特性を有するラジアル磁石に対し、モータにした際のトータルトルクが70%と小さく、実用化されていない。
【0015】
【特許文献1】
特開2000−116089号公報
【特許文献2】
特開2000−116090号公報
【特許文献3】
特開2000−175387号公報
【非特許文献1】
日立金属技報Vol.6,p.33−36
【非特許文献2】
F.Kools:Science of Ceramics.
Vol.7,(1973),p.29−45
【非特許文献3】
電気学会マグネティクス研究会資料
MAG−85−120,1985
【0016】
【発明が解決しようとする課題】
従って、本発明の第1の目的は、内外径比の小さな形状においても焼結及び時効冷却時の割れ、クラックのない優れた磁石特性を有するラジアル異方性焼結磁石を提供することにある。
また、本発明の第2の目的は、多連、長尺品が容易に生産可能で、高性能の永久磁石モータを安価に実現することができるラジアル異方性焼結磁石の製造方法を提供することにある。
本発明の第3の目的は、安価でかつ高性能の永久磁石モータを提供することにある。
本発明の第4の目的は、ラジアル異方性磁石を用いずとも多極着磁が行え、磁束密度が高く、かつ極間の磁束密度のばらつきが小さく、モータに組み込み回転させたとき、高トルクでかつトルクむらを生じることのない、廉価で大量生産可能な多段長尺多極着磁円筒磁石ロータ及びこれを用いた永久磁石式モータを提供することにある。
【0017】
【課題を解決するための手段及び発明の実施の形態】
本発明は第1の目的を達成するため、円筒状に形成され、ラジアル方向に対し30°以上傾いた方向に配向した部位を磁石体積の2%以上50%以下含有し、磁石体積の残りの部位がラジアル方向乃至ラジアル方向に対する傾きが30°未満に配向したものであることを特徴とするラジアル異方性焼結磁石を提供する。また、かかる磁石を得る方法として、円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形することを特徴とするラジアル異方性焼結磁石の製造方法を提供する。この場合、水平磁場垂直成形で発生する磁場が0.5〜12kOeであることが好ましい。更に、本発明は、円筒磁石用成形金型のダイス材に非磁性体をトータル角度20°以上180°以下の領域に亘り少なくとも1つ以上配し、金型キャビティ内に充填した磁石粉を垂直磁場垂直成形法により磁石粉に磁界を印加して成形することを特徴とするラジアル異方性焼結磁石の製造方法を提供する。
【0018】
即ち、本発明者らは、上記目的を達成するために鋭意努力を重ねた結果、円筒磁石の径方向への配向を、全体的にラジアル配向とし、一部分意図的に乱すことで、焼結・時効時の冷却過程において、割れ・クラックの発生のない安定した生産を実現でき、尚且つモータに組み込んだ際、大きなトルクを得ることができることを見出したものである。
【0019】
本発明によれば、磁場が均一で内外径比の小さな形状においても、焼結及び時効冷却時の割れ、クラックのない、優れた磁石特性を有するR−Fe(Co)−B系ラジアル異方性焼結磁石を安定して生産でき、これはACサーボモータ、DCブラシレスモータ、スピーカ用磁石等の高性能化、ハイパワー化、小型化等に有用であり、特に、自動車用スロットルバルブ等に使用される径方向2極着磁磁石の生産においても有効であり、性能の優れた同期式磁石モータ用円筒磁石を安価かつ大量に供給することができる。
【0020】
また、本発明は、第2の目的を達成するため、円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形することにより、ラジアル異方性磁石を製造する方法であって、下記(i)〜(v)
(i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
(ii)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
(iii)磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる、
(iv)磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
(v)磁場発生コイルを2対以上配置し、1対のコイルが磁場を印加した後、別のコイル対が磁場を印加する
の操作のうち少なくとも一の操作を行うことを特徴とするラジアル異方性磁石の製造方法を提供する。ここで、充填磁石粉を回転させる際、コア、ダイス及びパンチのうち少なくとも1つを周方向に回転させることで充填磁石粉を回転せしめることができる。また、磁場印加後充填磁石粉を回転させる際、強磁性コア又は磁石粉の残留磁化の値が50G以上であり、コアを周方向に回転させることで磁石粉を回転せしめることができる。この場合、水平磁場垂直成形工程で発生する磁場が0.5〜12kOeであることが好ましい。
【0021】
この第2の発明によれば、生産性が低く高価なラジアル異方性磁石を用いずに、多連、長尺品が容易に生産可能で、磁場が均一で安価で大量に安定して供給できる、水平磁場垂直成形法で製造される径方向配向円筒磁石を用いて高性能の永久磁石モータを実現することができ、ACサーボモータ、DCブラシレスモータ等の高性能モータの低価格化に有用である。
【0022】
本発明は、第3の目的を達成するため、複数個のステータ歯を有するモータにラジアル異方性円筒磁石を組み込んでなる永久磁石モータにおいて、前記円筒磁石が、円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形作製されたラジアル異方性円筒磁石であって、周方向の着磁極数が2n(nは2以上50以下の正の整数)個のとき、この円筒磁石と組み合わせるステータの歯数が3m(mは2以上33以下の正の整数)個であり、かつ2n≠3mであることを特徴とする周方向に多極に着磁した永久磁石モータを提供する。この場合、円筒磁石における周方向の着磁極数がk(kは4以上の正の偶数)個のとき、この円筒磁石と組み合わせるステータの歯数が3k・j/2(jは1以上の正の整数)個であることが好ましく、また、円筒磁石のN極とS極との境界がラジアル方向に対し30°以上傾いた方向に配向した部位の中央部に対し、10°以内にあることが好ましい。更に、円筒磁石のスキュー角度が円筒磁石の1極分の角度の1/10〜2/3で、多極スキュー着磁するのが好ましく、特にステータ歯のスキュー角度が円筒磁石の1極分の角度の1/10〜2/3のスキュー歯をもつことが好ましい。また、更に水平磁場垂直成形で発生する磁場を0.5〜12kOeとして成形した磁石を使用することが好ましい。
【0023】
本発明によれば、性能の優れた同期式磁石モータに用いる円筒磁石を、特に長尺でかつ廉価で大量に供給することができる。
【0024】
本発明は、第4の目的を達成するため、円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形作製され、これを多極着磁して得られたラジアル異方性円筒磁石の複数個を軸方向に2段以上積み重ねてなることを特徴とする多段長尺多極着磁円筒磁石ロータを提供する。この場合、円筒磁石の積み重ね数をi(iは2以上10以下の正の整数)とするとき、各円筒磁石の配向磁場方向と同一方向を180/i°の角度だけずらしてi個積み重ねることが好ましく、また、多極着磁の極数をn(nは4以上50以下の正の整数)とするとき、積み重ね数iと極数nとがi=n/2の関係にあることが好ましい。更に、円筒磁石の外周面にn極の多極着磁を行うに際し、1極の角度を360/n°とし、この角度の1/10〜2/3の角度でスキュー着磁されてなることが好ましい。本発明は、上記多段長尺多極着磁円筒磁石ロータを用いた永久磁石式モータをも提供する。
【0025】
即ち、上記構成とすることにより、極間の磁束密度のばらつきを大きく軽減し、高トルクでトルクむらのないスムーズな回転を実現できるモータ用磁石、即ち、多段長尺多極着磁円筒磁石ロータ及びこれを用いた永久磁石式モータの製造を可能としたものである。
【0026】
以下、本発明につき更に詳しく説明する。
本発明に係るラジアル異方性焼結磁石は、円筒磁石であって、全体的にはラジアル方向(径方向)に配向され、但し、磁石体積の2%以上50%以下の部位がラジアル方向に対し30°以上90°以下配向するようにしたものである。
【0027】
本発明のラジアル異方性焼結磁石は、このようにラジアル方向に対し30〜90°傾いた方向に配向された部位が磁石体積の2〜50%であるものである。
【0028】
即ち、上述した式(1)で示される応力は、径方向にラジアル配向した周方向への連続体、つまり、円筒磁石であるがゆえに発生する。従って、一部分連続的な配向が阻害されれば応力は減少する。そこで、ラジアル方向に対し30°以上傾いた方向に配向した部位を磁石体積の2%以上50%以下含有せしめることにより、割れずに生産できる磁石である。30°以上傾いた部分が2%より小さい場合、割れを防ぐ効果が小さく、30°以上傾いた部分が50%より多い場合は、モータ用ロータとした際のトルク不足を招き実用的でない。より好ましくは30°以上傾いた部分を5〜40%、更に好ましくは10〜40%含有することがよい。
【0029】
なお、残りの磁石体積部位、即ち50〜98%、より好ましくは60〜95%の磁石体積の部分は、ラジアル方向乃至ラジアル方向に対する傾きが30°未満であるように配向せしめられているものである。
【0030】
図1は、円筒磁石の成形時、磁場中配向を行うための水平磁場垂直成形装置の説明図であり、特にモータ用磁石の水平磁場垂直成形装置である。ここで、図2の場合と同様、1は成形機架台、2は配向磁場コイル、3はダイスを示し、また5aはコアを示す。6は上パンチ、7は下パンチ、8は充填磁石粉であり、また9はポールピースを示す。
【0031】
本発明においては、上記コア5aの少なくとも一部、好ましくは全体を飽和磁束密度5kG以上、好ましくは5〜24kG、更に好ましくは10〜24kGの強磁性体にて形成する。かかるコア材質としては、Fe系材料、Co系材料及びそれらの合金材料等の素材を用いた強磁性体が挙げられる。
【0032】
このように、飽和磁束密度5kG以上有する強磁性体をコアに使用すると、磁石粉に配向磁界を印加する場合、磁束は強磁性体に垂直に入ろうとするためラジアルに近い磁力線を描く。従って、図3aに示されるように、磁石粉充填部の磁界方向をラジアル配向に近づけることができる。これに対し、従来はコア5b全体を非磁性又は磁石粉と同等の飽和磁束密度を有した材料を用いており、この場合、磁力線は図3bに示したように、互いに平行で、図において中央付近はラジアル方向であるが、上側及び下側に向うにつれてコイルによる配向磁場方向となる。コアを強磁性体で形成してもコアの飽和磁束密度が5kG未満の場合、コアは容易に飽和してしまい、強磁性コアを用いたにもかかわらず、磁場は図3bに近い状態となる。加えて、5kG未満では充填磁石粉の飽和密度(磁石の飽和磁束密度×充填率)と等しくなり、充填磁石粉及び強磁性コア内での磁束の方向はコイルの磁界方向に等しくなってしまう。
【0033】
また、コアの一部に5kG以上の強磁性体を用いた際も上記と同様な効果が得られ有効であるが、全体が強磁性体であることが好ましい。一部(中央部)が強磁性体及び外周部が弱い強磁性体(WC−Ni−Co系)である一例を図4に示す。図4において、5a’は弱い強磁性体超硬合金部、11はパーメンジュールを示す。
【0034】
上記方法によると、円筒磁石内の径方向でのラジアル配向に対する乱れは、配向磁場方向に垂直な部分のみの配向の乱れとなるため、着磁後、各極の磁束量減少はわずかに抑えることができ、モータのトルクむら及びトルク劣化のないモータロータ用円筒磁石を製造することができる。
【0035】
また、上記のように成形を行う際、水平磁場垂直成形装置で発生する磁場は0.5〜12kOeであることが好ましい。このように水平磁場垂直成形装置で発生する磁場を定めた理由としては、磁場が大きい場合、図3aのコア5aが飽和してしまい、図3bに近い状態になり、円筒磁石の磁場垂直方向での配向がラジアル配向とはならなくなるため、磁場は12kOe以下が好ましい。強磁性コアを用いると磁束がコアに集中するため、コア周辺では、コイルによる磁場より大きな磁場が得られる。しかし、磁場があまり小さいと、コア周辺においても配向に十分な磁場が得られなくなるため、0.5kOe以上が好ましい。前述のように強磁性体周辺では磁束が集まり、磁場が大きくなるため、ここでいう水平磁場垂直成形装置で発生する磁場とは、強磁性体から十分に離れた場所における磁場又は強磁性コアを取り除いて測定したときの磁場の値を意味する。従って、更に好ましくは1〜10kOeであることがよい。
【0036】
更に、本発明においては、図2に示したような垂直磁場垂直成形装置において、円筒磁石用成形金型のダイス材に非磁性体をトータル角度20°以上180°以下、特に30〜120°の領域に亘り少なくとも1つ以上配することが好ましい。
【0037】
図5は垂直磁場垂直成形装置におけるラジアル円筒磁石用成形金型のダイス材に非磁性体(例えば非磁性超硬材等)10を、角度θ=30°の領域(ダイス円筒360°のうち30°にあたる領域)で対称に2個配した垂直磁場垂直成形装置を示す。なお、非磁性体近傍の磁力線は強磁性体に向かって曲げられる。特に非磁性体と強磁性体の境に存在する強磁性体エッジの方向に曲げられる。磁石粉は曲げられた磁力線の方向に配向するため、求める磁石が得られる。このときの非磁性体配置角度が20°未満であると磁力線が曲げられる効果が小さく、加えて配向方向が径方向に対し30°以上傾いた領域が少なくなり、割れを抑える効果が小さい。また、180°より大きい場合はラジアル配向が阻害され、目的にたる磁石とはならない。
この場合、図5において、1は成形機架台、3はダイス、4はコア、8は充填磁石粉であることは、図2の場合と同様である。また、ダイス3における上記非磁性体10以外の材質は、5kG以上の強磁性体にて形成する。更に、コア材は10kG以上の強磁性体にて形成することができる。
【0038】
ところで、金型のコア5aの少なくとも一部、好ましくは全体を飽和磁束密度5kG以上の強磁性体で形成し、上記のように水平磁場垂直成形を行う場合、なお、この方法では、コイルによる配向磁場方向に対し90°である方向では、ラジアル配向とならない場合がある。磁場中に強磁性体がある場合、磁束は強磁性体に垂直に入ろうとし強磁性体に引き寄せられるため、強磁性体の磁場方向面では磁束密度が上昇し、垂直方向では磁束密度が低下する。このため、金型内に強磁性コアを配した場合、充填磁石粉において強磁性コアの磁場方向部では強い磁場により良好な配向が得られ、垂直方向部ではあまり配向しない。これを補うために磁石粉をコイルによる発生磁場に対し相対的に回転させ、不完全配向部を磁場方向の強い磁場部で再度配向することで良好な磁石が得られる。
【0039】
ここで、磁石粉をコイルによる発生磁場に対し、相対的に回転させる方法としては、下記(i)〜(v)
(i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
(ii)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
(iii)磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる、
(iv)磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
(v)磁場発生コイルを2対以上配置し、1対のコイルが磁場を印加した後、別のコイル対が磁場を印加する
の操作のうち少なくとも一の操作を一回又は繰り返して複数回行うものである。
【0040】
なお、充填磁石粉の回転については、図6で示すように磁石粉をコイルによる発生磁場方向に対し、相対的に回転できれば、コイル2、コア5a、ダイス3、パンチ6、7のいずれかを回転させてもよい。このうち特に、磁場印加後、充填磁石粉を回転させる際、強磁性コア又は磁石粉の残留磁化を50G以上、特に200G以上存在させておけば、磁石粉は強磁性コアとの間に磁気的な吸引力が発生するため、強磁性コアを回転させるだけで磁石粉も回転させることができる。
【0041】
回転角度については適宜選定されるが、当初の位置を0°とした場合、好ましくは10〜170°、特に60〜120°の範囲、典型的には90°前後で、磁場印加中に回転させる場合は、徐々に所定角度回転させ、磁場印加後に回転させる場合は、所定角度回転させた後に再度磁場を印加するものである。
【0042】
本発明は、上記のように成形するものであるが、それ以外は通常の垂直成形法により磁石粉に配向磁界を印加して、一般的な成形圧0.5〜2.0t/cmで成形し、更に焼結、時効処理、加工処理等を施し、焼結磁石を得ることができる。
【0043】
なお、磁石粉としては、特に制限されるものではなく、Nd−Fe−B系の円筒磁石を製造する場合に好適であるほか、フェライト磁石、Sm−Co系希土類磁石、各種ボンド磁石等の製造においても有効であるが、いずれも平均粒径0.1〜100μm、特に0.3〜50μmの合金粉を用いて成形するものである。
【0044】
本発明においては、このようにして得られた円筒磁石に対し、その外周面を多極着磁する。ここで、図7は、着磁機22を用いて円筒磁石21の着磁を行う様子を示している。なお、符号23は着磁機磁極歯であり、符号24は着磁機コイルである。
【0045】
本発明による水平磁場垂直成形にて製造されるラジアルライクな径方向配向円筒磁石を図7の着磁機にて6極着磁を行った際の表面磁束密度を図11に示す。また、図12は従来の製法で作られた径方向配向円筒磁石に図7の着磁機により6極着磁を行った際の表面磁束密度図である。従来の水平磁場垂直成形法により径方向配向円筒磁石を作製し、配向磁場方向がN、S極となるように6極着磁を行うと、配向方向のA、Dでは表面磁束密度が大きく、配向方向と90°の角度をなす方向に近いB、C、E、Fの配向方向では小さな表面磁束密度となる。そればかりか、同じ角度幅を持つ着磁機具を用いて着磁を行ったにもかかわらず、着磁幅は方向により大きく異なる。これに対し、本発明品では、B、C、E、Fのピーク値において上昇がみられ、表面磁束が0となるところでの着磁幅もほぼ一定となる。しかし、表面磁化が、ピークの位置でA、Dに比べB、C、E、Fはとがった形状となっている。磁束量はピーク面積が大きいほど大きいので、A、Dに比べB、C、E、Fは小さくなってしまう。各極間における磁束量のばらつきはモータに組みこまれた際の回転むらになり、振動、騒音の原因となる。従って、この各極間の磁束量のばらつきを低減することで、むらの無いスムーズな回転が行える。
【0046】
図10は、9個のステータ歯(ステータティース)を有する3相モータの平面図を示したものである。3相モータ30はα、β、γのステータ歯31がα、β、γの順に配列し、その配線がステータ歯をコイル状に巻きながらつながり、U、V、W相としてモータの入力線となる。このU、V、W相に電流を流してコイル32に磁場を発生させ、コイルによる磁場と円筒磁石21との間に働く斥力及び引力によりモータは回転する。U−V、V−W、W−Uはそれぞれ総ステータ歯数の1/3の数の歯を周っており、U−Vに電流が流れるとステータコアのαより磁場が発せられ、同様にV−Wによりβ、W−Uによりγにそれぞれ磁場が発生する。図10は、このような歯数9個のステータを有する3相モータに、6極に着磁を行った径方向配向円筒磁石21を組み込んだものである。なお、図中33はモータロータ軸である。
【0047】
図中において、U−V(α)が磁石の極の中心に位置し、モータトルクのピークとなる。この際、U−V(α)と作用し、回転力を生じる極はA、C、E極であり、A極は配向磁場方向極であり、磁束量が大きく、C及びEは配向磁場方向とはずれた角度に位置する極であり、磁束量は小さい。次に、磁石が回転し、U−V(α)にD、F、B極が近づく。D極は配向磁場方向の極であり、磁束量が大きく、F及びBは配向磁場方向とはずれた角度に位置する極であり、磁束量は小さい。しかし、磁石極数6の3/2倍の9個の歯を有するがために、U−V(α)のコイルに鎖交する磁束量はA、C、E極分合わせたものとD、F、B極分合わせたものでは常に等しくなる。この関係はV−W(β)、W−U(γ)においても同様である。この場合、円筒磁石における着磁極数がk(kは4以上の正の偶数)個のとき、この円筒磁石と組み合わせるステータの歯数が3k・j/2(jは1以上の正の整数)個であることがよく、特に上記のように、磁石の極とモータのステータの歯数の組み合わせを磁石極数k=6、歯数3k・j/2=9(k=6、j=1)の組み合わせとすることで、磁石に配向磁場方向の極と配向磁場方向からずれた極が存在し、磁束量にばらつきがある円筒磁石においても、磁束ばらつきが緩和され、回転むらのないモータを得ることができる。なお、kは好ましくは50以下、更に好ましくは40以下の偶数であり、jは好ましくは10以下、更に好ましくは5以下の整数である。極数kが多くなりすぎると、1極の幅が小さくなり、配向磁場方向に垂直方向では極が明確にならない場合がある。
【0048】
このうち磁石極数2n(nは2以上50以下の正の整数)に対し、ステータ歯数を3m(mは2以上33以下の正の整数)とした際に、常に上記関係が維持され、回転むらのないモータを得ることができる。但し、2n≠3mである。特に、径方向配向円筒磁石に多極着磁を行い、ステータ歯数を着磁極数の3n倍としたものは、特に回転むらのない優れたモータ特性を有するモータを生産できる。
【0049】
本発明に係る円筒磁石に多極着磁を行ったものは、ラジアル異方性リング磁石に多極着磁を行った場合に比べ、極間付近の着磁性及び磁気特性が低いので磁束密度の極間部の変化が滑らかであり、モータのコギングトルクは小さいが、スキュー着磁又はステータ歯にスキューを施すことで、更にコギングトルクを低減することができる。円筒磁石及びステータ歯のスキュー角度が、円筒磁石1極分の角度の1/10未満であるとスキュー着磁によるコギングトルク低下の効果が小さく、円筒磁石1極分の角度の2/3より大きいとモータのトルクの低下が大きくなるため、スキュー角度は円筒磁石1極分の角度の1/10〜2/3の角度が好ましく、特に1/10〜2/5の角度が好ましい。
なお、本発明の永久磁石モータは、上記した構成とする以外は、公知の構成として製造し得る。
【0050】
この場合、図7は円筒磁石の配向方向を図8に対し90°回転させて着磁を行ったものであるが、図9に示されるように、円筒磁石のN極とS極の境界がラジアル方向に対し±30°以上傾いた方向に配向した部位の中央部40に対し、±10°以内にあることが好ましい。そして、このように設定したN極とS極との境界から周方向に互いに等間隔ずつ離間してN極とS極との境界を設けるように、周方向に多極に着磁することが好ましい。一方、図8による着磁に比べ、図7による着磁は、ラジアル方向からずれた部位を4極(片側2極ずつ)で分担するため、コギングが少なく、トルクが上昇する。
【0051】
また、図8は、円筒磁石の配向方向を図7に対して90°回転させて着磁を行う様子を示す着磁模式図である。図7に対して配向方向を90°回転させて6極着磁を行った図8に示されるものは、配向磁場方向付近のB、C、E、F極からは比較的大きな磁束量が得られ、A、D極の配向方向に垂直な方向の部分では磁束量は小さくなる。図7及び8にて着磁した磁石を2段積みして90°ずらして着磁してモータ用ロータ磁石とすると、図7で着磁した大きな磁束量のA、Dが図8で着磁した場合は少ない磁束量となるため、合わせると図7での着磁ではやや小さな磁束量であるが、図8での着磁では比較的大きな磁束量が得られるB、C、E、F極とほぼ同じ磁束量となる。このため、各極間の磁束量のばらつきを低減することで、むらの無いスムーズな回転が行える。
【0052】
同様に、水平磁場垂直成形装置にて製造されるラジアルライクな配向を有する円筒磁石を輪切りして円筒軸方向に2等分割し、一方に対しもう片方を徐々に回転させて段積みを行い、はじめは図7の配置で着磁されるが、徐々に向きが変わり、90°回転後は図8の配置での着磁となる。これを次々に90°まで回転させて段積みし、その後着磁をしていくと、A、D極では回転角が増えるにつれ徐々に総磁束量が減少し、B、C、E、F極では総磁束量は増加する。
【0053】
このように該成形機にて製造されるラジアルライクな径方向配向円筒磁石を、軸方向に2段以上積み重ねて多極着磁を行うことにより、各極間の磁束量のばらつきを低減することができ、モータとして用いた際のトルクむらを抑えることができる。なお、積層数の上限は特に制限はないが、10段程度が好ましい。
【0054】
分割した磁石の配向方向を相対的に所定の角度回転させて多段(2段以上)積みして多極着磁することにより、配向方向とこれに垂直な方向との磁束量のばらつきを均一化し、極間の磁束量のばらつきを低減させることができる。このとき、積み重ねる各磁石の配向方向を180/i°(iは積み重ね数)だけ角度をずらして積み重ね、多極着磁を行うことが好ましい。
【0055】
また、分割数は配向方向を各極に均一に分布させるために、i=n/2段(nは極数)とすることで、配向方向の磁束量の多い部分と、これに垂直な方向で磁束量の少ない部分とをそれぞれ各極に均一に分布でき、これを180/i°だけ角度をずらして積み重ね、多極着磁することで各極の総磁束量を等しくすることができる。
【0056】
なお、nは4〜50の正の整数で、nが多くなると着磁極間が狭くなり、十分な着磁が困難となるので、nは特に4〜30が好ましい。
【0057】
また、iは2〜10の正の整数で、iが大きく積み重ね数が多くなると、コストが高くなるので、特に2〜6が好ましい。
【0058】
水平磁場垂直成形装置により一方向異方性を有する円筒磁石に多極着磁を行ったものは、ラジアル異方性リング磁石に多極着磁を行った場合に比べ、極間付近の着磁性及び磁気特性が低いので磁束密度の極間部の変化が滑らかであり、モータのコギングトルクは小さい。なお、磁石をスキュー着磁するか、ステータ歯にスキューを施すことで更にコギングトルクを低減することができる。
【0059】
スキュー角度は、磁石ステータともに磁石1極分(360/n°)の角度の1/10以下であると、スキュー着磁によるコギングトルク低下の効果が小さく、2/3より大きいと、モータのトルクの低下が大きくなるため、スキュー角は、磁石1極分の角度の1/10〜2/3の角度が好ましい。
【0060】
本発明の永久磁石式モータは、例えば図10に示したように、モータ、特に複数個のステータ歯を有するモータにロータとして上記の多段長尺多極着磁円筒磁石ロータを組み込めばよく、この場合、該ステータ歯を有するモータの構成は公知のものとすることができる。
【0061】
【発明の効果】
本発明のラジアル異方性焼結磁石は、内外径比の小さな形状においても焼結及び時効冷却時の割れ、クラックのない優れた磁石特性を有する。
【0062】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0063】
[実施例1]
それぞれ純度99.7重量%のNd、Dy、Fe、Co、M(MはAl、Si、Cu)と純度99.5重量%のBを用い、Nd29Dy2.5Fe64CoAl0.2Cu0.1Si0.2の合金を真空溶解炉で溶解鋳造してインゴットを作製した。このインゴットをジョウクラッシャー及びブラウンミルで粗粉砕し、更に窒素気流中ジェットミル粉砕により平均粒径3.5μmの微粉末を得た。この粉末を飽和磁束密度20kGの強磁性体(S50C:Fe鋼)コアを配置した水平磁場垂直成形装置にて8kOeの磁場中において0.5t/cmの成形圧にて成形した。このとき、磁石粉の充填密度は25%であった。この成形体はArガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の時効熱処理を行った。その後加工を行い、φ30mm×φ25mm×L30mmの円筒磁石を得た。上記円筒磁石を図7の着磁機にて6極着磁し、着磁後の磁石を磁石と同一高さの図10に示す構成のステータ内に組み込んだモータを作製した。磁石内径にはモータ軸となる強磁性コアが挿入接着されている。銅細線を各歯それぞれ150ターン巻きとした。モータを1000rpmで回転させた際の誘起電圧及び同モータを1〜5rpmで回転させた際の荷重計によるトルクリップルの大きさを測定した。
【0064】
[実施例2]
図8の着磁配置により着磁した以外は実施例1と同様にして得た磁石を同様にモータに組み込んだ際の誘起電圧とトルクリップルの大きさを測定した。結果を表1に示す。
【表1】

Figure 2004153867
【0065】
[実施例3]
コア断面積の60%の面積を占める飽和磁束密度18kGの強磁性体(SK5:Fe鋼)をコア外周と同心円状に配置し、残りは非磁性体材で作成したコアを用い、その他は実施例1と同様にして作製した円筒磁石をモータに組み込み、モータ特性を測定した。
【0066】
[実施例4]
実施例1と同じ成形機を用い、発生磁場を6kOeとし、他は実施例1の条件で磁石を作製し、モータに組み込みモータ特性を測定した。
【0067】
[比較例1]
実施例1と同様の磁石粉を用い、図2に示される垂直磁場垂直成形装置を用い、コイルの発生磁界20kOeで磁石粉充填深さ30mmとし、磁場中成形後の成形体を下方に移動させ、成形体の上に先ほどと同様に30mm磁石粉を乗せ、磁場中成形後の磁石を実施例1と同様の条件で焼結時効を行い、φ30mm×φ25mm×L30mmの円筒磁石を得た。これをモータに組み込みモータ特性を測定した。
【0068】
[比較例2]
非磁性体(非磁性超硬材WC−Ni−Co)をコア材に用いた以外は、実施例1と同じ条件で磁石を作製し、モータに組み込みモータ特性を測定した。
【0069】
[比較例3]
飽和磁束密度2kGの強磁性体(磁性超硬材WC−Ni−Co)コアを配置した成形機にて、他は実施例1と同じ条件で磁石を作製し、モータに組み込みモータ特性を測定した。
【0070】
[実施例5]
図5に示すように、非磁性体(非磁性超硬材WC−Ni−Co)をダイス内角度30°の部分で2個対称になるように配置し(トータル60°)、その他は比較例1と同様な条件で磁石を作製し、同様にモータ特性を測定した。
【0071】
偏光顕微鏡観察により、ラジアル配向に対し、30°以上傾いた部分の体積(配向乱れ体積)を算出し、表2に示す。また、これらの円筒磁石をそれぞれの条件で100個製造した際の割れの数もあわせて記載する。
【0072】
【表2】
Figure 2004153867
【0073】
表2より、実施例は大きな起電力が得られ、かつトルクリップルが小さく、クラックの発生がないためモータ用磁石として優れた特性を有する磁石の量産化に有効である。
【0074】
また、実施例4の条件で作製した磁石を偏光顕微鏡観察した結果を図13、14、15に示す。即ち、図13、14、15は強磁性材をコアとして用いた水平磁場垂直成形装置により作製された磁石において、配向磁場方向に対し、30°方向、60°方向、90°方向での磁石の配向の様子を示したもので、これらからわかるように本発明による円筒磁石では、配向磁場方向に対し60°方向で初めてラジアル方向とのずれが30°となり、これより30体積%で30°以上ずれていることがわかる。
【0075】
[実施例6〜9、参考例1]
それぞれ純度99.7重量%のNd、Dy、Fe、Co、M(MはAl、Si、Cu)と純度99.5重量%のBを用い、Nd29Dy2.5Fe63.8CoAl0.3Si0.3Cu0.1の合金を真空溶解炉で溶解鋳造してインゴットを作製した。このインゴットをジョウクラッシャー及びブラウンミルで粗粉砕し、更に窒素気流中ジェットミル粉砕により平均粒径3.5μmの微粉末を得た。この粉末を図1に示すような飽和磁束密度20kGの鉄製の強磁性体コアを配置した水平磁場垂直成形装置にて、コイルの発生磁場4kOeの磁場中において配向させた後、実施例6として、コイルを90°回転させ、次いで同様に4kOeの磁場中において再び配向させ、1.0t/cmの成形圧にて成形した。
【0076】
実施例7としては、水平磁場垂直成形装置にてコイルの発生磁場4kOeの磁場中において配向させた後、ダイスとコア及びパンチを90°回転させ、次いで同様に4kOeの磁場中において再び配向させ、1.0t/cmの成形圧にて成形した以外は実施例6と同様に成形した。
【0077】
実施例8としては、水平磁場垂直成形装置にてコイルの発生磁場4kOeの磁場中において配向させた後、残留磁化4kGのコアを90°回転させた。このときの磁石粉の残留磁化は800Gであった。次いで同様に4kOeの磁場中において再び配向させ、その後、1.0t/cmの成形圧にて成形した以外は実施例6と同様に成形した。
【0078】
これらの成形体はArガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の時効熱処理を行った。その後、加工を行い、φ24mm×φ19mm×L30mmの円筒磁石を得た。なお、本円筒磁石と同一磁石粉を用い、水平磁場垂直成形装置にて12kOeの磁場中において1.0t/cmの成形圧にて成形し、Arガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の熱処理をして本円筒磁石と同一条件で作製したブロック磁石の特性は、Br:12.5kG、iHc:15kOe、(BH)max:36MGOeであった。上記の円筒磁石を、図7に示す着磁機にて6極、20°でスキュー着磁し、着磁後の磁石を磁石と同一高さの図10に示す構成のステータ内に組み込んだモータを作製した。また、上記実施例のモータを5000rpmで回転させた際の誘起電圧及び同モータを5rpmで回転させた際の荷重計によるトルクリップルの大きさを測定した。更に、上記と同様に成形、焼結、熱処理して得た円筒磁石を図8の着磁機にて着磁し、モータに組み込んで、誘起電圧及びトルクリップルを測定した(実施例8a)。表3に誘起電圧の絶対値の最大及びトルクリップルの最大最小の差を示す。
【0079】
実施例9として、実施例6と同じ水平磁場垂直成形装置を用い、12kOeの磁場中において90°回転させながら配向を行い、1.0t/cmの成形圧にて成形した。他は実施例6と同様にして作製した磁石を用いたモータのモータ特性を測定した。
【0080】
一方、参考例1として、実施例6において4kOeの磁場で配向させた際、回転させずそのまま磁界中1.0t/cmの成形圧にて成形した。他は実施例6と同様にして作製した磁石を用いたモータのモータ特性を測定した。これらの結果を表3に示す。
【0081】
【表3】
Figure 2004153867
【0082】
表3より、参考例に対し実施例ではトルクに相応する誘起電圧が大きく改善されており、本発明がモータ用磁石の製造方法として優れた方法であることがわかる。
【0083】
なお、実施例6の着磁後のロータ磁石の表面磁束を測定した結果は図11と同様の結果で各極が均一化しており、かつ極の面積が大きくなっており、実施例は大きな磁場が均一に発生できることがわかる。
【0084】
[実施例10]
それぞれ純度99.7重量%のNd、Dy、Fe、Co、M(MはAl、Si、Cu)と純度99.5重量%のBを用い、Nd29Dy2.5Fe64CoAl0.2Si0.2Cu0.1の合金を真空溶解炉で溶解鋳造してインゴットを作製した。このインゴットをジョウクラッシャー及びブラウンミルで粗粉砕し、更に窒素気流中ジェットミル粉砕により平均粒径3.5μmの微粉末を得た。この粉末を飽和磁束密度20kGのFe製の強磁性体コアを配置した図1に示す水平磁場垂直成形装置にて10kOeの磁場中において1.0t/cmの成形圧にて成形した。この成形体はArガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の熱処理を行った。その後加工を行い、φ30mm×φ25mm×L30mmの円筒磁石を得た。本円筒磁石と同一磁石粉を用い、水平磁場垂直成形装置にて10kOeの磁場中において1.0t/cmの成形圧にて成形し、Arガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の熱処理をして、本円筒磁石と同一条件で作製したブロック磁石の特性は、Br:13.0kG、iHc:15kOe、(BH)max:40MGOeであった。
【0085】
上記の径方向配向円筒磁石を、着磁機にて6極着磁し、着磁後の磁石を磁石と同一高さの図10に示す構成の9個のステータ内に組み込んだモータを作製した。磁石内径にはモータ軸となる強磁性コアが挿入接着されている。銅細線を各歯それぞれ100ターン巻きとした。U−V相間の磁束量をフラックスメータを用いて測定した。
【0086】
[比較例4]
本ステータ歯のうちの一つだけに実施例10と同じ銅細線を100ターン巻き、磁束量をフラックスメータにて測定した。磁石を1周させたときのピークの値を表4に示す。表に示されるように、比較例ではピークによる磁束量が、小さいピークに対し大きなピークでは1.5倍程度と非常に大きいにもかかわらず、実施例10ではピーク値がほとんど変わらない。
【0087】
[実施例11]
コア断面積の60%の面積を占める飽和磁束密度18kGの強磁性体をコア外周と同心円状に配置し、残りは非磁性体材で作製したコアを用い、その他は実施例10と同様にして作製したモータのU−V相間の磁束量を測定した。
【0088】
[比較例5]
非磁性体(非磁性超硬材WC−Ni−Co)をコア材に用いた他は実施例10と同様にして作製したモータのU−V相間の磁束量を測定した。
【0089】
[比較例6]
Fe製の強磁性体コアの飽和磁束密度を2kGとした他は実施例10と同様にして作製したモータのU−V相間の磁束量を測定した。配置した際のモータのU−V相間の磁束量をそれぞれフラックスメータを用いて測定した。
これらの結果を表4に示す。
【0090】
【表4】
Figure 2004153867
【0091】
[実施例12]
実施例10のモータを1000rpmで回転させた際の誘起電圧及び同モータを1〜5rpmで回転させた際の荷重計によるトルクリップルの大きさを測定した。表5に誘起電圧の絶対値の最大及びトルクリップルの最大最小の差を示す。表5より、本モータは使用上十分な誘起電圧量を有し、十分小さなトルクリップルであることがわかる。
【0092】
[実施例13]
実施例10の径方向配向円筒磁石を着磁する際、スキュー角度を磁石1極分の角度の1/3の20°でスキュー着磁を行い、該磁石を実施例10のモータに組み込み、実施例12と同様に誘起電圧及びトルクリップルを測定した値を表5に示す。表5よりトルクリップルの量がスキュー無し品より更に小さく、誘起電圧の低下はわずかであることがわかる。
【0093】
[参考例2]
実施例10の径方向配向円筒磁石を着磁する際、スキュー角度磁石1極分の角度の5/6の50°でスキュー着磁を行い、該磁石を実施例10のモータに組み込み、実施例12と同様に誘起電圧及びトルクリップルを測定した値を表5に示す。表5よりトルクリップルの量はスキュー無し品より小さいが、誘起電圧の低下が大きく、実用に適さない場合があることがわかる。
【0094】
[実施例14]
径方向配向円筒磁石を実施例10と同様に着磁し、スキュー角度が磁石1極分の角度の1/3の20°であるステータ歯をもつ実施例10と同寸法のモータに組み込み、実施例12と同様に誘起電圧及びトルクリップルを測定した値を表5に示す。表5より、トルクリップルの量がスキュー無し品より更に小さく、誘起電圧の低下はわずかであることがわかる。
【0095】
【表5】
Figure 2004153867
【0096】
[実施例15]
それぞれ純度99.7重量%のNd、Dy、Fe、Co、M(MはAl、Si、Cu)と純度99.5重量%のBを用い、Nd29Dy2.5Fe64CoAl0.2Si0.2Cu0.1の合金を真空溶解炉で溶解鋳造し、インゴットを作製した。このインゴットをジョウクラッシャー及びブラウンミルで粗粉砕し、更に、窒素気流中でのジェットミル粉砕により平均粒径3.5μmの微粉末を得た。この粉末を飽和磁束密度20kGのFe製の強磁性体コアを配置した図1に示す如き水平磁場垂直成形装置にて6kOeの磁場中において1.0t/cmの成形圧にて成形した。この成形体は、Arガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の熱処理を行った。その後、加工して外径30mm、内径25mm、厚さ15mmの円筒磁石を得た。
【0097】
実施例15は、作製した円筒磁石を、配向方向を60°ずらして積み重ね、1段目の磁石配向方向が図8の関係(極AがN極となる)になるように配置し、6極着磁3段積みを行った。
【0098】
[実施例16]
実施例16は、ずらし角を90°とし、実施例15と同様に6極着磁2段積みを行った。
【0099】
[参考例3]
実施例15と同じ磁石粉末を用い、成形体高さを変え、段積みをしないこと以外は実施例15と同一条件で外径30mm、内径25mm、厚さ30mmの円筒磁石を作製し、6極着磁を行った。
【0100】
[実施例17]
実施例15と同じ磁石粉末を用い、同一条件で外径30mm、内径25mm、厚さ10mmの円筒磁石を作製し、配向方向を60°ずらして3段積み重ね、各段の円筒磁石の配向方向がそれぞれ図7の配置になるようにし、6極着磁を行った。この様子を図16に示す。図中の大矢印は、円筒磁石の各段の配向時の磁場方向を示している。なお、符号33はモータロータ軸である。
【0101】
これらの磁石を評価するために、横10.5mm、縦30mmの四角形に銅細線を50ターン巻き、コイルを作製した。このコイルを円筒磁石に接した状態から磁石の磁力の影響を受けない遠方まで遠ざけ、この間のコイルを横切る磁束量を円筒磁石の外周方向にフラックスメータを用いて測定し、ピーク値を表6に示す。
【0102】
【表6】
Figure 2004153867
【0103】
[実施例18,19、参考例4、比較例7]
図10は、9個のモータステータ歯31を有する3相の永久磁石モータ30の平面図を示したものである。着磁した円筒磁石をこの磁石と同一高さのステータ内に組み込んでモータを作製した。円筒磁石の内径部にはモータ軸となる強磁性コアが挿入接着されている。各ティースに銅細線をそれぞれ150ターン巻きした。このモータを1000rpmで回転させ、このときの誘起電圧の絶対値の最大で、かつ1〜5rpmで回転させ、荷重計を用いてトルクリップルの大きさを測定した。
【0104】
ここで、実施例18は、実施例16と同様にずらし角90°で磁石を2段に重ね合わせ、スキュー角を磁石1極分の角度の1/3の20°でスキュー着磁を行い、この磁石をモータに組み込んだものである。
【0105】
実施例19は、実施例17と同じ寸法の円筒磁石を用い、図16に示すようにずらし角60°で磁石を3段に重ねてスキューなしに着磁し、スキュー角が磁石1極分の角度の1/3の20°であるスキューステータ歯を有するモータに組み込んだものである。
【0106】
また、段積みをしない円筒磁石を参考例4とし、また成形金型のコアを非磁性(非磁性超硬材WC−Ni−Co)で作製して成形機に配置し、その他は実施例15と同様に磁石を作製し、これを実施例18と同様にしてモータに組み込み、比較例7とした。これらの誘起電圧、トルクリップルを測定し、誘起電圧とともにトルクリップルの最大最小の差を表7に示した。
【0107】
表7から、各実施例は実用に十分耐える誘起電圧を有し、トルクリップルも十分小さいが、参考例4はトルクリップルが大きいことが認められる。比較例7は誘起電圧が低く、実用に適さない。
【0108】
[参考例5]
実施例18の径方向配向円筒磁石を着磁する際、スキュー角磁石1極分の角度の5/6の50°でスキュー着磁を行い、この磁石を図10のモータに組み込み、実施例18と同様にして誘起電圧及びトルクリップルを測定し、表7に示した。
【0109】
表7から、トルクリップルの量は小さいが、誘起電圧の低下が大きく実用に適さないことが認められる。
【0110】
[実施例20、参考例6]
実施例15のNd磁石合金を用いて、水平磁場垂直成形法により一軸配向のリング磁石を作製した。磁石寸法は外径25mm、内径20mm、厚さ15mmである。配向方向を60°ずつ変化させながら6段積み重ねて6極にストレート着磁し磁石ロータを作製した。これを7°のスキュー角のステータに組み込みモータにした。
【0111】
更に参考例6として、実施例20と同じ磁石を用いて配向方向を一方向にそろえ、6極にストレート着磁し磁石ロータを作製した。これを無スキューのステータに組み込みモータにした。これらにおいて誘起電圧とともにトルクリップルを測定した。
【0112】
その結果は、表7に示したとおりであり、実施例20では参考例6に比べてトルクリップルが大きく低下しており、本発明による磁石の配向方向分散の効果が顕著であることがわかる。
【0113】
【表7】
Figure 2004153867

【図面の簡単な説明】
【図1】円筒磁石を製造する際に使用する水平磁場垂直成形装置の一実施例を示す説明図であり、(a)は平面図、(b)は縦断面図である。
【図2】ラジアル異方性円筒磁石を製造する際に使用する従来の垂直磁場垂直成形装置を示す説明図であり、(a)は縦断面図、(b)は(a)図におけるA−A’線の断面図である。
【図3】円筒磁石を製造する際に使用する水平磁場垂直成形装置で磁場発生時の磁力線の様子を模式的に示す説明図であり、(a)は本発明に係る成形装置の場合、(b)は従来の成形装置の場合である。
【図4】円筒磁石を製造する際に使用する水平磁場垂直成形装置の他の実施例を示す説明図であり、(a)は平面図、(b)は縦断面図である。
【図5】ラジアル異方性円筒磁石を製造する際に使用するダイス部に一部非磁性材を配置した垂直磁場垂直成形装置を示す説明図であり、(a)は図2(b)と同様の断面図、(b)は(a)図におけるB1〜B4部の拡大図である。
【図6】円筒磁石を製造する際に使用する成形装置で、回転式水平磁場垂直成形装置の一例を示す説明図である。
【図7】着磁機を用いて円筒磁石の着磁を行う様子を示す着磁模式図である。
【図8】着磁機を用いて円筒磁石の着磁を行う様子を示す着磁模式図で、円筒磁石の配向方向を図7に対して90°回転させて着磁を行う様子を示す。
【図9】円筒磁石のN極とS極との境界を説明する平面図である。
【図10】6極に多極着磁した円筒磁石と9個のステータ歯を組み合わせた3相モータの平面図を示したものである。
【図11】本発明に係る水平磁場垂直成形装置により作製したNd−Fe−B系円筒磁石に6極着磁を行った際の表面磁束密度を示した図である。
【図12】従来の水平磁場垂直成形装置(コア材として非磁性材を使用)により作製したNd−Fe−B系円筒磁石に6極着磁を行った際の表面磁束密度を示した図である。
【図13】円筒磁石を製造する際に使用する強磁性材をコアとして用いた水平磁場垂直成形装置により作製された磁石の配向磁場方向に対し、30°方向での磁石の配向を示す顕微鏡写真である。
【図14】円筒磁石を製造する際に使用する強磁性材をコアとして用いた水平磁場垂直成形装置により作製された磁石の配向磁場方向に対し、60°方向での磁石の配向を示す顕微鏡写真である。
【図15】円筒磁石を製造する際に使用する強磁性材をコアとして用いた水平磁場垂直成形装置により作製された磁石の配向磁場方向に対し、90°方向での磁石の配向を示す顕微鏡写真である。
【図16】径方向配向円筒磁石を各60°ずらして3段に積層した本発明の永久磁石式モータ用ロータを示す斜視図である。
【符号の説明】
1 成形機架台
2 配向磁場コイル
3 ダイス
4 コア
5 コア
5a コア
5a’ 弱い強磁性体超硬合金部
6 上パンチ
7 下パンチ
8 充填磁石粉
9 ポールピース
10 ダイス非磁性体
11 パーメンジュール
21 円筒磁石
22 着磁機
23 着磁機磁極歯
24 着磁機コイル
30 3相モータ
31 ステータ歯
32 コイル
33 モータロータ軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radially anisotropic sintered magnet and a method for manufacturing a radially anisotropic sintered magnet. The present invention also relates to a cylindrical magnet rotor for a synchronous permanent magnet motor such as a servo motor and a spindle motor, and to an improvement of a permanent magnet motor using the same.
[0002]
[Prior art]
Anisotropic magnets made by pulverizing crystalline magnetic anisotropic materials such as ferrites and rare earth alloys and performing press molding in a specific magnetic field are widely used in speakers, motors, measuring instruments, and other electrical equipment. It is used. Among them, magnets having anisotropy in the radial direction are particularly excellent in magnetic properties, can be freely magnetized, and do not require reinforcement for fixing magnets such as segment magnets. Used in brushless motors and the like. In particular, in recent years, a long radial anisotropic magnet has been demanded as the performance of a motor becomes higher.
[0003]
A magnet having a radial orientation is manufactured by a vertical magnetic field vertical molding method or a backward extrusion method. The vertical magnetic field vertical molding method is characterized in that a magnetic field is applied from a pressing direction to a counter direction through a core to obtain a radial orientation. That is, in the vertical magnetic field vertical molding method, as shown in FIG. 2, the magnetic field generated in the orientation magnetic field coil 2 is opposed via the cores 4 and 5, the core passes through the die 3, and the molding machine base 1 In the magnetic circuit that circulates through the magnetic powder, the filled magnet powder 8 is radially oriented. In the figure, 6 is an upper punch and 7 is a lower punch.
[0004]
As described above, in the vertical magnetic field vertical forming apparatus, the magnetic field generated by the coil forms a core, a die, a molding machine base, and a magnetic path serving as a core. In this case, in order to reduce the magnetic field leakage loss, a ferromagnetic material is used as a material of a portion forming a magnetic path, and an iron-based metal is mainly used. However, the magnetic field strength for orienting the magnet powder is determined as follows. The core diameter is B (magnet powder filling inner diameter), the die diameter is A (magnet powder filling outer diameter), and the magnet powder filling height is L. The magnetic flux passing through the upper and lower cores strikes at the center of the core, opposes each other, and reaches the dice. The amount of magnetic flux passing through the core is determined by the saturation magnetic flux density of the core, and the magnetic flux density of an iron core is about 20 kG. Therefore, the orientation magnetic field at the inner and outer diameters of the magnet powder filling is obtained by dividing the amount of magnetic flux passing through the upper and lower cores by the inner area and the outer area of the magnet powder filling portion,
2 · π · (B / 2) 2 20 / (π · B · L) = 10 · B / L: inner circumference,
2 · π · (B / 2) 2 · 20 / (π · A · L) = 10 · B 2 / (AL): Outer circumference
It becomes. Since the magnetic field at the outer circumference is smaller than the inner circumference, 10 kOe or more is required at the outer circumference in order to obtain a good orientation in all the magnet powder filling portions. 2 / (AL) = 10, so that L = B 2 / A. The height of the compact is about half of the height of the filling powder and becomes about 80% during sintering, so that the height of the magnet is extremely small. As described above, since the saturation of the core determines the strength of the alignment magnetic field, the size, that is, the height of the orientable magnet is determined by the shape of the core, and it is difficult to manufacture a long product in the cylindrical axis direction. In particular, only a very short product could be manufactured with a cylindrical magnet having a small diameter.
[0005]
In addition, the rear extrusion method requires large facilities, has a low yield, and it is difficult to manufacture an inexpensive magnet.
[0006]
As described above, the radial anisotropic magnet is difficult to manufacture by any method, it is more difficult to manufacture it in a large amount at low cost, and the motor using the radial anisotropic magnet has a disadvantage that the cost is very high. was there.
[0007]
When manufacturing a radially anisotropic ring magnet with a sintered magnet, it is generated due to the difference in linear expansion coefficient between the C-axis direction and the C-axis perpendicular direction of the magnet in the sintering and aging cooling process due to anisotropy. If the stress is greater than the mechanical strength of the magnet, cracks and cracks occur, which is problematic. For this reason, it was possible to manufacture the R—Fe—B based sintered magnet only in a magnet shape having an inner / outer diameter ratio of 0.6 or more (Hitachi Metals Technical Report Vol. 6, p. 33-36). Further, in the R- (Fe, Co) -B sintered magnet, Co substituted for Fe is contained not only in the main phase 2-14-1 in the alloy structure but also in the R-rich phase. 3 Form Co to significantly reduce mechanical strength. Moreover, since the Curie temperature is high, the amount of change in the coefficient of thermal expansion in the C-axis direction and the C-axis vertical direction between the Curie temperature during cooling and room temperature increases, and the residual stress which causes cracks and cracks increases. For this reason, the R- (Fe, Co) -B-based radial anisotropic ring magnet is more severely restricted in shape than the R-Fe-B-based magnet containing no Co, and is stable only when the inner / outer diameter ratio is 0.9 or more. Magnet production could not be done. For the same reason, cracks and cracks occur in ferrite magnets and Sm-Co magnets, and stable production cannot be achieved.
[0008]
The circumferential residual stress causing cracks or cracks generated during the sintering and aging cooling processes accompanying the radial anisotropy is based on the results of Kools' study of ferrite magnets (F. Kools: Science of Ceramics. Vol. 7, (1973), 29-45), and is represented as equation (1).
σ θ = ΔTΔαEK 2 / (1-K 2 ) ・ (Kβ K η K-1 -Kβ -K η -K-1 -1) ‥‥‥ (1)
σ θ : Circumferential stress
ΔT: temperature difference
Δα: Difference in linear expansion coefficient (α‖-α⊥)
E: Young's modulus in orientation direction
K 2 : Anisotropy ratio of Young's modulus (E⊥ / E‖)
η: Position (r / outer diameter)
β k : (1-ρ 1 + K ) / (1-ρ 2K )
ρ: Inner / outer diameter ratio (inner / outer diameter)
[0009]
In the above equation, the term that has the largest influence on the cause of cracks or cracks is Δα: difference in linear expansion coefficient (α‖−α⊥), and is a ferrite magnet, an Sm—Co-based rare earth magnet, Nd—Fe—. In a B-based rare earth magnet, the difference in the coefficient of thermal expansion depending on the crystal direction (thermal expansion anisotropy) appears from the Curie temperature, and increases as the temperature decreases during cooling. At this time, the residual stress becomes higher than the mechanical strength of the magnet, leading to cracking.
[0010]
According to the above formula, the stress due to the difference in thermal expansion between the orientation direction and the direction perpendicular to the orientation direction occurs because the cylindrical magnet is radially oriented in the radial direction. Accordingly, if a cylindrical magnet having a partly different orientation from the radial orientation is manufactured, no cracking occurs. For example, a cylindrical magnet produced by a horizontal magnetic field vertical molding method and oriented in one direction perpendicular to the cylindrical axis may be any one of a ferrite magnet, an Sm-Co rare earth magnet, and an Nd-Fe (Co) -B rare earth magnet. It does not break even with type magnets.
[0011]
Multipolar magnetization can be performed on a cylindrical magnet without using individual radial anisotropic magnets, and if the magnetic flux density is high and the variation in magnetic flux density between the poles is small, the magnet can be used as a high-performance permanent magnet motor. A magnet oriented in one direction perpendicular to the cylinder axis by the horizontal magnetic field vertical molding method, and only the magnetization is multipole, making a cylindrical multipole magnet for permanent magnet motor without using a radial anisotropic magnet (MAG-85-120, 1985). Magnets manufactured by the horizontal magnetic field vertical molding method and oriented in one direction perpendicular to the cylinder axis (hereinafter referred to as radially oriented cylindrical magnets) are as long as possible (50 mm or more) as long as the press machine cavity allows. In addition, since multiple presses can be performed, a large number of compacts can be obtained by one press, and a cylindrical magnet for a motor can be supplied at a low cost instead of an expensive radial anisotropic magnet.
[0012]
However, in practice, magnets obtained by performing multipolar magnetization on a radially oriented cylindrical magnet produced by the horizontal magnetic field vertical molding method have a high magnetic flux density near the direction of the orientation magnetic field and a pole perpendicular to the direction of the orientation magnetic field. However, since the magnetic flux density is small, when the motor is assembled to the motor and the motor is rotated, torque unevenness reflecting the variation of the magnetic flux density between the poles occurs, and it cannot be said that the magnet is a motor magnet that can be practically used.
[0013]
In order to solve this problem, in Patent Document 1, the number of circumferentially magnetized poles in a cylindrical magnet manufactured by a horizontal magnetic field vertical forming method and oriented in one direction perpendicular to the cylinder axis is 2n (n is larger than 1). It has been proposed that the number of teeth of the stator combined with the cylindrical magnet be 3 m (m is a positive integer larger than 1 and smaller than 33) when the number is larger than 50 (positive integer). According to Patent Document 2, when the number of magnetized poles is k (k is a positive even number of 4 or more), the number of teeth of a stator combined with this cylindrical magnet is 3 k · j / 2 (j is a positive integer of 1 or more). It has been proposed. Further, Patent Document 3 proposes reducing the torque unevenness by stacking cylindrical magnets oriented in one direction perpendicular to the cylindrical axis at different angles and stacking them.
[0014]
However, in all of Patent Literatures 1 to 3, although torque unevenness is reduced, a radial magnet having a small number of radially oriented portions in a ring magnet has a total torque of 70% as compared with a radial magnet having the same magnetic characteristics. Small and not yet practical.
[0015]
[Patent Document 1]
JP 2000-116089 A
[Patent Document 2]
JP-A-2000-116090
[Patent Document 3]
JP 2000-175387 A
[Non-patent document 1]
Hitachi Metals Technical Report Vol. 6, p. 33-36
[Non-patent document 2]
F. Kools: Science of Ceramics.
Vol. 7, (1973), p. 29-45
[Non-Patent Document 3]
IEICE Magnetics Research Group Material
MAG-85-120, 1985
[0016]
[Problems to be solved by the invention]
Accordingly, a first object of the present invention is to provide a radially anisotropic sintered magnet having excellent magnet properties free from cracks and cracks during sintering and aging cooling even in a shape having a small inner / outer diameter ratio. .
A second object of the present invention is to provide a method for manufacturing a radially anisotropic sintered magnet capable of easily producing multiple and long products and realizing a high-performance permanent magnet motor at low cost. Is to do.
A third object of the present invention is to provide an inexpensive and high-performance permanent magnet motor.
A fourth object of the present invention is to perform multi-polar magnetization without using a radial anisotropic magnet, to have a high magnetic flux density and a small variation in magnetic flux density between poles. An object of the present invention is to provide an inexpensive, mass-produced multi-stage long multi-pole magnetized cylindrical magnet rotor with torque and without torque unevenness, and a permanent magnet motor using the same.
[0017]
Means for Solving the Problems and Embodiments of the Invention
In order to achieve the first object, the present invention contains a portion formed in a cylindrical shape and inclined in a direction inclined by 30 ° or more with respect to a radial direction in an amount of 2% or more and 50% or less of the magnet volume. A radially anisotropic sintered magnet, characterized in that the portion is oriented in a radial direction or an inclination with respect to the radial direction of less than 30 °. As a method for obtaining such a magnet, a ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used for at least a part of a core of a molding die for a cylindrical magnet, and a magnet powder filled in a mold cavity is vertically and horizontally magnetically magnetized. A method for producing a radially anisotropic sintered magnet, characterized in that an orientation magnetic field is applied to a magnet powder by a molding method to form the magnet powder. In this case, the magnetic field generated by the horizontal magnetic field vertical shaping is preferably 0.5 to 12 kOe. Furthermore, the present invention provides a die for a cylindrical magnet molding die, in which at least one non-magnetic material is disposed over a region having a total angle of 20 ° or more and 180 ° or less, and the magnetic powder filled in the mold cavity is vertically placed. A method for producing a radially anisotropic sintered magnet, characterized in that a magnetic field is applied to a magnet powder by a magnetic field vertical molding method to form the magnet powder.
[0018]
That is, the present inventors have made intensive efforts to achieve the above object, and as a result, the radial orientation of the cylindrical magnet is entirely radially oriented and partially intentionally disturbed. It has been found that a stable production free of cracks and cracks can be realized in the cooling process during aging, and that a large torque can be obtained when assembled into a motor.
[0019]
ADVANTAGE OF THE INVENTION According to this invention, even if it is a shape with a uniform magnetic field and a small inner-to-outer diameter ratio, it is free from cracks and cracks during sintering and aging cooling, and has excellent magnet properties and is an R-Fe (Co) -B-based radial anisotropic material. Stable magnets can be produced stably, which is useful for high performance, high power, miniaturization, etc. of AC servo motors, DC brushless motors, speaker magnets, etc., and especially for automotive throttle valves. It is also effective in the production of the radially-directed two-pole magnetized magnet used, and it is possible to supply inexpensively and in large quantities a cylindrical magnet for a synchronous magnet motor having excellent performance.
[0020]
Further, in order to achieve the second object, the present invention uses a ferromagnetic material having a saturation magnetic flux density of 5 kG or more for at least a part of a material of a core of a molding die for a cylindrical magnet, and fills the mold cavity. A method for producing a radial anisotropic magnet by applying an orientation magnetic field to a magnet powder by a horizontal magnetic field vertical molding method and shaping the magnet powder, comprising the following steps (i) to (v):
(I) rotating the magnet powder by a predetermined angle in the circumferential direction of the mold while applying a magnetic field;
(Ii) After applying the magnetic field, rotate the magnet powder by a predetermined angle in the circumferential direction of the mold, and then apply the magnetic field again.
(Iii) rotating the magnetic field generating coil with respect to the magnet powder by a predetermined angle in the circumferential direction of the mold during application of the magnetic field;
(Iv) After applying the magnetic field, rotate the magnetic field generating coil by a predetermined angle in the circumferential direction of the mold with respect to the magnet powder, and then apply the magnetic field again.
(V) Two or more pairs of magnetic field generating coils are arranged, and one pair of coils applies a magnetic field, and then another coil pair applies a magnetic field.
A method of manufacturing a radial anisotropic magnet, wherein at least one of the above operations is performed. Here, when rotating the charged magnetic powder, the charged magnetic powder can be rotated by rotating at least one of the core, the die, and the punch in the circumferential direction. When the magnetic powder is rotated after applying the magnetic field, the value of the residual magnetization of the ferromagnetic core or the magnetic powder is 50 G or more, and the magnetic powder can be rotated by rotating the core in the circumferential direction. In this case, the magnetic field generated in the horizontal magnetic field vertical forming step is preferably 0.5 to 12 kOe.
[0021]
According to the second invention, multiple and long products can be easily produced without using an expensive radial anisotropic magnet with low productivity, and the magnetic field is uniform, inexpensive, and stably supplied in large quantities. High performance permanent magnet motors can be realized using radially oriented cylindrical magnets manufactured by the horizontal magnetic field vertical molding method, which is useful for reducing the price of high performance motors such as AC servo motors and DC brushless motors. It is.
[0022]
In order to achieve the third object, the present invention provides a permanent magnet motor in which a radially anisotropic cylindrical magnet is incorporated in a motor having a plurality of stator teeth, wherein the cylindrical magnet is a core of a molding die for a cylindrical magnet. A ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used for at least a part of the material, and a magnet powder filled in a mold cavity is formed by applying an orientation magnetic field to the magnet powder by a horizontal magnetic field vertical molding method. When the number of magnetic poles in the circumferential direction is 2n (n is a positive integer of 2 to 50) in an anisotropic cylindrical magnet, the number of teeth of a stator combined with the cylindrical magnet is 3 m (m is 2 to 33). The following positive integer is provided, and 2n ≠ 3m is provided. In this case, when the number of magnetized poles in the circumferential direction of the cylindrical magnet is k (k is a positive even number of 4 or more), the number of teeth of the stator combined with this cylindrical magnet is 3k · j / 2 (j is a positive number of 1 or more). And the boundary between the north pole and the south pole of the cylindrical magnet is within 10 ° with respect to the central portion of the portion oriented in a direction inclined at least 30 ° with respect to the radial direction. Is preferred. Further, it is preferable that the skew angle of the cylindrical magnet is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet, and the multipole skew is magnetized. In particular, the skew angle of the stator teeth is one pole of the cylindrical magnet. It is preferable to have a skew tooth of 1/10 to 2/3 of the angle. Further, it is preferable to use a magnet formed by setting the magnetic field generated by the horizontal magnetic field vertical shaping to 0.5 to 12 kOe.
[0023]
ADVANTAGE OF THE INVENTION According to this invention, the cylindrical magnet used for a synchronous magnet motor with excellent performance can be supplied in large quantities, especially at a long size and at low cost.
[0024]
In order to achieve the fourth object, the present invention provides a magnet powder filled in a mold cavity using a ferromagnetic material having a saturation magnetic flux density of 5 kG or more for at least a part of a core of a molding die for a cylindrical magnet. Is formed by applying an orientation magnetic field to a magnet powder by a horizontal magnetic field vertical molding method, and a plurality of radially anisotropic cylindrical magnets obtained by multipolar magnetization are stacked in two or more stages in the axial direction. A multi-stage long multi-pole magnetized cylindrical magnet rotor is provided. In this case, assuming that the number of stacked cylindrical magnets is i (i is a positive integer of 2 or more and 10 or less), the same direction as the orientation magnetic field direction of each cylindrical magnet is shifted by 180 / i ° to stack i pieces. In addition, when the number of poles of the multipolar magnetization is n (n is a positive integer of 4 or more and 50 or less), the number i of stacks and the number n of poles may have a relationship of i = n / 2. preferable. Further, when performing multi-pole magnetization of n poles on the outer peripheral surface of the cylindrical magnet, the angle of one pole is set to 360 / n °, and skew magnetization is performed at an angle of 1/10 to / of this angle. Is preferred. The present invention also provides a permanent magnet type motor using the multi-stage long multi-pole magnetized cylindrical magnet rotor.
[0025]
In other words, by adopting the above configuration, the variation of the magnetic flux density between the poles is greatly reduced, and the motor magnet capable of realizing smooth rotation without torque unevenness with high torque, that is, a multi-stage long multi-pole magnetized cylindrical magnet rotor And a permanent magnet type motor using the same can be manufactured.
[0026]
Hereinafter, the present invention will be described in more detail.
The radially anisotropic sintered magnet according to the present invention is a cylindrical magnet, which is generally oriented in the radial direction (radial direction), provided that a portion of 2% or more and 50% or less of the magnet volume in the radial direction. On the other hand, the orientation is 30 ° or more and 90 ° or less.
[0027]
In the radially anisotropic sintered magnet of the present invention, the portion oriented in such a direction inclined by 30 to 90 ° with respect to the radial direction is 2 to 50% of the magnet volume.
[0028]
That is, the stress represented by the above-described formula (1) is generated because the continuum is radially oriented in the circumferential direction, that is, a cylindrical magnet. Therefore, if partial continuous orientation is disturbed, the stress decreases. Therefore, a magnet that can be produced without cracking by containing a portion oriented in a direction inclined by 30 ° or more with respect to the radial direction by 2% or more and 50% or less of the magnet volume. When the portion inclined at 30 ° or more is smaller than 2%, the effect of preventing cracking is small, and when the portion inclined at 30 ° or more is more than 50%, the torque for the motor rotor is insufficient, which is not practical. More preferably, a portion inclined by 30 ° or more is contained at 5 to 40%, more preferably 10 to 40%.
[0029]
The remaining magnet volume portion, that is, the portion of the magnet volume of 50 to 98%, more preferably 60 to 95%, is oriented so that the inclination from the radial direction to the radial direction is less than 30 °. is there.
[0030]
FIG. 1 is an explanatory view of a horizontal magnetic field vertical forming apparatus for performing orientation in a magnetic field when forming a cylindrical magnet, and particularly a horizontal magnetic field vertical forming apparatus for a motor magnet. Here, as in the case of FIG. 2, 1 indicates a molding machine stand, 2 indicates an orientation magnetic field coil, 3 indicates a die, and 5a indicates a core. 6 is an upper punch, 7 is a lower punch, 8 is a charged magnetic powder, and 9 is a pole piece.
[0031]
In the present invention, at least a part, preferably the whole, of the core 5a is formed of a ferromagnetic material having a saturation magnetic flux density of 5 kG or more, preferably 5 to 24 kG, more preferably 10 to 24 kG. Examples of the core material include a ferromagnetic material using a material such as an Fe-based material, a Co-based material, or an alloy thereof.
[0032]
As described above, when a ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used for the core, when an orientation magnetic field is applied to the magnet powder, the magnetic flux draws lines of magnetic force close to radial because it tends to enter the ferromagnetic material perpendicularly. Therefore, as shown in FIG. 3A, the magnetic field direction of the magnet powder filling portion can be made closer to the radial orientation. On the other hand, conventionally, the entire core 5b is made of a non-magnetic material or a material having a saturation magnetic flux density equivalent to that of the magnet powder. In this case, the magnetic lines of force are parallel to each other as shown in FIG. The vicinity is the radial direction, but the direction of the orientation magnetic field by the coil becomes higher and lower. Even if the core is formed of a ferromagnetic material, if the saturation magnetic flux density of the core is less than 5 kG, the core is easily saturated, and the magnetic field is close to that of FIG. 3B despite the use of the ferromagnetic core. . In addition, if it is less than 5 kG, it becomes equal to the saturation density of the charged magnet powder (saturation magnetic flux density of the magnet × filling rate), and the direction of the magnetic flux in the charged magnet powder and the ferromagnetic core becomes equal to the magnetic field direction of the coil.
[0033]
When a ferromagnetic material of 5 kG or more is used for a part of the core, the same effect as described above can be obtained and is effective. FIG. 4 shows an example in which a part (central part) is a ferromagnetic substance and an outer peripheral part is a weak ferromagnetic substance (WC-Ni-Co-based). In FIG. 4, 5a 'indicates a weak ferromagnetic hard metal part, and 11 indicates permendur.
[0034]
According to the above method, since the disturbance to the radial orientation in the radial direction in the cylindrical magnet becomes the disturbance of the orientation only in a portion perpendicular to the direction of the orientation magnetic field, the decrease in the magnetic flux amount of each pole after the magnetization is slightly suppressed. As a result, a cylindrical magnet for a motor rotor can be manufactured without torque unevenness and torque deterioration of the motor.
[0035]
When the molding is performed as described above, the magnetic field generated by the horizontal magnetic field vertical molding device is preferably 0.5 to 12 kOe. The reason why the magnetic field generated by the horizontal magnetic field vertical shaping apparatus is determined as described above is that when the magnetic field is large, the core 5a in FIG. 3A saturates and becomes close to the state shown in FIG. The magnetic field is preferably 12 kOe or less, since the orientation of the magnetic field does not become the radial orientation. When a ferromagnetic core is used, the magnetic flux concentrates on the core, so that a magnetic field larger than the magnetic field generated by the coil is obtained around the core. However, if the magnetic field is too small, a magnetic field sufficient for orientation cannot be obtained even around the core, so that the magnetic field is preferably 0.5 kOe or more. As described above, the magnetic flux gathers around the ferromagnetic material and the magnetic field increases, so the magnetic field generated by the horizontal magnetic field vertical shaping device here refers to the magnetic field or the ferromagnetic core at a place sufficiently away from the ferromagnetic material. It means the value of the magnetic field when measured after removal. Therefore, it is more preferable that the pressure be 1 to 10 kOe.
[0036]
Furthermore, in the present invention, in a vertical magnetic field vertical molding apparatus as shown in FIG. 2, a non-magnetic material is added to a die material of a molding die for a cylindrical magnet by a total angle of 20 ° or more and 180 ° or less, particularly 30 to 120 °. It is preferable to arrange at least one or more over the region.
[0037]
FIG. 5 shows a non-magnetic material (for example, a non-magnetic super hard material) 10 as a die material of a molding die for a radial cylindrical magnet in a vertical magnetic field vertical molding apparatus, and a region of an angle θ = 30 ° (30 out of 360 ° of a die cylinder 360 °). FIG. 2 shows a vertical magnetic field vertical shaping apparatus in which two vertical magnetic fields are arranged symmetrically in a region corresponding to (°). The lines of magnetic force near the nonmagnetic material are bent toward the ferromagnetic material. In particular, it is bent in the direction of the ferromagnetic material edge existing at the boundary between the nonmagnetic material and the ferromagnetic material. Since the magnet powder is oriented in the direction of the line of magnetic force, the desired magnet can be obtained. If the non-magnetic body arrangement angle at this time is less than 20 °, the effect of bending the lines of magnetic force is small, and in addition, the region where the orientation direction is inclined by 30 ° or more with respect to the radial direction is reduced, and the effect of suppressing cracking is small. On the other hand, when the angle is larger than 180 °, the radial orientation is hindered, and the magnet does not become a target.
In this case, in FIG. 5, 1 is a molding machine base, 3 is a die, 4 is a core, and 8 is a charged magnet powder, as in the case of FIG. The material other than the non-magnetic material 10 in the die 3 is formed of a ferromagnetic material of 5 kG or more. Further, the core material can be formed of a ferromagnetic material of 10 kG or more.
[0038]
By the way, when at least a part, preferably the whole, of the core 5a of the mold is formed of a ferromagnetic material having a saturation magnetic flux density of 5 kG or more, and the horizontal magnetic field vertical molding is performed as described above, in this method, the orientation by the coil is used. In a direction that is 90 ° with respect to the magnetic field direction, radial orientation may not be achieved. When there is a ferromagnetic substance in the magnetic field, the magnetic flux tends to enter the ferromagnetic substance perpendicularly and is attracted to the ferromagnetic substance, so that the magnetic flux density increases in the direction of the magnetic field of the ferromagnetic substance and decreases in the vertical direction. I do. For this reason, when the ferromagnetic core is arranged in the mold, a good orientation is obtained by the strong magnetic field in the magnetic field direction of the ferromagnetic core in the filled magnet powder, and the orientation is not so much in the vertical direction. To compensate for this, a good magnet can be obtained by rotating the magnet powder relatively to the magnetic field generated by the coil and re-orienting the incompletely oriented part with a magnetic field part having a strong magnetic field direction.
[0039]
Here, as a method of rotating the magnet powder relatively to the magnetic field generated by the coil, the following (i) to (v)
(I) rotating the magnet powder by a predetermined angle in the circumferential direction of the mold while applying a magnetic field;
(Ii) After applying the magnetic field, rotate the magnet powder by a predetermined angle in the circumferential direction of the mold, and then apply the magnetic field again.
(Iii) rotating the magnetic field generating coil with respect to the magnet powder by a predetermined angle in the circumferential direction of the mold during application of the magnetic field;
(Iv) After applying the magnetic field, rotate the magnetic field generating coil by a predetermined angle in the circumferential direction of the mold with respect to the magnet powder, and then apply the magnetic field again.
(V) Two or more pairs of magnetic field generating coils are arranged, and one pair of coils applies a magnetic field, and then another coil pair applies a magnetic field.
Of at least one of the above operations is performed once or repeatedly.
[0040]
As for the rotation of the charged magnet powder, as shown in FIG. 6, if the magnet powder can be rotated relatively to the direction of the magnetic field generated by the coil, any one of the coil 2, the core 5a, the die 3, and the punches 6, 7 is used. It may be rotated. In particular, when the filled magnet powder is rotated after the application of the magnetic field, if the residual magnetization of the ferromagnetic core or the magnet powder is at least 50 G, particularly 200 G or more, the magnet powder is magnetically interposed between the magnetic powder and the ferromagnetic core. Since an attractive force is generated, the magnet powder can be rotated only by rotating the ferromagnetic core.
[0041]
The rotation angle is appropriately selected, but when the initial position is set to 0 °, the rotation is preferably performed in the range of 10 to 170 °, particularly 60 to 120 °, typically around 90 °, while applying a magnetic field. In this case, the magnetic field is gradually rotated by a predetermined angle, and when the magnetic field is rotated after the application of the magnetic field, the magnetic field is applied again after the rotation by the predetermined angle.
[0042]
In the present invention, the molding is performed as described above. Otherwise, an orientation magnetic field is applied to the magnet powder by a normal vertical molding method, and the general molding pressure is 0.5 to 2.0 t / cm. 2 And then subjected to sintering, aging, processing, etc., to obtain a sintered magnet.
[0043]
The magnet powder is not particularly limited, and is suitable for producing an Nd-Fe-B-based cylindrical magnet, as well as producing ferrite magnets, Sm-Co-based rare earth magnets, various bond magnets, and the like. In any case, the molding is performed using an alloy powder having an average particle size of 0.1 to 100 μm, particularly 0.3 to 50 μm.
[0044]
In the present invention, the outer peripheral surface of the thus obtained cylindrical magnet is multipolarly magnetized. Here, FIG. 7 illustrates a state in which the cylindrical magnet 21 is magnetized using the magnetizer 22. Reference numeral 23 denotes a magnetic pole tooth of the magnetizer, and reference numeral 24 denotes a coil of the magnetizer.
[0045]
FIG. 11 shows the surface magnetic flux density when the radial-like radially oriented cylindrical magnet manufactured by the horizontal magnetic field vertical molding according to the present invention was subjected to six-pole magnetization by the magnetizer of FIG. FIG. 12 is a surface magnetic flux density diagram when six-pole magnetization is performed on a radially oriented cylindrical magnet made by a conventional manufacturing method using the magnetizer of FIG. When a radially oriented cylindrical magnet is manufactured by a conventional horizontal magnetic field vertical molding method, and six-pole magnetization is performed so that the orientation magnetic field direction is N and S poles, the surface magnetic flux density is large in A and D in the orientation direction, A small surface magnetic flux density is obtained in the B, C, E, and F orientation directions that are close to a direction forming an angle of 90 ° with the orientation direction. In addition, the magnetization width varies greatly depending on the direction, even though the magnetization is performed using the magnetization tool having the same angle width. On the other hand, in the product of the present invention, the peak values of B, C, E, and F show an increase, and the magnetization width at the point where the surface magnetic flux becomes 0 becomes almost constant. However, B, C, E, and F have sharper shapes at the peak positions than those of A and D. Since the amount of magnetic flux is larger as the peak area is larger, B, C, E, and F are smaller than A and D. Variations in the amount of magnetic flux between the poles result in uneven rotation when assembled into the motor, which causes vibration and noise. Therefore, by reducing the variation in the amount of magnetic flux between the poles, smooth and smooth rotation can be performed.
[0046]
FIG. 10 shows a plan view of a three-phase motor having nine stator teeth (stator teeth). In the three-phase motor 30, the stator teeth 31 of α, β, and γ are arranged in the order of α, β, and γ, and the wiring is connected while winding the stator teeth in a coil shape, and is connected to the input lines of the motor as U, V, and W phases. Become. A current flows through the U, V, and W phases to generate a magnetic field in the coil 32, and the motor rotates by the repulsive and attractive forces acting between the magnetic field generated by the coil and the cylindrical magnet 21. Each of UV, VW, and WU surrounds one third of the total number of stator teeth. When a current flows through UV, a magnetic field is generated from α of the stator core. A magnetic field is generated in β by VW and in γ by WU. FIG. 10 shows a three-phase motor having such a stator having nine teeth, in which a radially oriented cylindrical magnet 21 magnetized to six poles is incorporated. In the drawing, reference numeral 33 denotes a motor rotor shaft.
[0047]
In the figure, UV (α) is located at the center of the pole of the magnet, and becomes the peak of the motor torque. At this time, the poles which act on UV (α) and generate a rotational force are A, C, and E poles, and the A pole is an orientation magnetic field direction pole, and has a large amount of magnetic flux. And the magnetic flux amount is small. Next, the magnet rotates, and the D, F, and B poles approach UV (α). The D pole is a pole in the direction of the aligning magnetic field and has a large amount of magnetic flux. F and B are poles located at an angle deviating from the direction of the aligning magnetic field and have a small amount of magnetic flux. However, since it has nine teeth which are 3/2 times the number of magnet poles 6, the amount of magnetic flux linked to the U-V (α) coil is equal to the sum of the A, C, and E poles, and D, The sum of the F and B poles is always equal. This relationship is the same in VW (β) and WU (γ). In this case, when the number of magnetized poles of the cylindrical magnet is k (k is a positive even number of 4 or more), the number of teeth of the stator combined with the cylindrical magnet is 3k · j / 2 (j is a positive integer of 1 or more). In particular, as described above, the combination of the number of magnet poles and the number of teeth of the motor stator is k = 6, the number of teeth is 3k · j / 2 = 9 (k = 6, j = 1). ), The magnets have poles in the direction of the orientation magnetic field and poles deviated from the direction of the orientation magnetic field. Obtainable. Here, k is preferably an even number of 50 or less, more preferably 40 or less, and j is preferably an integer of 10 or less, more preferably 5 or less. If the number k of poles is too large, the width of one pole is reduced, and the pole may not be clearly defined in the direction perpendicular to the direction of the alignment magnetic field.
[0048]
When the number of stator teeth is 3 m (m is a positive integer of 2 to 33) with respect to the number of magnet poles 2n (n is a positive integer of 2 to 50), the above relationship is always maintained. A motor without rotation unevenness can be obtained. However, 2n ≠ 3m. In particular, a motor having excellent motor characteristics without rotation unevenness can be produced particularly when the radially oriented cylindrical magnet is multipolar magnetized and the number of stator teeth is 3n times the number of magnetized poles.
[0049]
In the case where the multi-pole magnetization is performed on the cylindrical magnet according to the present invention, the magnetization and magnetic properties in the vicinity of the gap are low as compared with the case where the multi-pole magnetization is performed on the radial anisotropic ring magnet. Although the change in the gap between the poles is smooth and the cogging torque of the motor is small, the cogging torque can be further reduced by skew magnetizing or skewing the stator teeth. If the skew angle of the cylindrical magnet and the stator teeth is less than 1/10 of the angle of one pole of the cylindrical magnet, the effect of lowering the cogging torque due to the skew magnetization is small, and is larger than two thirds of the angle of one pole of the cylindrical magnet. Therefore, the skew angle is preferably 1/10 to 2/3 of the angle of one pole of the cylindrical magnet, and more preferably 1/10 to 2/5.
It should be noted that the permanent magnet motor of the present invention can be manufactured as a known configuration except for the configuration described above.
[0050]
In this case, FIG. 7 shows a case in which the orientation direction of the cylindrical magnet is rotated by 90 ° with respect to FIG. 8 to perform magnetization. As shown in FIG. 9, the boundary between the N pole and the S pole of the cylindrical magnet is It is preferable that it is within ± 10 ° with respect to the central part 40 of the part oriented in a direction inclined ± 30 ° or more with respect to the radial direction. Then, it is possible to circumferentially magnetize the multipole in the circumferential direction so as to provide a boundary between the N pole and the S pole at equal intervals in the circumferential direction from the boundary between the N pole and the S pole thus set. preferable. On the other hand, compared with the magnetization according to FIG. 8, in the magnetization according to FIG. 7, since the portion deviated from the radial direction is shared by four poles (two poles on each side), cogging is small and the torque increases.
[0051]
FIG. 8 is a schematic diagram illustrating a state in which the orientation direction of the cylindrical magnet is rotated by 90 ° with respect to FIG. 7 to perform the magnetization. In FIG. 8 in which the orientation direction is rotated by 90 ° with respect to FIG. 7 to perform six-pole magnetization, a relatively large amount of magnetic flux is obtained from the B, C, E, and F poles near the orientation magnetic field direction. Accordingly, the amount of magnetic flux is small in a portion perpendicular to the orientation direction of the A and D poles. When the magnets magnetized in FIGS. 7 and 8 are stacked in two stages and magnetized at a 90 ° offset to form a rotor magnet for a motor, the large magnetic fluxes A and D magnetized in FIG. 7 are magnetized in FIG. In this case, the amount of magnetic flux is small. Therefore, when combined, the amount of magnetic flux is slightly small in the magnetization shown in FIG. 7, but is relatively large in the magnetization shown in FIG. 8 for the B, C, E, and F poles. And the magnetic flux amount is almost the same. For this reason, by reducing the variation in the amount of magnetic flux between the poles, smooth and even rotation can be performed.
[0052]
Similarly, a cylindrical magnet having a radial-like orientation manufactured by a horizontal magnetic field vertical molding device is sliced and divided into two equal parts in the cylindrical axis direction, and the other is gradually rotated to perform stacking, Initially, the magnetization is performed in the arrangement shown in FIG. 7, but the direction is gradually changed, and after 90 ° rotation, the magnetization is performed in the arrangement shown in FIG. When this is rotated one after another to 90 ° and stacked, and then magnetized, the total magnetic flux gradually decreases as the rotation angle increases in the A and D poles, and the B, C, E and F poles Then, the total magnetic flux increases.
[0053]
Thus, by stacking two or more radial-like radially oriented cylindrical magnets manufactured by the molding machine in the axial direction and performing multipolar magnetization, the variation in the amount of magnetic flux between the poles can be reduced. Thus, uneven torque when used as a motor can be suppressed. The upper limit of the number of layers is not particularly limited, but is preferably about 10 steps.
[0054]
The orientation direction of the divided magnets is relatively rotated by a predetermined angle and stacked in multiple stages (two or more stages) to perform multi-polar magnetization, thereby making the variation in the magnetic flux amount between the orientation direction and the direction perpendicular thereto uniform. In addition, variations in the amount of magnetic flux between the poles can be reduced. At this time, it is preferable to perform multi-pole magnetization by shifting the orientations of the magnets to be stacked by 180 / i ° (i is the number of stacked magnets) at different angles.
[0055]
The number of divisions is set to i = n / 2 (n is the number of poles) in order to uniformly distribute the orientation direction to each pole. Thus, a portion having a small amount of magnetic flux can be uniformly distributed to each pole, and these are stacked at an angle shifted by 180 / i °, and the total magnetic flux of each pole can be equalized by multi-pole magnetization.
[0056]
Here, n is a positive integer of 4 to 50. When n is large, the gap between the magnetized poles is narrowed, and it becomes difficult to sufficiently magnetize. Therefore, n is particularly preferably 4 to 30.
[0057]
In addition, i is a positive integer of 2 to 10, and when i is large and the number of stacks is large, the cost becomes high.
[0058]
Multi-pole magnetization of a cylindrical magnet with unidirectional anisotropy using a horizontal magnetic field vertical shaping device is more magnetizable near the gap than when multi-polar magnetization is applied to a radially anisotropic ring magnet. Also, since the magnetic characteristics are low, the change of the magnetic flux density between the poles is smooth, and the cogging torque of the motor is small. The cogging torque can be further reduced by skew-magnetizing the magnet or skewing the stator teeth.
[0059]
The skew angle is less than 1/10 of the angle of one pole of the magnet (360 / n °) for both the magnet stator and the effect of lowering the cogging torque due to the skew magnetization is small. Therefore, the skew angle is preferably 1/10 to 2/3 of the angle of one pole of the magnet.
[0060]
As shown in FIG. 10, for example, the permanent magnet type motor of the present invention may incorporate the above-mentioned multi-stage long multi-pole magnetized cylindrical magnet rotor as a rotor into a motor, particularly a motor having a plurality of stator teeth. In this case, the configuration of the motor having the stator teeth may be a known configuration.
[0061]
【The invention's effect】
The radially anisotropic sintered magnet of the present invention has excellent magnet properties without cracks and cracks during sintering and aging cooling even in a shape having a small inner / outer diameter ratio.
[0062]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0063]
[Example 1]
Nd, Dy, Fe, Co, M (M is Al, Si, Cu) having a purity of 99.7% by weight and B having a purity of 99.5% by weight are used for Nd. 29 Dy 2.5 Fe 64 Co 3 B 1 Al 0.2 Cu 0.1 Si 0.2 Was melt-cast in a vacuum melting furnace to produce an ingot. The ingot was coarsely pulverized with a jaw crusher and a brown mill, and further jet milled in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was subjected to 0.5 t / cm in a magnetic field of 8 kOe by a horizontal magnetic field vertical forming apparatus having a ferromagnetic (S50C: Fe steel) core having a saturation magnetic flux density of 20 kG. 2 At a molding pressure of At this time, the packing density of the magnet powder was 25%. This compact was sintered in Ar gas at 1090 ° C. for 1 hour, followed by aging heat treatment at 580 ° C. for 1 hour. Thereafter, processing was performed to obtain a cylindrical magnet of φ30 mm × φ25 mm × L30 mm. The cylindrical magnet was magnetized into six poles by the magnetizer shown in FIG. 7, and a motor was prepared in which the magnetized magnet was incorporated into a stator having the same height as the magnet and having the configuration shown in FIG. A ferromagnetic core serving as a motor shaft is inserted and bonded to the inner diameter of the magnet. The copper fine wire was wound 150 turns for each tooth. The induced voltage when the motor was rotated at 1000 rpm and the magnitude of the torque ripple with a load meter when the motor was rotated at 1 to 5 rpm were measured.
[0064]
[Example 2]
The magnitude of the induced voltage and the torque ripple when the magnet obtained in the same manner as in Example 1 except that the magnet was magnetized by the magnetizing arrangement shown in FIG. 8 and incorporated in a motor were measured. Table 1 shows the results.
[Table 1]
Figure 2004153867
[0065]
[Example 3]
A ferromagnetic material (SK5: Fe steel) having a saturation magnetic flux density of 18 kG occupying an area of 60% of the core cross-sectional area is arranged concentrically with the outer periphery of the core, and the rest is made of a nonmagnetic material. The cylindrical magnet produced in the same manner as in Example 1 was incorporated into a motor, and the motor characteristics were measured.
[0066]
[Example 4]
Using the same molding machine as in Example 1, the generated magnetic field was set to 6 kOe, and the other conditions were the same as those in Example 1 to produce a magnet, and the magnet was incorporated into the motor and the motor characteristics were measured.
[0067]
[Comparative Example 1]
Using the same magnet powder as in Example 1, using a vertical magnetic field vertical molding apparatus shown in FIG. 2, the magnetic field generated by the coil was set to 20 kOe, the magnet powder filling depth was set to 30 mm, and the molded body after being molded in the magnetic field was moved downward. Then, a magnet powder of 30 mm was placed on the compact in the same manner as above, and the magnet after compacting in a magnetic field was subjected to aging under the same conditions as in Example 1 to obtain a cylindrical magnet of φ30 mm × φ25 mm × L30 mm. This was incorporated into a motor and the motor characteristics were measured.
[0068]
[Comparative Example 2]
A magnet was manufactured under the same conditions as in Example 1 except that a non-magnetic material (non-magnetic super-hard material WC-Ni-Co) was used for the core material, and the magnet was assembled into a motor and the motor characteristics were measured.
[0069]
[Comparative Example 3]
Using a molding machine provided with a ferromagnetic material (magnetic superhard material WC-Ni-Co) core having a saturation magnetic flux density of 2 kG, a magnet was manufactured under the same conditions as in Example 1 except for the above, and the motor characteristics were measured. .
[0070]
[Example 5]
As shown in FIG. 5, two non-magnetic materials (non-magnetic super-hard material WC-Ni-Co) are arranged so as to be symmetrical at a portion of the die at an angle of 30 ° (total 60 °), and the other are comparative examples. A magnet was manufactured under the same conditions as in Example 1, and the motor characteristics were measured in the same manner.
[0071]
The volume (alignment disorder volume) of a portion inclined by 30 ° or more with respect to the radial orientation was calculated by polarization microscope observation, and is shown in Table 2. In addition, the number of cracks when 100 cylindrical magnets are manufactured under each condition is also described.
[0072]
[Table 2]
Figure 2004153867
[0073]
From Table 2, it can be seen that the embodiment is effective for mass production of a magnet having excellent characteristics as a magnet for a motor because a large electromotive force is obtained, torque ripple is small, and no crack is generated.
[0074]
13, 14 and 15 show the results of observation of the magnet produced under the conditions of Example 4 under a polarizing microscope. That is, FIGS. 13, 14, and 15 show magnets manufactured by a horizontal magnetic field vertical forming apparatus using a ferromagnetic material as a core, and the magnets in the directions of 30 °, 60 °, and 90 ° with respect to the orientation magnetic field direction. As can be seen from these figures, the cylindrical magnet according to the present invention has a deviation from the radial direction of 30 ° with respect to the direction of the orientation magnetic field for the first time in the direction of 60 ° with respect to the orientation magnetic field direction. It can be seen that it is shifted.
[0075]
[Examples 6 to 9, Reference Example 1]
Nd, Dy, Fe, Co, M (M is Al, Si, Cu) having a purity of 99.7% by weight and B having a purity of 99.5% by weight are used for Nd. 29 Dy 2.5 Fe 63.8 Co 3 B 1 Al 0.3 Si 0.3 Cu 0.1 Was melt-cast in a vacuum melting furnace to produce an ingot. The ingot was coarsely pulverized with a jaw crusher and a brown mill, and further jet milled in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was orientated in a magnetic field of 4 kOe generated by a coil by a horizontal magnetic field vertical forming apparatus having a ferromagnetic core made of iron having a saturation magnetic flux density of 20 kG as shown in FIG. The coil was rotated 90 ° and then again oriented in a 4 kOe magnetic field, 1.0 t / cm 2 At a molding pressure of
[0076]
As Example 7, after orienting in a magnetic field of 4 kOe generated by the coil with a horizontal magnetic field vertical shaping device, the die, the core and the punch were rotated by 90 °, and then similarly oriented again in a magnetic field of 4 kOe, 1.0t / cm 2 The molding was performed in the same manner as in Example 6, except that the molding was performed at a molding pressure of.
[0077]
In Example 8, after the core was oriented in a magnetic field of 4 kOe generated by a coil by a horizontal magnetic field vertical shaping device, the core having a residual magnetization of 4 kG was rotated by 90 °. The residual magnetization of the magnet powder at this time was 800G. Then, it is similarly oriented again in a magnetic field of 4 kOe, and then 1.0 t / cm 2 The molding was performed in the same manner as in Example 6, except that the molding was performed at a molding pressure of.
[0078]
These compacts were sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently subjected to aging heat treatment at 580 ° C. for 1 hour. Thereafter, processing was performed to obtain a cylindrical magnet of φ24 mm × φ19 mm × L30 mm. In addition, using the same magnet powder as the cylindrical magnet, 1.0 t / cm in a magnetic field of 12 kOe using a horizontal magnetic field vertical molding device. 2 , Sintered at 1090 ° C. for 1 hour in Ar gas, and subsequently heat-treated at 580 ° C. for 1 hour. The characteristics of the block magnet produced under the same conditions as the present cylindrical magnet are as follows: Br: 12 0.5 kG, iHc: 15 kOe, (BH) max: 36 MGOe. A motor in which the above-mentioned cylindrical magnet is skew-magnetized at 6 poles and 20 ° by a magnetizing machine shown in FIG. 7 and the magnetized magnet is incorporated in a stator having the same height as the magnet and having a configuration shown in FIG. Was prepared. In addition, the induced voltage when the motor of the above example was rotated at 5000 rpm and the magnitude of the torque ripple by a load meter when the motor was rotated at 5 rpm were measured. Further, the cylindrical magnet obtained by molding, sintering, and heat treatment in the same manner as described above was magnetized by the magnetizer shown in FIG. 8, incorporated in a motor, and measured for induced voltage and torque ripple (Example 8a). Table 3 shows the difference between the maximum value of the absolute value of the induced voltage and the maximum value and the minimum value of the torque ripple.
[0079]
As Example 9, using the same horizontal magnetic field and vertical forming apparatus as in Example 6, orientation was performed while rotating 90 ° in a magnetic field of 12 kOe, and 1.0 t / cm 2 At a molding pressure of Otherwise, the motor characteristics of the motor using the magnet produced in the same manner as in Example 6 were measured.
[0080]
On the other hand, as Reference Example 1, when oriented in a magnetic field of 4 kOe in Example 6, 1.0 t / cm 2 At a molding pressure of Otherwise, the motor characteristics of the motor using the magnet produced in the same manner as in Example 6 were measured. Table 3 shows the results.
[0081]
[Table 3]
Figure 2004153867
[0082]
From Table 3, it can be seen that the induced voltage corresponding to the torque is greatly improved in the example compared to the reference example, and that the present invention is an excellent method as a method for manufacturing a motor magnet.
[0083]
The result of measuring the surface magnetic flux of the magnetized rotor magnet of Example 6 is the same as that shown in FIG. 11, where each pole is uniform and the area of the pole is large. Can be uniformly generated.
[0084]
[Example 10]
Nd, Dy, Fe, Co, M (M is Al, Si, Cu) having a purity of 99.7% by weight and B having a purity of 99.5% by weight are used for Nd. 29 Dy 2.5 Fe 64 Co 3 B 1 Al 0.2 Si 0.2 Cu 0.1 Was melt-cast in a vacuum melting furnace to produce an ingot. The ingot was coarsely pulverized with a jaw crusher and a brown mill, and further jet milled in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was subjected to 1.0 t / cm in a magnetic field of 10 kOe by a horizontal magnetic field vertical forming apparatus shown in FIG. 1 having a ferromagnetic core made of Fe having a saturation magnetic flux density of 20 kG. 2 At a molding pressure of This compact was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 580 ° C. for 1 hour. Thereafter, processing was performed to obtain a cylindrical magnet of φ30 mm × φ25 mm × L30 mm. Using the same magnet powder as the cylindrical magnet, 1.0 t / cm in a magnetic field of 10 kOe using a horizontal magnetic field vertical molding device 2 , Sintered at 1090 ° C. for 1 hour in Ar gas, and then heat-treated at 580 ° C. for 1 hour. The properties of the block magnet produced under the same conditions as the present cylindrical magnet are as follows: 13.0 kG, iHc: 15 kOe, (BH) max: 40 MGOe.
[0085]
The above-mentioned radially-oriented cylindrical magnet was magnetized by a magnetizer into six poles, and a motor was manufactured in which the magnetized magnet was incorporated in nine stators having the same height as the magnet and having the configuration shown in FIG. . A ferromagnetic core serving as a motor shaft is inserted and bonded to the inner diameter of the magnet. The copper wire was wound 100 turns for each tooth. The amount of magnetic flux between the U and V phases was measured using a flux meter.
[0086]
[Comparative Example 4]
The same thin copper wire as in Example 10 was wound 100 times around only one of the stator teeth, and the amount of magnetic flux was measured with a flux meter. Table 4 shows the peak values when the magnet makes one rotation. As shown in the table, in the comparative example, although the amount of magnetic flux due to the peak is as large as about 1.5 times as large as the small peak, the peak value is hardly changed in the tenth embodiment.
[0087]
[Example 11]
A ferromagnetic material having a saturation magnetic flux density of 18 kG occupying an area of 60% of the core cross-sectional area is arranged concentrically with the outer periphery of the core, and the rest uses a core made of a nonmagnetic material. The amount of magnetic flux between the U and V phases of the produced motor was measured.
[0088]
[Comparative Example 5]
The amount of magnetic flux between the U and V phases of a motor manufactured in the same manner as in Example 10 except that a non-magnetic material (non-magnetic super-hard material WC-Ni-Co) was used for the core material was measured.
[0089]
[Comparative Example 6]
The amount of magnetic flux between the U and V phases of a motor manufactured in the same manner as in Example 10 except that the saturation magnetic flux density of the ferromagnetic core made of Fe was set to 2 kG was measured. The amount of magnetic flux between the U and V phases of the motor when it was arranged was measured using a flux meter.
Table 4 shows the results.
[0090]
[Table 4]
Figure 2004153867
[0091]
[Example 12]
The induced voltage when the motor of Example 10 was rotated at 1000 rpm and the magnitude of the torque ripple by a load meter when the motor was rotated at 1 to 5 rpm were measured. Table 5 shows the difference between the maximum value of the absolute value of the induced voltage and the maximum value and the minimum value of the torque ripple. From Table 5, it can be seen that the present motor has a sufficient amount of induced voltage in use and has sufficiently small torque ripple.
[0092]
Example 13
When magnetizing the radially oriented cylindrical magnet of the tenth embodiment, the skew angle is set to 20 ° which is 1/3 of the angle of one pole of the magnet, and the magnet is incorporated in the motor of the tenth embodiment. Table 5 shows the measured values of the induced voltage and the torque ripple in the same manner as in Example 12. From Table 5, it can be seen that the amount of torque ripple is even smaller than the product without skew, and the reduction in induced voltage is slight.
[0093]
[Reference Example 2]
When magnetizing the radially oriented cylindrical magnet of the tenth embodiment, skew magnetizing is performed at 50 degrees, which is 5/6 of the angle of one pole of the skew angle magnet, and the magnet is incorporated in the motor of the tenth embodiment. Table 5 shows the measured values of the induced voltage and the torque ripple in the same manner as in Example 12. From Table 5, it can be seen that although the amount of torque ripple is smaller than that of the product without skew, the induced voltage is greatly reduced and may not be suitable for practical use.
[0094]
[Example 14]
A radially oriented cylindrical magnet is magnetized in the same manner as in Example 10, and is incorporated into a motor having the same dimensions as Example 10 having a stator tooth having a skew angle of 20 ° which is 1/3 of the angle of one pole of the magnet. Table 5 shows the measured values of the induced voltage and the torque ripple in the same manner as in Example 12. From Table 5, it can be seen that the amount of torque ripple is even smaller than that of the product without skew, and the induced voltage is slightly reduced.
[0095]
[Table 5]
Figure 2004153867
[0096]
[Example 15]
Nd, Dy, Fe, Co, M (M is Al, Si, Cu) having a purity of 99.7% by weight and B having a purity of 99.5% by weight are used for Nd. 29 Dy 2.5 Fe 64 Co 3 B 1 Al 0.2 Si 0.2 Cu 0.1 Was melted and cast in a vacuum melting furnace to produce an ingot. The ingot was coarsely pulverized with a jaw crusher and a brown mill, and further jet milled in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was subjected to 1.0 t / cm in a magnetic field of 6 kOe in a horizontal magnetic field vertical forming apparatus as shown in FIG. 1 in which a ferromagnetic core made of Fe having a saturation magnetic flux density of 20 kG was arranged. 2 At a molding pressure of This compact was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 580 ° C. for 1 hour. Thereafter, processing was performed to obtain a cylindrical magnet having an outer diameter of 30 mm, an inner diameter of 25 mm, and a thickness of 15 mm.
[0097]
In Example 15, the produced cylindrical magnets were stacked with the orientation directions shifted by 60 °, and the magnet orientation directions of the first stage were arranged so as to have the relationship shown in FIG. Magnetization was performed in three stages.
[0098]
[Example 16]
In Example 16, the shift angle was set to 90 °, and six-pole magnetized two-stage stacking was performed as in Example 15.
[0099]
[Reference Example 3]
A cylindrical magnet having an outer diameter of 30 mm, an inner diameter of 25 mm, and a thickness of 30 mm was prepared under the same conditions as in Example 15 except that the height of the compact was changed and no stacking was performed, using the same magnet powder as in Example 15, and 6 poles were attached Made magnetism.
[0100]
[Example 17]
Using the same magnet powder as in Example 15, cylindrical magnets having an outer diameter of 30 mm, an inner diameter of 25 mm, and a thickness of 10 mm were produced under the same conditions, and the orientation was shifted by 60 ° and stacked in three stages. Each was arranged as shown in FIG. 7 and six-pole magnetization was performed. This is shown in FIG. The large arrows in the figure indicate the direction of the magnetic field during the orientation of each stage of the cylindrical magnet. Reference numeral 33 denotes a motor rotor shaft.
[0101]
In order to evaluate these magnets, a coil was prepared by winding a copper thin wire around a square having a width of 10.5 mm and a length of 30 mm for 50 turns. Move this coil away from the state in which it is in contact with the cylindrical magnet to a distance that is not affected by the magnetic force of the magnet. Show.
[0102]
[Table 6]
Figure 2004153867
[0103]
[Examples 18, 19, Reference Example 4, Comparative Example 7]
FIG. 10 shows a plan view of a three-phase permanent magnet motor 30 having nine motor stator teeth 31. A motor was manufactured by incorporating a magnetized cylindrical magnet into a stator having the same height as the magnet. A ferromagnetic core serving as a motor shaft is inserted and bonded to the inner diameter of the cylindrical magnet. A fine copper wire was wound around each tooth for 150 turns. The motor was rotated at 1000 rpm, the absolute value of the induced voltage at this time was maximum, and the motor was rotated at 1 to 5 rpm, and the magnitude of the torque ripple was measured using a load meter.
[0104]
Here, in Example 18, as in Example 16, magnets were superposed in two stages at a shift angle of 90 °, and skew magnetization was performed at a skew angle of 20 °, which is 1 / of the angle of one pole of the magnet. This magnet is built into a motor.
[0105]
In Example 19, a cylindrical magnet having the same dimensions as in Example 17 was used, and magnets were stacked in three stages at a shift angle of 60 ° and magnetized without skew as shown in FIG. It is incorporated into a motor having skew stator teeth that are 20 degrees, one third of the angle.
[0106]
In addition, a cylindrical magnet without stacking was used as Reference Example 4, and the core of the molding die was made of non-magnetic (non-magnetic super-hard material WC-Ni-Co) and placed in a molding machine. In the same manner as in Example 18, a magnet was produced, and this was assembled into a motor in the same manner as in Example 18, to obtain Comparative Example 7. These induced voltages and torque ripples were measured, and the maximum and minimum differences between the torque ripples and the induced voltages are shown in Table 7.
[0107]
From Table 7, it can be seen that each of the examples has an induced voltage that can withstand practical use and the torque ripple is sufficiently small, but that the reference example 4 has a large torque ripple. Comparative Example 7 has a low induced voltage and is not suitable for practical use.
[0108]
[Reference Example 5]
When magnetizing the radially-oriented cylindrical magnet of Example 18, the skew was magnetized at 50 ° which is 5/6 of the angle of one pole of the skew angle magnet, and this magnet was incorporated into the motor of FIG. The induced voltage and the torque ripple were measured in the same manner as described above.
[0109]
From Table 7, it can be seen that although the amount of torque ripple is small, the reduction in induced voltage is large and is not suitable for practical use.
[0110]
[Example 20, Reference example 6]
Using the Nd magnet alloy of Example 15, a uniaxially oriented ring magnet was manufactured by a horizontal magnetic field vertical forming method. The magnet has an outer diameter of 25 mm, an inner diameter of 20 mm, and a thickness of 15 mm. The magnet rotor was manufactured by stacking six stages while changing the orientation direction by 60 °, and magnetizing straight to six poles. This was incorporated into a 7 ° skew angle stator to form a motor.
[0111]
Further, as Reference Example 6, using the same magnet as in Example 20, the orientation direction was aligned in one direction, and the magnet was straightly magnetized to six poles to produce a magnet rotor. This was incorporated into a skewless stator to form a motor. In these, the torque ripple was measured together with the induced voltage.
[0112]
The results are as shown in Table 7. In Example 20, the torque ripple was greatly reduced as compared with Reference Example 6, and it was found that the effect of the magnet in the orientation direction dispersion according to the present invention was remarkable.
[0113]
[Table 7]
Figure 2004153867

[Brief description of the drawings]
FIG. 1 is an explanatory view showing one embodiment of a horizontal magnetic field vertical shaping apparatus used when manufacturing a cylindrical magnet, wherein (a) is a plan view and (b) is a longitudinal sectional view.
FIGS. 2A and 2B are explanatory views showing a conventional vertical magnetic field vertical forming apparatus used when manufacturing a radially anisotropic cylindrical magnet, wherein FIG. 2A is a longitudinal sectional view, and FIG. It is sectional drawing of the A 'line.
FIG. 3 is an explanatory view schematically showing the state of magnetic lines of force when a magnetic field is generated in a horizontal magnetic field vertical shaping apparatus used when manufacturing a cylindrical magnet, wherein (a) shows the case of the shaping apparatus according to the present invention; b) shows the case of a conventional molding apparatus.
4A and 4B are explanatory views showing another embodiment of a horizontal magnetic field vertical shaping apparatus used when manufacturing a cylindrical magnet, wherein FIG. 4A is a plan view and FIG. 4B is a longitudinal sectional view.
5A and 5B are explanatory views showing a vertical magnetic field vertical forming apparatus in which a non-magnetic material is partially disposed in a die portion used when manufacturing a radially anisotropic cylindrical magnet, wherein FIG. FIG. 2B is an enlarged view of a portion B1 to B4 in FIG.
FIG. 6 is an explanatory view showing an example of a rotary horizontal magnetic field vertical forming apparatus, which is a forming apparatus used when manufacturing a cylindrical magnet.
FIG. 7 is a schematic diagram illustrating a state in which a cylindrical magnet is magnetized using a magnetizer.
FIG. 8 is a schematic diagram showing a state in which a cylindrical magnet is magnetized using a magnetizer, and shows a state in which the orientation direction of the cylindrical magnet is rotated by 90 ° with respect to FIG. 7 to perform the magnetization.
FIG. 9 is a plan view illustrating a boundary between an N pole and an S pole of a cylindrical magnet.
FIG. 10 is a plan view showing a three-phase motor in which a cylindrical magnet multipolarized into six poles is combined with nine stator teeth.
FIG. 11 is a diagram showing a surface magnetic flux density when six-pole magnetization is performed on an Nd—Fe—B-based cylindrical magnet produced by the horizontal magnetic field vertical shaping apparatus according to the present invention.
FIG. 12 is a diagram showing the surface magnetic flux density when six-pole magnetization is performed on an Nd—Fe—B-based cylindrical magnet produced by a conventional horizontal magnetic field vertical forming apparatus (using a nonmagnetic material as a core material). is there.
FIG. 13 is a micrograph showing the orientation of a magnet in a direction of 30 ° with respect to the orientation magnetic field of a magnet produced by a horizontal magnetic field vertical forming apparatus using a ferromagnetic material used as a core when manufacturing a cylindrical magnet. It is.
FIG. 14 is a micrograph showing the orientation of a magnet in a direction of 60 ° with respect to the orientation magnetic field of a magnet produced by a horizontal magnetic field vertical molding apparatus using a ferromagnetic material used as a core when manufacturing a cylindrical magnet. It is.
FIG. 15 is a micrograph showing the orientation of a magnet at 90 ° with respect to the orientation magnetic field direction of a magnet produced by a horizontal magnetic field vertical forming apparatus using a ferromagnetic material as a core when manufacturing a cylindrical magnet. It is.
FIG. 16 is a perspective view showing a rotor for a permanent magnet type motor of the present invention in which radially oriented cylindrical magnets are stacked in three stages shifted by 60 °.
[Explanation of symbols]
1 Molding machine stand
2 Orientation field coil
3 dice
4 core
5 core
5a core
5a 'Weak ferromagnetic hard metal part
6 Upper punch
7 Lower punch
8 Filled magnet powder
9 pole pieces
10 Dice non-magnetic material
11 Permendur
21 Cylindrical magnet
22 Magnetizer
23 Magnet pole teeth
24 magnetizer coil
30 three-phase motor
31 Stator teeth
32 coils
33 Motor rotor shaft

Claims (19)

円筒状に形成され、ラジアル方向に対し30°以上傾いた方向に配向した部位を磁石体積の2%以上50%以下含有し、磁石体積の残りの部位がラジアル方向乃至ラジアル方向に対する傾きが30°未満に配向したものであることを特徴とするラジアル異方性焼結磁石。A portion formed in a cylindrical shape and oriented in a direction inclined by 30 ° or more with respect to the radial direction contains 2% or more and 50% or less of the magnet volume, and the remaining portion of the magnet volume has a radial direction or an inclination of 30 ° with respect to the radial direction. A radially anisotropic sintered magnet characterized by being oriented less than. 円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形することを特徴とするラジアル異方性焼結磁石の製造方法。A ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used for at least a part of a core of a molding die for a cylindrical magnet. A method for producing a radially anisotropic sintered magnet, characterized by applying and molding. 水平磁場垂直成形で発生する磁場が0.5〜12kOeであることを特徴とする請求項2記載のラジアル異方性焼結磁石の製造方法。3. The method for producing a radially anisotropic sintered magnet according to claim 2, wherein the magnetic field generated by the horizontal magnetic field vertical shaping is 0.5 to 12 kOe. 円筒磁石用成形金型のダイス材に非磁性体をトータル角度20°以上180°以下の領域に亘り少なくとも1つ以上配し、金型キャビティ内に充填した磁石粉を垂直磁場垂直成形法により磁石粉に磁界を印加して成形することを特徴とするラジアル異方性焼結磁石の製造方法。At least one non-magnetic material is arranged on a die material of a molding die for a cylindrical magnet over a region having a total angle of 20 ° or more and 180 ° or less, and a magnet powder filled in a mold cavity is magnetized by a vertical magnetic field vertical molding method. A method for producing a radially anisotropic sintered magnet, which comprises applying a magnetic field to a powder to form the powder. 円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形することにより、ラジアル異方性磁石を製造する方法であって、下記(i)〜(v)
(i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
(ii)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
(iii)磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる、
(iv)磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
(v)磁場発生コイルを2対以上配置し、1対のコイルが磁場を印加した後、別のコイル対が磁場を印加する
の操作のうち少なくとも一の操作を行うことを特徴とするラジアル異方性焼結磁石の製造方法。
A ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used for at least a part of the material of the core of the molding die for cylindrical magnets. A method for producing a radially anisotropic magnet by applying and molding, comprising the following (i) to (v)
(I) rotating the magnet powder by a predetermined angle in the circumferential direction of the mold while applying a magnetic field;
(Ii) After applying the magnetic field, rotate the magnet powder by a predetermined angle in the circumferential direction of the mold, and then apply the magnetic field again.
(Iii) rotating the magnetic field generating coil with respect to the magnet powder by a predetermined angle in the circumferential direction of the mold during application of the magnetic field;
(Iv) After applying the magnetic field, rotate the magnetic field generating coil by a predetermined angle in the circumferential direction of the mold with respect to the magnet powder, and then apply the magnetic field again.
(V) Two or more pairs of magnetic field generating coils are arranged, and after one pair of coils applies a magnetic field, another coil pair performs at least one operation of applying a magnetic field. Manufacturing method of isotropic sintered magnet.
充填磁石粉を回転させる際、コア、ダイス及びパンチのうち少なくとも1つを周方向に回転させることで充填磁石粉を回転せしめることを特徴とする請求項5記載のラジアル異方性焼結磁石の製造方法。6. The radially anisotropic sintered magnet according to claim 5, wherein, when rotating the filled magnet powder, at least one of a core, a die, and a punch is rotated in a circumferential direction to rotate the filled magnet powder. Production method. 磁場印加後充填磁石粉を回転させる際、強磁性コア又は磁石粉の残留磁化の値が50G以上であり、コアを周方向に回転させることで磁石粉を回転せしめることを特徴とする請求項5記載のラジアル異方性焼結磁石の製造方法。6. The magnetic powder according to claim 5, wherein when the magnetic powder is rotated after applying the magnetic field, the value of the residual magnetization of the ferromagnetic core or the magnetic powder is 50 G or more, and the magnetic powder is rotated by rotating the core in the circumferential direction. A method for producing the radially anisotropic sintered magnet described in the above. 水平磁場垂直成形工程で発生する磁場が、0.5〜12kOeであることを特徴とする請求項5乃至7のいずれか1項記載のラジアル異方性磁石の製造方法。The method for manufacturing a radial anisotropic magnet according to any one of claims 5 to 7, wherein a magnetic field generated in the horizontal magnetic field vertical forming step is 0.5 to 12 kOe. 複数個のステータ歯を有するモータにラジアル異方性円筒磁石を組み込んでなる永久磁石モータにおいて、前記円筒磁石が、円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形作製されたラジアル異方性円筒磁石であって、周方向の着磁極数が2n(nは2以上50以下の正の整数)個のとき、この円筒磁石と組み合わせるステータの歯数が3m(mは2以上33以下の正の整数)個であり、かつ2n≠3mであることを特徴とする周方向に多極に着磁した永久磁石モータ。In a permanent magnet motor in which a radially anisotropic cylindrical magnet is incorporated in a motor having a plurality of stator teeth, the cylindrical magnet has a saturation magnetic flux density of 5 kG or more in at least a part of a core material of a molding die for a cylindrical magnet. A radial anisotropic cylindrical magnet formed by applying an orientation magnetic field to a magnet powder by using a horizontal magnetic field vertical molding method with a magnet powder filled in a mold cavity using a ferromagnetic material having When the number of magnetic poles is 2n (n is a positive integer of 2 or more and 50 or less), the number of teeth of the stator combined with the cylindrical magnet is 3 m (m is a positive integer of 2 or more and 33 or less), and 2n ≠ A permanent magnet motor, which is magnetized to have multiple poles in the circumferential direction, having a length of 3 m. 円筒磁石における周方向の着磁極数がk(kは4以上の正の偶数)個のとき、この円筒磁石と組み合わせるステータの歯数が3k・j/2(jは1以上の正の整数)個であることを特徴とする請求項9記載の永久磁石モータ。When the number of magnetic poles in the circumferential direction of the cylindrical magnet is k (k is a positive even number of 4 or more), the number of teeth of the stator combined with the cylindrical magnet is 3k · j / 2 (j is a positive integer of 1 or more). The permanent magnet motor according to claim 9, wherein the number is one. 円筒磁石のN極とS極との境界が、ラジアル方向に対し30°以上傾いた方向に配向した部位の中央部に対し、10°以内にあることを特徴とする請求項9又は10記載の永久磁石モータ。The boundary between the north pole and the south pole of the cylindrical magnet is within 10 degrees with respect to a central portion of a portion oriented in a direction inclined by 30 degrees or more with respect to the radial direction. Permanent magnet motor. 円筒磁石のスキュー角度が円筒磁石の1極分の角度の1/10〜2/3で、多極スキュー着磁することを特徴とする請求項9乃至11のいずれか1項記載の永久磁石モータ。The permanent magnet motor according to any one of claims 9 to 11, wherein the skew angle of the cylindrical magnet is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet, and the multi-pole skew is magnetized. . ステータ歯のスキュー角度が円筒磁石の1極分の角度の1/10〜2/3のスキュー歯をもつことを特徴とする請求項9乃至12のいずれか1項記載の永久磁石モータ。The permanent magnet motor according to any one of claims 9 to 12, wherein the skew angle of the stator teeth is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet. 水平磁場垂直成形で発生する磁場を0.5〜12kOeとして成形した磁石を使用したことを特徴とする請求項9乃至13のいずれか1項記載の永久磁石モータ。The permanent magnet motor according to any one of claims 9 to 13, wherein a magnet formed by setting the magnetic field generated by the horizontal magnetic field vertical shaping to 0.5 to 12 kOe is used. 円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形作製され、これを多極着磁して得られたラジアル異方性円筒磁石の複数個を軸方向に2段以上積み重ねてなることを特徴とする多段長尺多極着磁円筒磁石ロータ。A ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used as at least a part of the material of the core of the molding die for cylindrical magnets. The magnet powder filled in the mold cavity is subjected to an orientation magnetic field by a horizontal magnetic field vertical molding method. A multi-stage long multi-pole magnetized cylinder characterized in that a plurality of radially anisotropic cylindrical magnets formed by applying a voltage and produced by multi-polar magnetization are stacked in two or more stages in the axial direction. Magnet rotor. 円筒磁石の積み重ね数をi(iは2以上10以下の正の整数)とするとき、各円筒磁石の配向磁場方向と同一方向を180/i°の角度だけずらしてi個積み重ねてなる請求項15記載の多段長尺多極着磁円筒磁石ロータ。When the number of stacked cylindrical magnets is i (i is a positive integer of 2 or more and 10 or less), i pieces are stacked by shifting the same direction as the orientation magnetic field direction of each cylindrical magnet by an angle of 180 / i °. 16. The multi-stage long multi-pole magnetized cylindrical magnet rotor according to 15. 多極着磁の極数をn(nは4以上50以下の正の整数)とするとき、積み重ね数iと極数nとがi=n/2の関係にある請求項15又は16記載の多段長尺多極着磁円筒磁石ロータ。17. The multi-pole magnet according to claim 15, wherein when the number of poles of the multipole magnetization is n (n is a positive integer of 4 or more and 50 or less), the number i of stacks and the number n of poles have a relationship of i = n / 2. Multi-stage long multi-pole magnetized cylindrical magnet rotor. 円筒磁石の外周面にn極の多極着磁を行うに際し、1極の角度を360/n°とし、この角度の1/10〜2/3の角度でスキュー着磁されてなる請求項15乃至17のいずれか1項記載の多段長尺多極着磁円筒磁石ロータ。16. An n-pole multipole magnetizing method for the outer peripheral surface of a cylindrical magnet, wherein the angle of one pole is 360 / n °, and skew magnetizing is performed at an angle of 1/10 to 2/3 of this angle. 18. The multi-stage long multi-pole magnetized cylindrical magnet rotor according to any one of claims 17 to 17. 請求項15乃至18のいずれか1項記載の多段長尺多極着磁円筒磁石ロータを用いることを特徴とする永久磁石式モータ。A permanent magnet motor using the multi-stage long multi-pole magnetized cylindrical magnet rotor according to any one of claims 15 to 18.
JP2002310880A 2001-10-31 2002-10-25 Manufacturing method of radial anisotropic sintered magnet Expired - Fee Related JP4238971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310880A JP4238971B2 (en) 2001-10-31 2002-10-25 Manufacturing method of radial anisotropic sintered magnet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001334443 2001-10-31
JP2001334440 2001-10-31
JP2001334442 2001-10-31
JP2001334441 2001-10-31
JP2002259477 2002-09-05
JP2002310880A JP4238971B2 (en) 2001-10-31 2002-10-25 Manufacturing method of radial anisotropic sintered magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008138822A Division JP5051386B2 (en) 2001-10-31 2008-05-28 Permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2004153867A true JP2004153867A (en) 2004-05-27
JP4238971B2 JP4238971B2 (en) 2009-03-18

Family

ID=32475874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310880A Expired - Fee Related JP4238971B2 (en) 2001-10-31 2002-10-25 Manufacturing method of radial anisotropic sintered magnet

Country Status (1)

Country Link
JP (1) JP4238971B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124800A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
US6984270B2 (en) * 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2006158098A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Manufacturing method of radial anisotropic magnet motor
JP2006204007A (en) * 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd Radial magnetoanisotropic magneto motor
JP2007068330A (en) * 2005-08-31 2007-03-15 Japan Servo Co Ltd Three-phase permanent magnet brushless motor
JP2007089244A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Process for producing radial magnetic anisotropy multipolar magnet
EP1895551A1 (en) * 2005-12-13 2008-03-05 Shinetsu Chemical Co., Ltd. Process for producing radially anisotropic magnet
JPWO2005124796A1 (en) * 2004-06-22 2008-04-17 信越化学工業株式会社 Radially anisotropic cylindrical sintered magnet and permanent magnet motor
JP2009283755A (en) * 2008-05-23 2009-12-03 Niigata Univ Magnetizing method of permanent magnet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618496B2 (en) 2001-10-31 2009-11-17 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US6984270B2 (en) * 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7948135B2 (en) 2001-10-31 2011-05-24 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP5089979B2 (en) * 2004-06-22 2012-12-05 信越化学工業株式会社 Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
WO2005124800A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
JPWO2005124796A1 (en) * 2004-06-22 2008-04-17 信越化学工業株式会社 Radially anisotropic cylindrical sintered magnet and permanent magnet motor
JPWO2005124800A1 (en) * 2004-06-22 2008-04-17 信越化学工業株式会社 Manufacturing method of radial anisotropic cylindrical sintered magnet and cylindrical multipolar magnet for permanent magnet motor
JP2006158098A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Manufacturing method of radial anisotropic magnet motor
JP4635583B2 (en) * 2004-11-30 2011-02-23 パナソニック株式会社 Manufacturing method of radial anisotropic magnet motor
JP4622536B2 (en) * 2005-01-20 2011-02-02 パナソニック株式会社 Radial magnetic anisotropic magnet motor
JP2006204007A (en) * 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd Radial magnetoanisotropic magneto motor
JP2007068330A (en) * 2005-08-31 2007-03-15 Japan Servo Co Ltd Three-phase permanent magnet brushless motor
JP4622767B2 (en) * 2005-09-20 2011-02-02 パナソニック株式会社 Manufacturing method of radial magnetic anisotropic multipole magnet
JP2007089244A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Process for producing radial magnetic anisotropy multipolar magnet
EP1895551A1 (en) * 2005-12-13 2008-03-05 Shinetsu Chemical Co., Ltd. Process for producing radially anisotropic magnet
EP1895551A4 (en) * 2005-12-13 2011-05-04 Shinetsu Chemical Co Process for producing radially anisotropic magnet
JP2009283755A (en) * 2008-05-23 2009-12-03 Niigata Univ Magnetizing method of permanent magnet

Also Published As

Publication number Publication date
JP4238971B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR100891855B1 (en) Radial Anisotropic Cylindrical Magnet, Magnet Rotor and Motor
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
JP5089979B2 (en) Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
JPWO2005124800A1 (en) Manufacturing method of radial anisotropic cylindrical sintered magnet and cylindrical multipolar magnet for permanent magnet motor
JP4238971B2 (en) Manufacturing method of radial anisotropic sintered magnet
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JP5353976B2 (en) Radial anisotropic sintered magnet and magnet rotor
JP3683442B2 (en) Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor
JP2005287181A (en) Permanent magnet rotary machine, metal mold, magnetic field molding machine and permanent magnet and manufacturing method for the same
KR20070023644A (en) Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet
JP2000116090A (en) Permanent magnet motor
KR101123169B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2000116089A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees