JP2000116090A - Permanent magnet motor - Google Patents

Permanent magnet motor

Info

Publication number
JP2000116090A
JP2000116090A JP10277635A JP27763598A JP2000116090A JP 2000116090 A JP2000116090 A JP 2000116090A JP 10277635 A JP10277635 A JP 10277635A JP 27763598 A JP27763598 A JP 27763598A JP 2000116090 A JP2000116090 A JP 2000116090A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical magnet
pole
motor
skew
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10277635A
Other languages
Japanese (ja)
Inventor
Koji Sato
孝治 佐藤
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10277635A priority Critical patent/JP2000116090A/en
Priority to DE69914850T priority patent/DE69914850T2/en
Priority to EP99402202A priority patent/EP0996216B1/en
Priority to US09/396,420 priority patent/US6262507B1/en
Publication of JP2000116090A publication Critical patent/JP2000116090A/en
Priority to US09/826,825 priority patent/US6633100B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make uniform scattering of the magnetic flux density between poles and to reduce torque irregularity by making specific the number of gears of a stator that is combined with a cylindrical magnet when the number of magnetization in a peripheral direction in the cylindrical magnet is set to an even number that is equal to or more than four. SOLUTION: When the number of magnetization in a peripheral direction in a cylindrical magnet 23 that is orientated in one direction being vertical to a cylindrical shaft is set to k (k is a positive even number that is equal to or more than four), the number of stator gears 21 being combined with the cylindrical magnet 23 is set to 3k.n/2 (n is a positive integer that is equal to or more than one). Also, the skew angle of the cylindrical magnet 23 ranges from 1/10 to 2/3 of the angle (360/k) for one pole and is made of k multiple-pole skew magnetization. Further, the skew angle of the stator gears 21 ranges from 1/10 to 2/3 of an angle (360/k) for one pole similarly and is provided with 3k.n/2 skew gears. For example, by setting the number k of magnet poles to 6 and the number 3k.n/2 of gears to 9 (n=1) in the combination of the pole of the magnet and the stator gears 21, the magnetic flux scattering can be relaxed also in a cylindrical magnet being orientated in a diameter direction with scattering in the magnetic flux density and suppressing rotation irregularity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はサーボモータ、スピ
ンドルモータ等の永久磁石モータの改良に係るものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a permanent magnet motor such as a servo motor and a spindle motor.

【0002】[0002]

【従来の技術】フェライトや希土類合金のような結晶磁
気異方性材料を粉砕し、特定の磁場中でプレス成型を行
い作製される異方性磁石は、スピーカ、モータ、計測
器、その他の電気機器等に広く使用されている。このう
ち特にラジアル方向に異方性を有する希土類焼結磁石
は、磁気特性に優れ、軸方向への自由な着磁が可能であ
り、またセグメント磁石のような磁石固定用の補強の必
要もないため、ACサーボモータ、DCブラシレスモー
タ等に使用されている。特に近年はモータの高性能化に
ともない、長尺のラジアル異方性磁石が求められてき
た。ラジアル配向を有する磁石は磁場中成型または後方
押し出しにより製造されるが、磁場中成型法はコアを介
して磁場を対抗方向から印加しラジアル配向を得るがコ
ア形状により配向可能な磁石高さが決まってしまい、長
尺品を製造することが難しい。また、後方押し出し法は
設備が大掛かりで、歩留まりが悪く、安価な磁石を製造
することが困難であった。このようにラジアル異方性磁
石は、いかなる方法においても製造が困難であり、安く
大量に製造することは難しくラジアル異方性磁石を用い
たモータも非常にコストが高くなってしまうという不利
があった。
2. Description of the Related Art Anisotropic magnets made by crushing crystalline magnetic anisotropic materials such as ferrites and rare earth alloys and pressing them in a specific magnetic field are used to produce loudspeakers, motors, measuring instruments, and other electric machines. Widely used for equipment and the like. Of these, rare earth sintered magnets that have anisotropy in the radial direction in particular have excellent magnetic properties, can be freely magnetized in the axial direction, and do not require reinforcement for fixing magnets such as segment magnets. Therefore, they are used for AC servomotors, DC brushless motors, and the like. In particular, in recent years, a long radial anisotropic magnet has been demanded as the performance of a motor becomes higher. Magnets with radial orientation are manufactured by molding in a magnetic field or by backward extrusion.In the molding method in a magnetic field, a magnetic field is applied from the opposite direction through a core to obtain radial orientation, but the magnet height that can be oriented is determined by the core shape. It is difficult to manufacture long products. In addition, the backward extrusion method requires large facilities, has a low yield, and it is difficult to manufacture an inexpensive magnet. As described above, it is difficult to manufacture the radial anisotropic magnet by any method, and it is difficult to mass-produce it inexpensively, and there is a disadvantage that the cost of the motor using the radial anisotropic magnet is very high. Was.

【0003】[0003]

【発明が解決しようとする課題】ラジアル異方性磁石を
用いずとも円筒磁石に多極着磁が行え、磁束密度が高
く、かつ極間における磁束密度のばらつきが小さけれ
ば、高性能の永久磁石モータ用の磁石となりうる。磁石
を垂直磁場プレスにより円筒軸に垂直な一方向に配向し
ておき、着磁のみを多極にすることにより、ラジアル異
方性磁石を用いずに永久磁石モータ用円筒多極磁石を作
製する方法が提案された(電気学会マグネティクス研究
会資料MAG−85−120、1985)。垂直磁場成
型法により製造された、円筒軸に垂直な一方向に配向さ
れた磁石(以下、径方向配向円筒磁石と呼ぶ)は、プレ
ス機のキャビティが許すかぎりの長尺化(50mm以
上)に加えて多連プレスが行えるので、1度のプレスで
多数個の成型体が得られ、高価なラジアル異方性磁石の
代わりに廉価にモータ用円筒磁石を供給することができ
る。しかし、実際に垂直磁場プレスにより作製された径
方向配向円筒磁石に多極着磁を行った磁石は配向方向近
傍の極では磁束密度が高く、配向方向に垂直な極では磁
束密度が小さいため、モータに組みモータを回転させる
と極間の磁束密度のばらつきを反映したトルクむらが生
じてしまい、実用に耐えうるモータ用磁石とは言えなか
った。
If a cylindrical magnet can be multipolar magnetized without using a radial anisotropic magnet, the magnetic flux density is high, and the variation in magnetic flux density between the poles is small, a high-performance permanent magnet can be used. It can be a magnet for a motor. The magnet is oriented in one direction perpendicular to the cylinder axis by a vertical magnetic field press, and only the magnetization is multipole, so that a cylindrical multipole magnet for a permanent magnet motor is manufactured without using a radial anisotropic magnet. A method has been proposed (magnetics workshop of the Institute of Electrical Engineers of Japan, MAG-85-120, 1985). Magnets manufactured by the perpendicular magnetic field molding method and oriented in one direction perpendicular to the cylinder axis (hereinafter referred to as radially oriented cylindrical magnets) can be made as long as possible (50 mm or more) as long as the cavity of the press machine allows. In addition, since multiple presses can be performed, a large number of molded bodies can be obtained by one press, and a cylindrical magnet for a motor can be supplied at a low cost in place of an expensive radial anisotropic magnet. However, magnets that are multipole magnetized on a radially oriented cylindrical magnet actually produced by a vertical magnetic field press have a high magnetic flux density at poles near the orientation direction and a low magnetic flux density at poles perpendicular to the orientation direction. When the motor is assembled with the motor and the motor is rotated, uneven torque reflecting the variation in the magnetic flux density between the poles occurs, and it cannot be said that the magnet is a motor magnet that can withstand practical use.

【0004】[0004]

【課題を解決するための手段】本発明者らはかかる課題
を解決するために鋭意努力を重ねた結果、本発明に至っ
たもので、本発明の永久磁石モータは、(1) 垂直磁
場成型法によって作製された、円筒軸に垂直な一方向に
配向された円筒磁石における周方向の着磁極数がk(k
は4以上の正の偶数)個のとき、この円筒磁石と組み合
わせるステータの歯数が3k・n/2(nは1以上の正
の整数)個であることを特徴としている、(2) 円筒
軸に垂直な一方向に配向した円筒磁石のスキュー角度は
円筒磁石の1極分の角度(360/k)の1/10から
2/3で、k個の多極スキュー着磁からなっている、
(3) ステータ歯のスキュー角度は円筒磁石1極分の
角度(360/k)の1/10から2/3で、3k・n
/2個のスキュー歯を有している。本発明により、性能
の優れた同期式磁石モータを、廉価で大量に供給するこ
とができるようになった。
Means for Solving the Problems The present inventors have made intensive efforts to solve the above problems, and as a result, the present invention has been accomplished. The permanent magnet motor of the present invention has the following features. The number of magnetic poles in the circumferential direction of a cylindrical magnet manufactured by the method and oriented in one direction perpendicular to the cylindrical axis is k (k
Is a positive even number of 4 or more), and the number of teeth of the stator combined with the cylindrical magnet is 3 k · n / 2 (n is a positive integer of 1 or more). The skew angle of the cylindrical magnet oriented in one direction perpendicular to the axis is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet (360 / k), and is composed of k multipole skew magnetized. ,
(3) The skew angle of the stator teeth is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet (360 / k), and is 3kn.
/ 2 skew teeth. According to the present invention, it has become possible to supply a high-performance synchronous magnet motor in large quantities at low cost.

【0005】[0005]

【発明の実施の形態】以下、この発明の作用をNd−F
e−B系の径方向配向円筒磁石について説明するが、本
発明はNd−Fe−B系磁石に限るものではない。図1
は円筒磁石の着磁を行うための着磁機の平面説明図であ
る。図中、1は径方向配向円筒磁石、10は着磁機、1
1は着磁機の磁極歯、12は着磁機のコイルを示す。図
2は、垂直磁場プレスにより作製したNd−Fe−B系
円筒磁石に、図1に示される着磁機により6極着磁を行
った際の表面磁束密度を示した図である。このように垂
直磁場成型法により径方向配向円筒磁石を作製し、該磁
石に6極着磁を行うと、B、C、E、Fの配向方向部で
は非常に大きな表面磁束密度が得られるが、配向方向に
垂直部のA、Dでは表面磁束密度が小さい。また、それ
ばかりか配向方向とその垂直方向では、図1の様な同じ
角度幅を持つ着磁機具を用いて着磁を行ったにもかかわ
らず、着磁幅は配向方向で広く、配向方向垂直方向では
非常に狭くなる。このため垂直磁場プレスにより作製さ
れた径方向配向円筒磁石では、1極より生じる総磁束量
が大きい極と非常に小さな磁束量しか持たない極が存在
することになる。各極間における磁束量のばらつきはモ
ータに組みこまれた際の回転むらになり、振動、騒音の
原因となる。したがってこの各極間の磁束量のばらつき
を低減することで、むらの無いスムーズな回転が行え
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention will now be described with reference to Nd-F
An eB-based radially oriented cylindrical magnet will be described, but the present invention is not limited to an Nd-Fe-B-based magnet. FIG.
FIG. 3 is an explanatory plan view of a magnetizer for magnetizing a cylindrical magnet. In the figure, 1 is a radially oriented cylindrical magnet, 10 is a magnetizer, 1
Numeral 1 denotes magnetic pole teeth of the magnetizer, and numeral 12 denotes a coil of the magnetizer. FIG. 2 is a diagram showing the surface magnetic flux density when the Nd-Fe-B-based cylindrical magnet produced by the perpendicular magnetic field press is subjected to six-pole magnetization by the magnetizer shown in FIG. As described above, when a radially oriented cylindrical magnet is manufactured by the vertical magnetic field molding method and the magnet is subjected to six-pole magnetization, a very large surface magnetic flux density can be obtained in the B, C, E, and F orientation directions. In addition, the surface magnetic flux density is small in portions A and D perpendicular to the orientation direction. In addition, in the orientation direction and its perpendicular direction, the magnetization width is wide in the orientation direction, even though the magnetization is performed using the magnetizing apparatus having the same angular width as in FIG. It becomes very narrow in the vertical direction. Therefore, in the radially oriented cylindrical magnet produced by the vertical magnetic field press, there are a pole having a large total magnetic flux generated from one pole and a pole having only a very small magnetic flux. Variations in the amount of magnetic flux between the poles result in uneven rotation when incorporated in the motor, causing vibration and noise. Therefore, by reducing the variation in the amount of magnetic flux between the respective poles, smooth and even rotation can be performed.

【0006】図3は、9個のステータ歯(ステータティ
ース)を有する3相モータの平面図を示したものであ
る。3相モータ20はα、β、γのステータ歯21が
α、β、γの順に配列し、その配線がステータ歯をコイ
ル状に巻きながらつながりU、V、W相としてモータの
入力線となる。このU、V、W相に電流を流してコイル
22に磁場を発生させ、コイルによる磁場と円筒磁石2
3との間に働く斥力及び引力によりモータは回転する。
U−V、V−W、W−Uはそれぞれ総ステータ歯数の1
/3の数の歯を周っており、U−Vに電流が流れるとス
テータコアのαより磁場が発せられ、同様にV−Wによ
りβ、W−Uによりγにそれぞれ磁場が発生する。図3
は、このような歯数9個のステータを有する3相モータ
に、6極に着磁を行った径方向配向円筒磁石23を組み
込んだものである。
FIG. 3 is a plan view of a three-phase motor having nine stator teeth (stator teeth). In the three-phase motor 20, the stator teeth 21 of α, β, and γ are arranged in the order of α, β, and γ, and the wires are connected while winding the stator teeth in a coil shape, and become the input lines of the motor as U, V, and W phases. . A current flows through the U, V, and W phases to generate a magnetic field in the coil 22, and the magnetic field generated by the coil and the cylindrical magnet 2
The motor rotates due to the repulsive force and the attractive force acting between the motor 3.
UV, VW and WU are each one of the total number of stator teeth.
When a current flows through U-V, a magnetic field is generated from α of the stator core, and similarly, a magnetic field is generated in β by VW and γ in W-U. FIG.
The three-phase motor having such a stator having nine teeth incorporates a radially oriented cylindrical magnet 23 magnetized to six poles.

【0007】図中においてU−V(α)が磁石の極の中
心に位置しモータトルクのピークとなる。この際、U−
V(α)と作用し回転力を生じる極はF、B、D極であ
り、F及びB極は配向方向近傍の極であり磁束密度が大
きく、Dは配向方向に垂直方向に位置する極であり磁束
密度は小さい。次に磁石が回転しU−V(α)にE、
A、C極が近づく。E及びC極は配向方向近傍の極であ
り磁束密度が大きく、Aは配向方向に垂直方向に位置す
る極であり磁束密度は小さい。しかし磁石極数6の3/
2倍の9個の歯を有するがためにU−V(α)のコイル
に鎖交する磁束量はF、B、D極分合わせたものとE、
A、C極分合わせたものでは常に等しくなる。この関係
はV−W(β)、W−U(γ)においても同様である。
このように、磁石の極とモータのステータの歯数の組み
合わせを磁石極数k=6、歯数3k・n/2=9(k=
6、n=1)の組み合わせとすることで、磁石に配向近
傍方向の極と配向方向に垂直方向の極が存在し磁束密度
にばらつきがある径方向配向円筒磁石においても、磁束
ばらつきが緩和され回転むらのないモータを得ることが
できる。
In the figure, UV (α) is located at the center of the pole of the magnet and becomes the peak of the motor torque. At this time, U-
The poles that act on V (α) to generate rotational force are F, B, and D poles. The F and B poles are poles in the vicinity of the orientation direction and have a high magnetic flux density, and D is a pole located in a direction perpendicular to the orientation direction. And the magnetic flux density is small. Next, the magnet rotates, and E (V)
The A and C poles approach. The E and C poles are poles near the orientation direction and have a high magnetic flux density, and A is a pole located in a direction perpendicular to the orientation direction and has a low magnetic flux density. However, 3 /
Due to having twice as many as nine teeth, the amount of magnetic flux linked to the U-V (α) coil is E, E,
The sum of the A and C poles is always equal. This relationship is the same for VW (β) and WU (γ).
Thus, the combination of the number of magnet poles and the number of teeth of the stator of the motor is determined by the number of magnet poles k = 6 and the number of teeth 3k · n / 2 = 9 (k =
6, n = 1), the magnetic flux variation is reduced even in a radially oriented cylindrical magnet in which the magnet has a pole in the direction near the orientation and a pole in the direction perpendicular to the orientation direction and the magnetic flux density varies. A motor without rotation unevenness can be obtained.

【0008】3相式モータにおいては磁石極数kに対
し、ステータ歯数を3k・n/2とした際に、常に上記
関係が維持され、回転むらのないモータを得ることがで
きる。このように径方向配向円筒磁石に多極着磁を行
い、ステータ歯数を着磁極数の3n/2倍とすること
で、安価でしかも大量生産が可能な径方向配向円筒磁石
を用いて、回転むらのない優れたモータ特性を有するモ
ータを生産できるようになった。
In the three-phase motor, when the number of stator poles is set to 3 k · n / 2 with respect to the number of magnet poles k, the above relationship is always maintained, and a motor without rotation unevenness can be obtained. In this way, by performing multipolar magnetization on the radially oriented cylindrical magnet and setting the number of stator teeth to 3n / 2 times the number of magnetized poles, a radially oriented cylindrical magnet that is inexpensive and can be mass-produced is used. It has become possible to produce a motor having excellent motor characteristics without rotation unevenness.

【0009】垂直磁場プレスにより作製された径方向配
向円筒磁石に多極着磁を行ったものは、ラジアル異方性
リング磁石に多極着磁を行った場合に比べ、極間付近の
着磁性及び磁気特性が低いので磁束密度の極間部の変化
が滑らかであり、モータのコギングトルクは小さいが、
スキュー着磁または、ステータ歯にスキューを施すこと
で、さらにコギングトルクを低減することができる。円
筒磁石及びステータ歯のスキュー角度が、円筒磁石1極
分の角度の1/10未満であるとスキュー着磁によるコ
ギングトルク低下の効果が小さく、円筒磁石1極分の角
度の2/3より大きいとモータのトルクの低下が大きく
なるため、スキュー角度は円筒磁石1極分の角度の1/
10から2/3の角度が好ましい。
A multi-pole magnetized radially oriented cylindrical magnet produced by a vertical magnetic field press is more magnetized near the gap than a multi-pole magnetized radial anisotropic ring magnet. And the magnetic properties are low, so the change of the magnetic flux density between the poles is smooth, and the cogging torque of the motor is small,
The cogging torque can be further reduced by skew magnetizing or skewing the stator teeth. If the skew angle of the cylindrical magnet and the stator teeth is less than 1/10 of the angle of one pole of the cylindrical magnet, the effect of lowering the cogging torque due to the skew magnetization is small, and is larger than two thirds of the angle of one pole of the cylindrical magnet. The skew angle is 1 / the angle of one pole of the cylindrical magnet.
Angles of 10 to 2/3 are preferred.

【0010】[0010]

【実施例】(実施例1、比較例1)それぞれ純度99.
7重量%のNd、Dy、Fe、Co、M(MはAl、S
i、Cu)と純度99.5重量%のBを用い、真空溶解
炉で溶解鋳造してインゴットを作製した。このインゴッ
トをジョウクラッシャーで粗粉砕し、更に窒素気流中ジ
ェットミル粉砕により平均粒径3.5μmの微粉末を得
た。この粉末を垂直磁場プレスにて12kOeの磁場中
において1.0t/cm2 の成型圧にて成型した。この
成型体はArガス中1090℃で1時間焼結を行い、引
き続き580℃で1時間の熱処理を行った。その後加工
を行いφ30mm×φ25mm×L30mmの円筒磁石
を得た。本円筒磁石と同一磁石粉を用い、垂直磁場プレ
スにて12kOeの磁場中において1.0t/cm2
成型圧にて成型し、Arガス中1090℃で1時間焼結
を行い、引き続き580℃で1時間の熱処理をして本円
筒磁石と同一条件で作製したブロック磁石の特性は、B
r:13.0kG、iHc:15kOe、(BH)ma
x:40MGOeであった。上記の径方向配向円筒磁石
を、図1の関係になるように着磁機に配置し、6極着磁
を行った。着磁後の磁石を磁石と同一高さの図3に示す
構成のステータ内に組み込んだモータを作製した。磁石
内径にはモータ軸となる強磁性コアが挿入接着されてい
る。銅細線を各歯それぞれ100ターン巻きとした。各
相間の磁束量をフラックスメータを用いて測定した。ま
た比較例1として、本ステータ歯のうちの一つだけに実
施例1と同じ銅細線を100ターン巻き、磁束量をフラ
ックスメータにて測定した。磁石を1周させたときのピ
ークの値を表1に示す。表に示されるように比較例では
ピークによる磁束量が、小さいピークに対し大きなピー
クでは3倍程度と非常に大きいにもかかわらず、実施例
1ではピーク値がほとんど変わらない。
EXAMPLES (Example 1, Comparative Example 1)
7% by weight of Nd, Dy, Fe, Co, M (M is Al, S
Using i, Cu) and B having a purity of 99.5% by weight, an ingot was produced by melting and casting in a vacuum melting furnace. The ingot was coarsely pulverized with a jaw crusher, and further subjected to jet mill pulverization in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was molded with a vertical magnetic field press at a molding pressure of 1.0 t / cm 2 in a magnetic field of 12 kOe. This molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 580 ° C. for 1 hour. Thereafter, processing was performed to obtain a cylindrical magnet of φ30 mm × φ25 mm × L30 mm. Using the same magnet powder as the present cylindrical magnet, molding was performed with a vertical magnetic field press at a molding pressure of 1.0 t / cm 2 in a magnetic field of 12 kOe, sintering was performed at 1090 ° C. for 1 hour in Ar gas, and subsequently 580 ° C. The properties of the block magnet produced under the same conditions as this cylindrical magnet after heat treatment for 1 hour at
r: 13.0 kG, iHc: 15 kOe, (BH) ma
x: 40 MGOe. The above-mentioned radially oriented cylindrical magnet was arranged in a magnetizer so as to have the relationship shown in FIG. 1, and six-pole magnetization was performed. A motor was manufactured in which the magnet after magnetization was incorporated in a stator having the same height as the magnet and having the configuration shown in FIG. A ferromagnetic core serving as a motor shaft is inserted and bonded to the inner diameter of the magnet. The copper wire was wound 100 turns for each tooth. The amount of magnetic flux between the phases was measured using a flux meter. As Comparative Example 1, the same fine copper wire as in Example 1 was wound around only one of the stator teeth for 100 turns, and the amount of magnetic flux was measured with a flux meter. Table 1 shows peak values when the magnet makes one rotation. As shown in the table, in the comparative example, although the amount of magnetic flux due to the peak is very large, about three times as large as the small peak, the peak value is hardly changed in the first embodiment.

【0011】[0011]

【表1】 [Table 1]

【0012】(実施例2)実施例1のモータを1000
rpmで回転させた際の誘起電圧及び、同モータを1〜
5rpmで回転させた際の荷重計によるトルクリップル
の大きさを測定した。表2に誘起電圧の絶対値の最大及
びトルクリップルの最大最小の差を示す。表より、本モ
ータは使用上十分な誘起電圧量を有し、十分小さなトル
クリップルであることがわかる。
(Embodiment 2) The motor of Embodiment 1 is
The induced voltage when rotating at rpm and the motor
The size of the torque ripple was measured by a load cell when rotating at 5 rpm. Table 2 shows the difference between the maximum value of the absolute value of the induced voltage and the maximum value and the minimum value of the torque ripple. From the table, it can be seen that this motor has a sufficient amount of induced voltage in use and has sufficiently small torque ripple.

【0013】(実施例3)実施例1の径方向配向円筒磁
石を着磁する際、スキュー角度を磁石1極分の角度の1
/3の20度でスキュー着磁を行い、該磁石を実施例1
のモータに組み込み実施例2と同様に誘起電圧およびト
ルクリップルを測定した値を表2に示す。表よりトルク
リップルの量がスキュー無し品よりさらに小さく、誘起
電圧の低下はわずかであることがわかる。また、図4に
この際の電気角に対する誘起電圧の変化を示す。図4よ
り、誘起電圧はスムーズな正弦波を描いており、発生し
た誘起電圧にはむらはないことが認められる。なお、曲
線aは図3のU−V相、曲線bはV−W相、曲線cはW
−U相における誘起電圧曲線をそれぞれ示している。
(Embodiment 3) When magnetizing the radially oriented cylindrical magnet of Embodiment 1, the skew angle is set to one angle of one pole of the magnet.
Skew magnetization at 20 degrees of / 3
Table 2 shows values obtained by measuring the induced voltage and the torque ripple in the same manner as in Example 2 by assembling the motor. From the table, it can be seen that the amount of torque ripple is smaller than that of the product without skew, and the reduction of the induced voltage is slight. FIG. 4 shows a change in the induced voltage with respect to the electrical angle at this time. FIG. 4 shows that the induced voltage has a smooth sine wave, and the generated induced voltage is not uneven. The curve a is the U-V phase in FIG. 3, the curve b is the V-W phase, and the curve c is the W-phase.
The induced voltage curve in the -U phase is shown.

【0014】(比較例2)実施例1の径方向配向円筒磁
石を着磁する際、スキュー角度磁石1極分の角度の5/
6の50度でスキュー着磁を行い、該磁石を実施例1の
モータに組み込み、実施例2と同様に誘起電圧およびト
ルクリップルを測定した値を表2に示す。表よりトルク
リップルの量はスキュー無し品より小さいが、誘起電圧
の低下が大きく実用に適さないことがわかる。
(Comparative Example 2) When the radially oriented cylindrical magnet of Example 1 was magnetized, the angle of one pole of the skew angle magnet was 5/5.
6, the skew magnetization was performed at 50 degrees, the magnet was assembled into the motor of Example 1, and the values of the induced voltage and the torque ripple measured in the same manner as in Example 2 are shown in Table 2. From the table, it can be seen that the amount of torque ripple is smaller than that of the product without skew, but the induced voltage is so large that it is not suitable for practical use.

【0015】(実施例4)径方向配向円筒磁石を実施例
1と同様に着磁し、スキュー角度が磁石1極分の角度の
1/3の20度であるステータ歯を持つ実施例1と同寸
法のモータに組み込み、実施例2と同様に誘起電圧およ
びトルクリップルを測定した値を表2に示す。表より、
トルクリップルの量がスキュー無し品よりさらに小さ
く、誘起電圧の低下はわずかであることがわかる。
(Embodiment 4) A radially oriented cylindrical magnet is magnetized in the same manner as in Embodiment 1, and a skew angle is equal to that of Embodiment 1 having 20 degrees of 1/3 of the angle of one magnet. Table 2 shows the values obtained by measuring the induced voltage and the torque ripple in the same manner as in Example 2 by assembling into a motor having the same dimensions. From the table,
It can be seen that the amount of torque ripple is smaller than that of the non-skewed product, and the induced voltage is slightly reduced.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明によれば、生産性が低く高価なラ
ジアル異方性磁石を用いずに、多連、長尺品が容易に生
産可能で、安価で大量に安定して供給できる垂直磁場プ
レスによる径方向配向円筒磁石を用いて高性能の永久磁
石モータを実現することができ、ACサーボモータ、D
Cブラシレスモータ等の高性能モータの低価格化に有用
であり、産業上その利用価値は極めて高い。
According to the present invention, a multi-unit, long product can be easily produced without using a radially anisotropic magnet which is low in productivity and can be supplied stably at low cost and in large quantities. A high-performance permanent magnet motor can be realized using a radially oriented cylindrical magnet by a magnetic field press.
It is useful for lowering the price of high-performance motors such as C brushless motors, and has a very high industrial utility value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒磁石の着磁を行うための着磁機の平面説明
図である。
FIG. 1 is an explanatory plan view of a magnetizer for magnetizing a cylindrical magnet.

【図2】垂直磁場プレスにより作製したNd−Fe−B
系円筒磁石に図1に示される着磁機により6極着磁を行
った際の表面磁束密度を示した図である。
FIG. 2 Nd-Fe-B produced by a vertical magnetic field press
FIG. 2 is a diagram showing a surface magnetic flux density when six-pole magnetization is performed on a system cylindrical magnet by the magnetizer shown in FIG. 1.

【図3】6極に多極着磁した円筒磁石と9個のステータ
歯を組み合わせた3相モータの平面図を示したものであ
る。
FIG. 3 is a plan view of a three-phase motor in which a cylindrical magnet multipolarized to six poles and nine stator teeth are combined.

【図4】径方向配向円筒磁石を組み込んだ3相モータを
1000rpmで回転させた際の誘起電圧の電気角との
関係を示した図である。
FIG. 4 is a diagram showing a relationship between an induced voltage and an electrical angle when a three-phase motor incorporating a radially oriented cylindrical magnet is rotated at 1000 rpm.

【符号の説明】[Explanation of symbols]

1.径方向配向円筒磁石 10.着磁機 11.着磁機磁極歯 12.着磁機コイル 20.3相モータ 21.モータステータ歯 22.モータコイル 23.径方向配向円筒磁石 1. 10. Radially oriented cylindrical magnet Magnetizer 11. Magnetizer magnetic pole teeth 12. Magnetizer coil 20.3 phase motor 21. Motor stator teeth 22. Motor coil 23. Radially oriented cylindrical magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 垂直磁場成型法によって作製された、円
筒軸に垂直な一方向に配向された円筒磁石における周方
向の着磁極数がk(kは4以上の正の偶数)個のとき、
この円筒磁石と組み合わせるステータの歯数が3k・n
/2(nは1以上の正の整数)個であることを特徴とす
る周方向に多極に着磁した永久磁石モータ。
When the number of circumferentially magnetized poles of a cylindrical magnet manufactured by a vertical magnetic field molding method and oriented in one direction perpendicular to a cylindrical axis is k (k is a positive even number of 4 or more),
The number of teeth of the stator combined with this cylindrical magnet is 3kn
/ 2 (n is a positive integer greater than or equal to 1) peripherally magnetized permanent magnet motor.
【請求項2】 円筒軸に垂直な一方向に配向した円筒磁
石のスキュー角度が円筒磁石の1極分の角度(360/
k)の1/10から2/3で、k個の多極スキュー着磁
であることを特徴とする請求項1記載の永久磁石モー
タ。
2. The skew angle of a cylindrical magnet oriented in one direction perpendicular to the cylindrical axis is equal to the angle of one pole of the cylindrical magnet (360 /
2. The permanent magnet motor according to claim 1, wherein k multipole skew magnetization is 1/10 to 2/3 of k).
【請求項3】 ステータ歯のスキュー角度が円筒磁石1
極分の角度(360/k)の1/10から2/3で、3
k・n/2個のスキュー歯を持つことを特徴とする請求
項1記載の永久磁石モータ。
3. The skew angle of the stator teeth is equal to that of the cylindrical magnet 1.
3/10 from 1/10 to 2/3 of the pole angle (360 / k)
2. The permanent magnet motor according to claim 1, having kn / 2 skew teeth.
JP10277635A 1998-09-30 1998-09-30 Permanent magnet motor Pending JP2000116090A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10277635A JP2000116090A (en) 1998-09-30 1998-09-30 Permanent magnet motor
DE69914850T DE69914850T2 (en) 1998-09-30 1999-09-07 Permanent magnet motor and its rotor
EP99402202A EP0996216B1 (en) 1998-09-30 1999-09-07 Permanent magnet motor and rotor thereof
US09/396,420 US6262507B1 (en) 1998-09-30 1999-09-15 Permanent magnet motor and rotor thereof
US09/826,825 US6633100B2 (en) 1998-09-30 2001-04-06 Permanent magnet motor and rotor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10277635A JP2000116090A (en) 1998-09-30 1998-09-30 Permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2000116090A true JP2000116090A (en) 2000-04-21

Family

ID=17586183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10277635A Pending JP2000116090A (en) 1998-09-30 1998-09-30 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2000116090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2004274963A (en) * 2003-03-12 2004-09-30 Mitsubishi Electric Corp Permanent magnet motor for electric power steering device
WO2005124796A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2008278746A (en) * 2001-10-31 2008-11-13 Shin Etsu Chem Co Ltd Radial anisotropic sintered magnet, magnet rotor, and motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
EP1308970A3 (en) * 2001-10-31 2004-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US6984270B2 (en) 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2008278746A (en) * 2001-10-31 2008-11-13 Shin Etsu Chem Co Ltd Radial anisotropic sintered magnet, magnet rotor, and motor
EP2063439A1 (en) 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet, its production method, and magnet rotor or motor using said sintered magnet
EP2063438A1 (en) 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Production method of a radial anisotropic sintered magnet, and magnet rotor or motor using said sintered magnet
US7618496B2 (en) 2001-10-31 2009-11-17 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7948135B2 (en) 2001-10-31 2011-05-24 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2004274963A (en) * 2003-03-12 2004-09-30 Mitsubishi Electric Corp Permanent magnet motor for electric power steering device
WO2005124796A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US7626300B2 (en) 2004-06-22 2009-12-01 Shin-Etsu Chemical Co., Ltd. Radial anisotropic cylindrical sintered magnet and permanent magnet motor

Similar Documents

Publication Publication Date Title
KR100891855B1 (en) Radial Anisotropic Cylindrical Magnet, Magnet Rotor and Motor
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
KR101402451B1 (en) Permanent magnet and permanent magnet rotating machine
US6262507B1 (en) Permanent magnet motor and rotor thereof
JP5089979B2 (en) Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JP4238971B2 (en) Manufacturing method of radial anisotropic sintered magnet
JP4890620B2 (en) Mold, magnetic field molding machine, and method for manufacturing permanent magnet
JP2000116090A (en) Permanent magnet motor
JP3683442B2 (en) Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor
JP5353976B2 (en) Radial anisotropic sintered magnet and magnet rotor
JP4471698B2 (en) Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet
JP2000116089A (en) Permanent magnet motor
JP2000175384A (en) Permanent magnet motor
JP5448314B2 (en) Permanent magnet and permanent magnet rotating machine
KR20070023644A (en) Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet
KR101123169B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2001145280A (en) Permanent magnet synchronous motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040726