JP4471698B2 - Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet - Google Patents

Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet Download PDF

Info

Publication number
JP4471698B2
JP4471698B2 JP2004097423A JP2004097423A JP4471698B2 JP 4471698 B2 JP4471698 B2 JP 4471698B2 JP 2004097423 A JP2004097423 A JP 2004097423A JP 2004097423 A JP2004097423 A JP 2004097423A JP 4471698 B2 JP4471698 B2 JP 4471698B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
magnet
mold
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004097423A
Other languages
Japanese (ja)
Other versions
JP2005287181A (en
Inventor
浩二 宮田
孝治 佐藤
貴弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004097423A priority Critical patent/JP4471698B2/en
Publication of JP2005287181A publication Critical patent/JP2005287181A/en
Application granted granted Critical
Publication of JP4471698B2 publication Critical patent/JP4471698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、サーボモータ、DCブラシレスモータ、発電機等の同期式の永久磁石回転機、永久磁石、永久磁石磁場成形機に関する。   The present invention relates to a synchronous permanent magnet rotating machine such as a servo motor, a DC brushless motor, and a generator, a permanent magnet, and a permanent magnet magnetic field molding machine.

永久磁石回転機は、効率が高く制御性が良いことから、サーボモータを始めとする制御用モータに用いられている。永久磁石回転機に従来から用いられている容易磁化方向が平行なC形磁石の製造方法について説明する。
異方性焼結磁石としては、Baフェライト系、Srフェライト系などのフェライト磁石、Sm−Co系、Nd−Fe−B系などの希土類磁石が広く使用されているが、近年高性能磁石として希土類磁石の使用が急激に伸びている。これら異方性焼結磁石は、磁性を担っている各結晶粒の容易磁化方向をある一定の方向に揃えたものであり、そのため、結晶粒の容易磁化方向がばらばらの方向を向いている等方性磁石に比較して、その容易磁化方向に着磁されたときに残留磁束密度の値が大きく、したがって、最大エネルギー積を大きくすることができる。また、焼結磁石であるため、樹脂などで結合されたボンド磁石と比較して、非磁性物質の存在量が少ないため、残留磁束密度の値が大きくなり、最大エネルギー積を大きくできる。したがって、異方性焼結磁石が、同じ材料を用いた磁石の中で、一番大きな最大エネルギー積を得ることができるため、永久磁石材料として広く利用されている。
Permanent magnet rotating machines are used for control motors such as servo motors because of their high efficiency and good controllability. A method of manufacturing a C-shaped magnet having a parallel easy magnetization direction, which has been conventionally used in a permanent magnet rotating machine, will be described.
Ferrite magnets such as Ba ferrite and Sr ferrite, and rare earth magnets such as Sm-Co and Nd-Fe-B are widely used as anisotropic sintered magnets. The use of magnets is growing rapidly. In these anisotropic sintered magnets, the direction of easy magnetization of each crystal grain carrying magnetism is aligned in a certain direction, and therefore, the direction of easy magnetization of crystal grains is in a different direction, etc. Compared to isotropic magnets, the residual magnetic flux density is large when magnetized in the easy magnetization direction, and therefore the maximum energy product can be increased. In addition, since it is a sintered magnet, the amount of nonmagnetic substance is small compared to a bonded magnet bonded with resin or the like, so that the value of residual magnetic flux density is increased and the maximum energy product can be increased. Therefore, anisotropic sintered magnets are widely used as permanent magnet materials because they can obtain the largest maximum energy product among magnets using the same material.

異方性焼結磁石は、磁性結晶粒の容易磁化方向をある一定の方向に揃えるために、その材料を、それぞれの粉砕粉が単結晶になるまで粉砕し、その粉砕粉に外部磁場を印加することにより磁石粉の磁化容易軸を外部磁場の方向と平行な方向に揃え、圧力をかけて圧縮し成形する。その後、成形された磁石粉は、所定の条件で焼結され、異方性焼結磁石を製造する。材料によっては、焼結後、熱処理を要する場合もある。例えば、Sm2 Co17系磁石では、焼結後、溶体化処理を行い、さらに時効処理を行う。Nd−Fe−B系磁石では、焼結後、500℃近傍で熱処理を行うことにより磁石を製造している。 Anisotropic sintered magnets pulverize the material until each pulverized powder becomes a single crystal and apply an external magnetic field to the pulverized powder in order to align the direction of easy magnetization of magnetic crystal grains in a certain direction. By doing so, the magnetization easy axis of the magnet powder is aligned in a direction parallel to the direction of the external magnetic field, and compression is performed by applying pressure. Thereafter, the molded magnet powder is sintered under a predetermined condition to produce an anisotropic sintered magnet. Depending on the material, heat treatment may be required after sintering. For example, in a Sm 2 Co 17- based magnet, a solution treatment is performed after sintering, and an aging treatment is further performed. In the Nd—Fe—B system magnet, the magnet is manufactured by performing heat treatment at around 500 ° C. after sintering.

成形工程で使用される磁場プレス機は、通常、ダイス、上パンチ、下パンチおよび磁場発生手段からなる。ダイス、上パンチおよび下パンチで構成されるキャビティ内に磁石粉を供給し、磁場発生手段により配向磁場を印加することにより磁石粉の容易磁化方向を一方向に揃え、上パンチ、下パンチにより圧力を伝達し、キャビティ内の磁石粉を成形する。成形は電磁石などで静磁場を印加し、その静磁場を印加したまま行われるのが一般的である。キャビティ内に充填された磁石粉に配向磁場をかける方向には、上下パンチによる圧力印加の方向と平行方向に磁場をかける縦磁場成形と、垂直方向に磁場を印加する横磁場成形とがある。横磁場成形を選択するか縦磁場成形を選択するかは、製造される材料、特性、形状、着磁方向などによって判断されるが、縦磁場成形により製造された焼結磁石は横磁場成形の場合と比較して磁気特性が低下するので、横磁場成形を用いることが多い。   The magnetic field press used in the molding process usually comprises a die, an upper punch, a lower punch and a magnetic field generating means. Magnet powder is supplied into a cavity composed of a die, upper punch and lower punch, and an orientation magnetic field is applied by a magnetic field generating means to align the easy magnetization direction of the magnet powder in one direction, and pressure is applied by the upper punch and lower punch. To form magnet powder in the cavity. The molding is generally performed by applying a static magnetic field with an electromagnet or the like and applying the static magnetic field. The direction in which an orientation magnetic field is applied to the magnet powder filled in the cavity includes vertical magnetic field shaping in which a magnetic field is applied in a direction parallel to the direction of pressure application by the upper and lower punches, and transverse magnetic field shaping in which a magnetic field is applied in the vertical direction. Whether to select transverse magnetic field shaping or longitudinal magnetic field shaping is determined by the material to be produced, characteristics, shape, magnetization direction, etc., but sintered magnets produced by longitudinal magnetic field shaping are Since magnetic characteristics are deteriorated as compared with the case, transverse magnetic field shaping is often used.

回転機用のC形あるいはD形の磁石を横磁場成形するには、図11のように焼結時の収縮を考慮して作られたキャビティをもつダイスを用いる。図11は3個の磁石が同時に同じ方向に成形できる場合で、実際には成形機の大きさやキャビティの大きさで変化し、成形効率を上げるためにできるだけ多くのキャビティを配置するので3個に限らない。更に、キャビティ内の配向磁場を平行にするために、特許文献1にも開示されているが、ダイスを飽和磁化4πIsが500〜12000ガウスの磁性を有する材料とし、ダイスと成形体があたかも一つの磁性体であると見做すことができるようにする。このようにして作られた永久磁石を用いると、図12に示すような永久磁石の中心線を基準線として、容易磁化方向が基準線に平行(基準線と容易磁化方向の成す角度が0°)の永久磁石回転子を得ることができる。
特開平9−35977号公報
In order to form a C-shaped or D-shaped magnet for a rotating machine in a transverse magnetic field, a die having a cavity formed in consideration of shrinkage during sintering as shown in FIG. 11 is used. FIG. 11 shows a case where three magnets can be molded in the same direction at the same time. Actually, the size varies depending on the size of the molding machine and the size of the cavity, and as many cavities as possible are arranged to increase the molding efficiency. Not exclusively. Further, in order to make the orientation magnetic field in the cavity parallel, it is also disclosed in Patent Document 1, but the die is made of a material having a magnetization of saturation magnetization 4πIs of 500 to 12,000 gauss, and the die and the molded body are as if they are one. To be considered as a magnetic material. When the permanent magnet made in this manner is used, the easy magnetization direction is parallel to the reference line with the center line of the permanent magnet as shown in FIG. 12 as the reference line (the angle between the reference line and the easy magnetization direction is 0 °). ) Permanent magnet rotor can be obtained.
Japanese Patent Laid-Open No. 9-35977

ところで、高精度のトルク制御を必要とするACサーボモータ等のトルクは、脈動の小さなものでなければならない。したがって、永久磁石が回転したときに固定子のスロットと永久磁石との位置関係から、空隙の磁束分布が変化することに起因するコギングトルク(コイルに電流を流さない状態でのトルク)やコイルの電流を流して駆動した時のトルクリップルが発生することは好ましくない。トルクリップルは、制御性を悪くする他に騒音の原因にもなる。   By the way, the torque of an AC servo motor or the like that requires high-accuracy torque control must have a small pulsation. Therefore, when the permanent magnet rotates, the cogging torque (torque in a state where no current flows through the coil) or the coil due to the change in the magnetic flux distribution in the gap is determined from the positional relationship between the stator slot and the permanent magnet. It is not preferable that torque ripple occurs when driven by passing an electric current. Torque ripple causes noise as well as poor controllability.

本発明の目的は、コギングトルクを低減した高出力高精度制御の永久磁石回転機及び永久磁石を提供することにある。   An object of the present invention is to provide a permanent magnet rotating machine and a permanent magnet with high output and high precision control with reduced cogging torque.

本発明者は、上記課題を解決するために鋭意検討を行い、コギングトルクが小さい偏心磁石を用いた回転機に下記なる改良を加え、トルクむらのないスムーズな回転を実現した。   The present inventor has intensively studied to solve the above problems, and has made the following improvements to a rotating machine using an eccentric magnet having a small cogging torque, thereby realizing a smooth rotation without torque unevenness.

本発明は、弧が外部に向く外弧と弧が内部に向く内弧と両弧を結ぶ二本の線で構成されるC形状または外弧と三本の線で構成されるD形状を有し2の整数倍となる数のキャビティであって、(i)2個1組でキャビティの外弧同士が対称に接するように配置されたキャビティ(参考例として(ii)2個1組でキャビティの外弧側が磁性体片を挟んで対称に配置されたキャビティ、又は(iii)キャビティの外弧側に磁性体片が配置されたキャビティと、該キャビティを形成するダイスと、キャビティ内を圧縮するためにプレスに連動可能なパンチとを備えてなる金型を提供する。
また、本発明は、この金型と、該金型を挟むように配置され該金型に一定方向の磁場を印加する少なくとも二つの磁石と、該金型のパンチに連動してキャビティを該磁場方向に対して垂直方向に圧縮するためのプレスとを含んでなる永久磁石磁場成形機を提供し、参考例として、この金型に永久磁石粉を充填し、一定の磁場方向を有する磁場に、該磁場方向が該金型のC形断面またはD形断面の対向する二本線と略平行となるように該金型を配置し、該永久磁石粉末の容易磁化方向を配向させ、該磁場方向に対して垂直な方向に圧縮成形を行い、その後焼結する永久磁石の製造方法を提供する。
The present invention has a C shape composed of two lines connecting an outer arc with an arc facing outward and an inner arc with the arc facing inward and both arcs, or a D shape composed of an outer arc and three lines. The number of cavities is an integral multiple of 2, and (i) cavities arranged so that the outer arcs of the cavities are in symmetric contact with each other (for reference example (ii) (Iii) a cavity in which the outer arc side is symmetrically disposed across the magnetic piece, or (iii) a cavity in which the magnetic piece is arranged on the outer arc side of the cavity ) , a die forming the cavity, and the inside of the cavity is compressed In order to achieve this, a die comprising a punch that can be linked to a press is provided.
Further, the present invention provides the mold, at least two magnets arranged so as to sandwich the mold and applying a magnetic field in a certain direction to the mold, and the cavity in conjunction with the punch of the mold. A permanent magnet magnetic field molding machine comprising a press for compressing in a direction perpendicular to the direction, and as a reference example , the mold is filled with permanent magnet powder, and a magnetic field having a constant magnetic field direction is obtained. The mold is arranged so that the magnetic field direction is substantially parallel to the opposing two lines of the C-shaped cross section or D-shaped cross section of the mold, the easy magnetization direction of the permanent magnet powder is oriented, and the magnetic field direction is It performs compression molding in a direction perpendicular against, to provide a manufacturing how the permanent magnet and then sintered.

本発明により、コギングトルクを低減しながら駆動トルク向上が可能となり、ACサーボ永久磁石モータやDCブラシレス永久磁石モータ等の高性能化と小型化に有用であり、産業上その利用価値は極めて高い。   According to the present invention, the driving torque can be improved while reducing the cogging torque, which is useful for improving the performance and miniaturization of an AC servo permanent magnet motor, a DC brushless permanent magnet motor, etc., and its utility value is extremely high in the industry.

以下、本発明について、図面を参照してさらに詳細に説明する。
永久磁石回転機は、効率が高く制御性が良いことから、サーボモータを始めとする制御用モータに用いられている。例えば、ACサーボモータには、図1に示すようなラジアルエアギャップ形の永久磁石回転機が用いられている。図1に示した永久磁石回転機1は、回転子ヨーク2の表面に、C形の永久磁石3を貼り付けた回転子4と、空隙(ギャップ)5を介して配置された複数のスロットを有する固定子ヨークとティース6に巻かれたコイル7からなる固定子8とで構成されている。図1に示す永久磁石回転機の場合、永久磁石の極数は6、ティースの数は9であり、永久磁石内の矢印は永久磁石の磁化の方向を示している。また、コイルはティースに集中巻きで巻かれ、U相V相W相の3相のY結線がなされており、コイルの巻き数は1ティース当たり50ターンである。コイルのU+はU相コイルの巻き方向が手前、U−はU相コイルの巻き方向が奥であることを意味している。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
Permanent magnet rotating machines are used for control motors such as servo motors because of their high efficiency and good controllability. For example, a radial air gap type permanent magnet rotating machine as shown in FIG. 1 is used for the AC servo motor. The permanent magnet rotating machine 1 shown in FIG. 1 includes a rotor 4 with a C-shaped permanent magnet 3 attached to the surface of a rotor yoke 2 and a plurality of slots arranged via gaps (gap) 5. The stator yoke includes a stator 8 including a coil 7 wound around a tooth 6. In the case of the permanent magnet rotating machine shown in FIG. 1, the number of poles of the permanent magnet is 6, the number of teeth is 9, and the arrow in the permanent magnet indicates the direction of magnetization of the permanent magnet. Further, the coil is wound around the teeth in a concentrated manner, and a three-phase Y-connection of the U phase, the V phase, and the W phase is made, and the number of turns of the coil is 50 turns per tooth. U + of the coil means that the winding direction of the U-phase coil is in front, and U- means that the winding direction of the U-phase coil is in the back.

参考例として、回転子ヨーク及び該回転子ヨークの側面に張り付けられた複数個の永久磁石セグメントを含み、P極(Pは4以上の整数)の磁極をもつ回転子と、該回転子と同心円をなし、該回転子の外側に空隙を介して配置された、複数のスロットを有する鉄心に巻線を巻いた固定子とを含んでなる永久磁石回転機であって、該永久磁石回転機の横断面において、上記永久磁石セグメントの各々が、上記回転子の中心と各永久磁石セグメントの中心を結ぶ線を基準線として、該回転子の中心を回転の中心とし反時計回りを正として基準線から正方向の角度θの位置での容易磁化方向と基準線との成す角度αを、α=(180/P−90)°から0°の範囲に有し、基準線に対して対称となる容易磁化方向を有する永久磁石回転機を提供する。
永久磁石回転機1の例では、図2と図3に示すように、偏心磁石を有する永久磁石回転機において、永久磁石の中心線を角度0°の基準線として、回転子の中心11を回転の中心とし反時計回りを正として基準線から正方向の角度θの位置での容易磁化方向12と基準線との成す角度αが、α=(180/P−90)°から0°であり、容易磁化方向は基準線に対して対称である永久磁石回転子を用いる。即ち、永久磁石の容易磁化方向が中心線側に向いている永久磁石回転子を用いる。これにより、トルクむらのないスムーズな回転となり、コギングトルクが低減される。
また、本願の磁石は円弧端に行くほど磁化方向が基準線から傾いている。
As a reference example, a rotor including a rotor yoke and a plurality of permanent magnet segments attached to a side surface of the rotor yoke and having a P pole (P is an integer of 4 or more), and a concentric circle with the rotor A permanent magnet rotating machine including a stator wound around an iron core having a plurality of slots and disposed outside the rotor via a gap, the permanent magnet rotating machine comprising: In a cross section, each of the permanent magnet segments has a line connecting the center of the rotor and the center of each permanent magnet segment as a reference line, the center of the rotor is the center of rotation, and a counterclockwise direction is positive. The angle α formed between the easy magnetization direction and the reference line at the position of the angle θ in the positive direction from is in a range of α = (180 / P−90) ° to 0 ° and is symmetric with respect to the reference line. A permanent magnet rotating machine having an easy magnetization direction is provided.
In the example of the permanent magnet rotating machine 1, as shown in FIGS. 2 and 3, in the permanent magnet rotating machine having an eccentric magnet, the center 11 of the rotor is rotated with the center line of the permanent magnet as the reference line at an angle of 0 °. The angle α between the easy magnetization direction 12 and the reference line at the position of the angle θ in the positive direction with respect to the reference line with the counterclockwise direction as the center of is α = (180 / P−90) ° to 0 °. A permanent magnet rotor whose easy magnetization direction is symmetric with respect to the reference line is used. That is, a permanent magnet rotor in which the easy magnetization direction of the permanent magnet is directed toward the center line is used. As a result, smooth rotation without torque unevenness is achieved, and cogging torque is reduced.
Further, the magnet of the present application is inclined with respect to the reference line toward the arc end.

本発明の永久磁石回転子は、図2に示すように、回転子ヨーク2の側面に、交互にN極、S極と磁化された永久磁石3を張り付けた構造になっている。永久磁石の形状は、図2ではC形の断面となっているが、図4(b)のように、D形としてもよく、内周形状は、回転子ヨーク側面に合わせた内周形状として、切削・加工して調整してもよい。   As shown in FIG. 2, the permanent magnet rotor of the present invention has a structure in which permanent magnets 3 magnetized with N and S poles are alternately attached to the side surface of the rotor yoke 2. The shape of the permanent magnet is a C-shaped cross section in FIG. 2, but it may be D-shaped as shown in FIG. 4B, and the inner peripheral shape is an inner peripheral shape that matches the side surface of the rotor yoke. It may be adjusted by cutting and processing.

コギングトルクを低減する方法として、図4に示すように、永久磁石の端部形状が薄くなるように、C形あるいはD形の外径の中心を偏心させた永久磁石を用いる方法がある。図4は、(a)C形偏心磁石と(b)D形偏心磁石について、永久磁石の頂点を結ぶ外半径aと永久磁石の外半径bにおいて偏心量cとなる例を示す。また、図4(a)に回転ヨークの外半径dを示し、図4(b)に回転ヨークの内接円半径eを示す。
この方法により、磁束分布の変化が大きな磁極の切り替わり部分である永久磁石端部での磁束分布が滑らかになり、コギングトルクを低減することができる。しかし、磁石体積が減る分、駆動トルクの低下も招いてしまう。目標の駆動トルクを得るために軸方向に長くしたり、外径を大きくしたりすると機器が大きくなってしまうため、機器を大きくしないためにも、偏心量をできるだけ少なくすることが好ましい。
また、上記角度θにおいて該回転子の中心から最遠となる各永久磁石セグメントの点と該中心との距離が、上記基準線上で上記回転子の中心から最遠となる各永久磁石セグメントの点と該中心との距離より小さく、該角度θが大きくなるにつれてより小さくなることが好ましい。これは、磁石端部の厚みが薄くなることで磁極の切り替わり部分の磁束分布が滑らかになるためである。
As a method for reducing the cogging torque, as shown in FIG. 4, there is a method using a permanent magnet in which the center of the outer diameter of the C-shape or D-shape is eccentric so that the end shape of the permanent magnet is thin. FIG. 4 shows an example of (a) C-shaped eccentric magnet and (b) D-shaped eccentric magnet having an eccentric amount c at the outer radius a connecting the vertices of the permanent magnet and the outer radius b of the permanent magnet. 4A shows the outer radius d of the rotating yoke, and FIG. 4B shows the inscribed circle radius e of the rotating yoke.
According to this method, the magnetic flux distribution at the end of the permanent magnet, which is the switching portion of the magnetic pole where the change of the magnetic flux distribution is large, becomes smooth, and the cogging torque can be reduced. However, since the magnet volume is reduced, the driving torque is also reduced. If the length is increased in the axial direction or the outer diameter is increased in order to obtain a target driving torque, the device becomes larger. Therefore, it is preferable to reduce the amount of eccentricity as much as possible in order not to increase the size of the device.
In addition, the point of each permanent magnet segment that is farthest from the center of the rotor at the angle θ and the distance between the center and the point of each permanent magnet segment that is farthest from the center of the rotor on the reference line It is preferable that the distance is smaller than the distance from the center and smaller as the angle θ increases. This is because the magnetic flux distribution at the switching portion of the magnetic pole becomes smooth as the thickness of the magnet end becomes thinner.

図1の永久磁石回転機において、永久磁石の中心線を角度0°の基準線として、基準線との角度θ°の位置での容易磁化方向と基準線との成す角度が−θ°と平行配向の0°の回転子で磁石の偏心量(図4で説明)とコギングトルクの関係を調べた。モータの駆動条件は後述する実施例と同様である。   In the permanent magnet rotating machine of FIG. 1, the angle formed between the easy magnetization direction and the reference line at the position of the angle θ ° with respect to the reference line is parallel to −θ °, with the center line of the permanent magnet as the reference line at an angle of 0 °. The relationship between the amount of eccentricity of the magnet (explained in FIG. 4) and the cogging torque was investigated using a rotor with 0 ° orientation. The driving conditions of the motor are the same as in the examples described later.

図5に偏心量とコギングトルクの関係を示す。偏心量を大きくとるとコギングトルクが低減できる。容易磁化方向が−θ°の場合、偏心が少なくてもコギングトルクが小さいので、目標のコギングトルクを同じとした時の偏心量は平行配向品より小さくできる。   FIG. 5 shows the relationship between the amount of eccentricity and the cogging torque. If the amount of eccentricity is increased, the cogging torque can be reduced. When the easy magnetization direction is −θ °, the cogging torque is small even if the eccentricity is small. Therefore, the amount of eccentricity when the target cogging torque is the same can be made smaller than that of the parallel orientation product.

図6に偏心量とトルクの関係を示す。偏心量を大きくすると磁石の体積が減るので、トルクは小さくなっている。同じ偏心量で比較すると容易磁化方向が−θ°の方が平行配向品より小さくなっているが、差は大きくない。   FIG. 6 shows the relationship between the amount of eccentricity and torque. When the amount of eccentricity is increased, the volume of the magnet is reduced, so that the torque is reduced. When compared with the same amount of eccentricity, the direction of easy magnetization of −θ ° is smaller than that of the parallel-oriented product, but the difference is not large.

コギングトルクが小さく駆動トルクが大きい回転機を実現するには、いかに偏心量の小さい永久磁石でコギングトルク低減ができるかが重要である。図5と図6の結果より永久磁石の容易磁化方向が中心線側に向いている場合、従来(θ=0°)の平行配向より小さな偏心量でコギングトルク低減が可能で、偏心量が少ない分トルクが大きくなる。即ち、永久磁石の容易磁化方向が中心線側に向いているものであれば、従来のものより低コギングトルク、高トルク回転機を実現できることが分かった。ここで、永久磁石の基準線から角度θ°の位置での容易磁化方向と基準線との成す角度は最少で(180/P−90)°である。これより小さくなると極性が逆転してしまう。例えば図1の回転機はP=6極なので最小の角度は−60°となる。6極磁石の弧端のθ=30°で容易磁化方向角度−60°は、円周方向を向く。また、最大は、平行配向の0°より小さい。また、θ°の位置での容易磁化方向の角度は線形で変化しているとは限らない。例えば、θ=10°、20°、30°での容易磁化方向の角度が−10°、−20°、−30°のように線形で変化する場合や、θ=10°、20°、30°での容易磁化方向の角度が−10°、−10°、−20°のように非線形で変化する場合がある。したがって、Pは4以上の整数である極数である。   In order to realize a rotating machine with a small cogging torque and a large driving torque, it is important how the cogging torque can be reduced with a permanent magnet having a small eccentricity. 5 and 6, when the easy magnetization direction of the permanent magnet is toward the center line, the cogging torque can be reduced with a smaller amount of eccentricity than the conventional (θ = 0 °) parallel orientation, and the amount of eccentricity is small. Minute torque increases. That is, it has been found that a low cogging torque and a high torque rotating machine can be realized as long as the easy magnetization direction of the permanent magnet is directed toward the center line. Here, the angle formed between the easy magnetization direction and the reference line at a position of an angle θ ° from the reference line of the permanent magnet is at least (180 / P−90) °. If it is smaller than this, the polarity is reversed. For example, since the rotating machine of FIG. 1 has P = 6 poles, the minimum angle is −60 °. At the arc end of the 6-pole magnet, θ = 30 ° and the easy magnetization direction angle of −60 ° is directed in the circumferential direction. The maximum is smaller than 0 ° of parallel orientation. Further, the angle of the easy magnetization direction at the position of θ ° is not always linear and changing. For example, when the angle of the easy magnetization direction at θ = 10 °, 20 °, and 30 ° changes linearly as −10 °, −20 °, −30 °, or θ = 10 °, 20 °, 30 There are cases where the angle of the easy magnetization direction at ° changes non-linearly, such as −10 °, −10 °, and −20 °. Therefore, P is a pole number that is an integer of 4 or more.

次に、永久磁石の容易磁化方向が中心線側に向いている永久磁石の製造方法を検討する。従来の回転機用のC形あるいはD形の磁石を横磁場成形方法は、前述のように磁性を有するダイスを用いて平行配向の永久磁石を得る。例えば、図11は、磁性ダイス112とキャビティ113を有する金型111に磁石粉114を充填し、配向磁場115中に設置したものを示し、図12は、永久磁石の中心線を角度0°の基準線として、回転子の中心101を回転の中心とし反時計回りを正として基準線から正方向の角度θの位置での、回転ヨーク102の側面にある永久磁石103の容易磁化方向104を示す。   Next, a method for manufacturing a permanent magnet in which the easy magnetization direction of the permanent magnet is directed toward the center line will be considered. In a conventional method for forming a C-shaped or D-shaped magnet for a rotating machine in a transverse magnetic field, a permanent magnet having a parallel orientation is obtained using a magnetic die as described above. For example, FIG. 11 shows a mold 111 having a magnetic die 112 and a cavity 113 filled with magnet powder 114 and placed in an orientation magnetic field 115, and FIG. As a reference line, an easy magnetization direction 104 of the permanent magnet 103 on the side surface of the rotary yoke 102 at a position of an angle θ in the positive direction from the reference line with the center 101 of the rotor as the center of rotation and positive counterclockwise is shown. .

図13は、ダイスを非磁性体にしたものであり、非磁性ダイス122とキャビティ123を有する金型121に磁石粉124を充填し、配向磁場125中に設置したものを示す。ダイスを非磁性体にすると、配向磁場は磁性体である磁石粉内を通ろうとするので、配向磁場は永久磁石の中心線からより離れた位置の配向磁場方向が中心線側に向くようになると考える。ただし、図13のような多数個のキャビティが存在する場合、個々のキャビティでの配向磁場は異なって磁場のばらつきが生じる。配向磁場のばらつきは、コギングトルクに悪影響を与えるので好ましくない。   FIG. 13 shows a die made of a non-magnetic material, and a die 121 having a non-magnetic die 122 and a cavity 123 is filled with magnet powder 124 and placed in an orientation magnetic field 125. If the die is made of a non-magnetic material, the orientation magnetic field tends to pass through the magnetic powder, which is a magnetic material. Therefore, the orientation magnetic field is located further away from the center line of the permanent magnet and the orientation magnetic field direction is directed toward the center line. Think. However, when there are a large number of cavities as shown in FIG. 13, the alignment magnetic fields in the individual cavities are different and the magnetic field varies. Variation in the orientation magnetic field is undesirable because it adversely affects the cogging torque.

図14は、ダイスを非磁性体にしキャビティを1個にしたものであり、非磁性ダイス132とキャビティ133を有する金型131に磁石粉134を充填し、配向磁場135中に設置したものを示す。キャビティを1個にすれば、磁石の配向バラツキは小さくなるが生産性に問題がある。   FIG. 14 shows a die made of a non-magnetic material and a single cavity, and a mold 131 having a non-magnetic die 132 and a cavity 133 is filled with magnet powder 134 and placed in an orientation magnetic field 135. . If one cavity is used, the variation in the orientation of the magnet is reduced, but there is a problem in productivity.

そこで、C形のキャビティで、その数は2の整数倍として上限18の個数、好ましくは4であり、2個1組でキャビティの外周側同志が接し対称に配置された形状で、非磁性体のダイスを用いた場合の配向磁場は図7のようにする。図7は、非磁性ダイス22とキャビティ23を有する金型21に磁石粉24を充填し、磁石26によって発生する配向磁場25中に設置したものを示す。この場合も、磁性体である磁石粉内を通ろうとするので、配向磁場は永久磁石の中心線側に向くようになることができる。図7のように多数個のキャビティがあってもキャビティの形状が対称形なので、キャビティ間の配向のばらつきがない。さらに、形状的な効果で配向磁場の角度は、図14のものより大きくなる。図7は非磁性のダイスを用いたが、ダイスの磁気特性を変化させることによって、配向磁場と永久磁石中心線との角度を制御することもできる。   Therefore, the number of the C-shaped cavities is an integral multiple of 2 and the upper limit is 18, preferably 4. The two cavities are arranged in contact with each other on the outer peripheral side of the cavity and symmetrically arranged. The orientation magnetic field when using this die is as shown in FIG. FIG. 7 shows a mold 21 having a nonmagnetic die 22 and a cavity 23 filled with magnet powder 24 and placed in an orientation magnetic field 25 generated by a magnet 26. Also in this case, since it tries to pass through the magnet powder which is a magnetic substance, the orientation magnetic field can be directed to the center line side of the permanent magnet. Even if there are a large number of cavities as shown in FIG. 7, the shape of the cavities is symmetrical, so there is no variation in orientation between the cavities. Furthermore, the angle of the orientation magnetic field becomes larger than that of FIG. 14 due to the shape effect. Although a nonmagnetic die is used in FIG. 7, the angle between the orientation magnetic field and the permanent magnet center line can be controlled by changing the magnetic characteristics of the die.

図8は磁性ダイスを用いた場合で、非磁性ダイス32とキャビティ33を有する金型31に磁石粉34を充填し、配向磁場35中に設置したものを示す。この場合、図7の配向磁場より角度が小さくなる。ダイスの飽和磁化4πIsは12000ガウス以下である。本発明においては、ダイス材質として使用される磁性を有する材料の飽和磁化4πIsを12000ガウス以下とすることが好ましい。この範囲内でも、特に、0〜8000ガウスの範囲の飽和磁化を有する磁性材料を使用するのが、本発明の効果が顕著に現われ好ましい。飽和磁化4πIsが12000ガウスより大きい場合には、配向磁場が、永久磁石の中心線を角度0°の基準線として、基準線から角度θ°の位置での容易磁化方向と基準線との成す角度が0°より大きくなってしまう。   FIG. 8 shows a case in which a magnetic die is used, in which a magnetic powder 34 is filled in a die 31 having a nonmagnetic die 32 and a cavity 33 and placed in an orientation magnetic field 35. In this case, the angle becomes smaller than the orientation magnetic field of FIG. The saturation magnetization 4πIs of the die is 12000 gauss or less. In the present invention, it is preferable that the saturation magnetization 4πIs of the magnetic material used as the die material is 12000 gauss or less. Even within this range, it is particularly preferable to use a magnetic material having a saturation magnetization in the range of 0 to 8000 gauss because the effects of the present invention remarkably appear. When the saturation magnetization 4πIs is greater than 12000 Gauss, the orientation magnetic field is an angle formed between the easy magnetization direction and the reference line at a position of an angle θ ° from the reference line with the center line of the permanent magnet as the reference line at an angle of 0 °. Becomes larger than 0 °.

図9は、ダイス42とキャビティ43を有する金型41に磁石粉44を充填し、配向磁場45中に設置したものを示す。図9のようにC形のキャビティで、その数は2の整数倍(例示は4)であり、2個1組でキャビティの外周側が磁性体片を挟んで対称に配置された形状であっても同様の効果がある、この場合はキャビティ間においた磁性体片の形状や飽和磁化を変化することでも、配向磁場の制御が行える。磁性体片の形状は直方体、円柱、楕円柱などで、鉄等の磁性体でよい。また、好ましくは磁性体片の飽和磁化がダイスの飽和磁化より大きいことがよく、磁性体片の飽和磁化がダイスの飽和磁化より大きいと磁性体片に磁束が集中し、配向磁場が永久磁石の中心線側に向くのに効果がある。同様の理由から、磁性体片がパンチの飽和磁化より大きい磁性を有する材料としたことが好ましい。   FIG. 9 shows a mold 41 having a die 42 and a cavity 43 filled with magnet powder 44 and placed in an orientation magnetic field 45. As shown in FIG. 9, the number of the C-shaped cavities is an integral multiple of 2 (illustrative is 4), and the outer peripheral side of the cavities are arranged symmetrically with the magnetic piece between them in pairs. Has the same effect. In this case, the orientation magnetic field can also be controlled by changing the shape and saturation magnetization of the magnetic piece placed between the cavities. The shape of the magnetic piece may be a rectangular parallelepiped, a cylinder, an elliptic cylinder, or the like, and may be a magnetic substance such as iron. Preferably, the saturation magnetization of the magnetic piece is larger than the saturation magnetization of the die, and if the saturation magnetization of the magnetic piece is larger than the saturation magnetization of the die, the magnetic flux concentrates on the magnetic piece and the orientation magnetic field is Effective for facing the center line. For the same reason, it is preferable that the magnetic piece is made of a material having magnetism larger than the saturation magnetization of the punch.

図10は、ダイス52とキャビティ53を有する金型51に磁石粉54を充填し、配向磁場55中に設置したものを示す。図10のようにC形のキャビティで、キャビティの外周側に磁性体片が配置された形状であると、従来の図13の金型以上に配向磁場と永久磁石中心線との角度大きくすることができる他、磁性体片の飽和磁化の大きさや形状を変更することにより、配向磁場の角度制御をすることができる。
本発明の図7〜8と参考例の図9〜10のキャビティはC形磁石の場合であり、D形の磁石であっても同様である。
FIG. 10 shows a mold 51 having a die 52 and a cavity 53 filled with magnet powder 54 and placed in an orientation magnetic field 55. As shown in FIG. 10, when the C-shaped cavity has a shape in which magnetic pieces are arranged on the outer peripheral side of the cavity, the angle between the orientation magnetic field and the permanent magnet center line is larger than that of the conventional mold shown in FIG. In addition, the angle of the orientation magnetic field can be controlled by changing the size and shape of the saturation magnetization of the magnetic piece.
The cavities of FIGS . 7 to 8 of the present invention and FIGS . 9 to 10 of the reference example are C-shaped magnets, and the same applies to D-shaped magnets.

本発明においては、ダイスだけでなく、上パンチおよび下パンチも飽和磁化4πIsが12000ガウス以下の磁性を有する材料で構成されていると、配向磁場の角度制御に効果があるので好ましい。その際、上パンチおよび下パンチの全体が磁性材料からなっていてもよいが、その成形体と接する先端部分のみが磁性を有する材料から構成されていてもよい。   In the present invention, it is preferable that not only the die but also the upper punch and the lower punch are made of a material having a saturation magnetization of 4πIs of 12000 gauss or less because the angle control of the orientation magnetic field is effective. At this time, the entire upper punch and lower punch may be made of a magnetic material, but only the tip portion in contact with the molded body may be made of a magnetic material.

本発明の飽和磁化4πIsが12000ガウス以下の磁性を有する材料としては、超硬合金、合金炭素鋼が望ましい。超硬合金とは、WC、TiC、MoC、NbC、TaC、Cr3 2 等のIVa,Va,VIa族に属する金属の炭化物粉末をCo、Ni、Mo、Fe、Cu、Pb、Sn、またはそれらの合金を用いて焼結結合した合金であり、これらは、超硬合金に含有される炭素量、および鉄、コバルト、ニッケル等の量、さらに添加物の種類、添加量等によりその磁性は様々に変化する。所定の磁気特性を有していれば、どのような超硬合金を本発明に適用しても差しつかえない。 As the material having a saturation magnetization 4πIs of 12000 gauss or less according to the present invention, cemented carbide or alloy carbon steel is desirable. Cemented carbide refers to carbide powder of metals belonging to groups IVa, Va, VIa such as WC, TiC, MoC, NbC, TaC, Cr 3 C 2 , Co, Ni, Mo, Fe, Cu, Pb, Sn, or These are alloys that are sintered and bonded using these alloys, and the magnetism depends on the amount of carbon contained in the cemented carbide and the amount of iron, cobalt, nickel, etc., and the type and amount of additives. It changes variously. Any cemented carbide can be applied to the present invention as long as it has predetermined magnetic properties.

また、合金炭素鋼とは、Fe−Cを主体とする合金であり、特にダイス鋼、炭素工具鋼、合金工具鋼、高速度鋼等を用いるのが好ましい。これらについても所定の磁気特性を有していれば、どのような合金炭素鋼を使用しても問題ない。   The alloy carbon steel is an alloy mainly composed of Fe-C, and in particular, die steel, carbon tool steel, alloy tool steel, high speed steel, and the like are preferably used. Any of these alloy carbon steels can be used as long as they have predetermined magnetic properties.

また異方性焼結磁石としては、Baフェライト系、Srフェライト系などのフェライト磁石、Sm−Co系、Nd−Fe−B系などの希土類磁石等が使用可能である。
キャビティ内に充填する磁石粉末の平均粒径は特に限定しないが、1〜20μmであることが好ましく、加圧磁場成形してさらに、磁石の組成のより適宜焼結温度を調整して、必要により時効処理し、焼結磁石を得るものである。
焼結温度は、磁石によって異なるが、フェライト系では1150〜1300℃、Sm−Co系では1100〜1250℃、Nd−Fe−B系は1000〜1100℃が好ましい。
Moreover, as an anisotropic sintered magnet, ferrite magnets such as Ba ferrite and Sr ferrite, rare earth magnets such as Sm—Co and Nd—Fe—B, and the like can be used.
The average particle size of the magnet powder to be filled in the cavity is not particularly limited, but is preferably 1 to 20 μm. Aging treatment is performed to obtain a sintered magnet.
The sintering temperature varies depending on the magnet, but preferably 1150 to 1300 ° C. for ferrite, 1100 to 1250 ° C. for Sm—Co, and 1000 to 1100 ° C. for Nd—Fe—B.

以下、実施例にて詳しく説明する。なお、Nd−Fe−B系の永久磁石について説明するが、本発明はNd−Fe−B系磁石に限るものではない。永久磁石は以下の工程にて製作した。それぞれ純度99.7重量%のNd,Fe,Co,M(MはAl,Si,Cu)と純度99.5重量%のBを用い、真空溶解炉で溶解鋳造してインゴットを作製した。このインゴットをジョークラッシャーで粗粉砕し、更に窒素気流中ジェットミル粉砕により平均粒径3.5μmの微粉末を得た。この微粉末を比較例では図11の金型、実施例1では図7で示す非磁性の超硬合金からなる金型4個のキャビティに充填し垂直磁場プレスにて12kGの磁場中において、1.0t/cm2の成形圧にて成形した。この成形体はArガス中1090℃で1時間焼結を行い、引き続き580℃で1時間の熱処理を行った。熱処理を終えた焼結体はC形磁石の外径側でつながっているが、接合面が少ないので工具によって簡単に割ることができる。破断面はC形磁石の外径に沿っている。その後、砥石による研削加工を行い、C形の永久磁石を得た。本永久磁石の特性は、Br:13.0kG,iHc:22kOe,(BH)max:40MGOeであった。 Hereinafter, the embodiment will be described in detail. Although an Nd—Fe—B permanent magnet will be described, the present invention is not limited to an Nd—Fe—B based magnet. The permanent magnet was manufactured by the following process. Each of Nd, Fe, Co, and M (M is Al, Si, Cu) having a purity of 99.7% by weight and B having a purity of 99.5% by weight was melt-cast in a vacuum melting furnace to produce an ingot. The ingot was coarsely pulverized with a jaw crusher, and fine powder having an average particle size of 3.5 μm was obtained by jet mill pulverization in a nitrogen stream. In the comparative example, this fine powder was filled in the cavity of four molds made of the mold shown in FIG. 11 and in Example 1 made of a nonmagnetic cemented carbide shown in FIG. Molding was performed at a molding pressure of 0.0 t / cm 2 . This molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 580 ° C. for 1 hour. The sintered body after the heat treatment is connected on the outer diameter side of the C-shaped magnet, but it can be easily broken by a tool because there are few joint surfaces. The fracture surface is along the outer diameter of the C-shaped magnet. Thereafter, grinding with a grindstone was performed to obtain a C-shaped permanent magnet. The characteristics of the permanent magnet were Br: 13.0 kG, iHc: 22 kOe, (BH) max: 40 MGOe.

比較例として、図1の回転子と固定子の奥行きが40mm、回転子の外径が40mmである。図11で示す磁性体である飽和磁化4000Gの超硬合金からなる金型で製造したC形永久磁石を用い、図12に示した容易磁化方向が平行である回転機のコギングトルクと、各コイルに電流を入力した時の駆動トルクを測定した。コギングトルクは、トルク検出器に永久磁石回転機の軸を固定し、軸の一方を別の永久磁石回転機で10rpm以下のゆっくりとした速度で回転させたときのトルクを測定した。駆動トルクは、各コイルに実効値で2Aの正弦波の三相交流電流を入力した場合である。   As a comparative example, the depth of the rotor and the stator in FIG. 1 is 40 mm, and the outer diameter of the rotor is 40 mm. Using a C-shaped permanent magnet made of a cemented carbide having a saturation magnetization of 4000 G, which is a magnetic material shown in FIG. 11, the cogging torque of a rotating machine having parallel easy magnetization directions shown in FIG. The driving torque when current was input to was measured. The cogging torque was measured by fixing the shaft of a permanent magnet rotating machine to a torque detector and rotating one of the shafts at a slow speed of 10 rpm or less with another permanent magnet rotating machine. The driving torque is obtained when a sine wave three-phase alternating current having an effective value of 2 A is input to each coil.

永久磁石は、コギングトルクの低減を図るため外径を偏心させた。図5のように偏心量を増やしていくとコギングトルクが小さくなり、今回の偏心量は9mmとした。コギングトルクと駆動トルクの値を表1に示す。コギングトルクは脈動する波形の最大値と最小値の差であり、駆動トルクは平均値である。今回の永久磁石回転機では、コギングトルクは0.01Nm以下を目標としており比較例のコギングトルクは目標値をクリアーしている。この時の駆動トルクは0.695Nmであった。   The outer diameter of the permanent magnet is eccentric in order to reduce cogging torque. As shown in FIG. 5, when the amount of eccentricity is increased, the cogging torque is reduced, and the amount of eccentricity this time is set to 9 mm. Table 1 shows the values of the cogging torque and the driving torque. The cogging torque is the difference between the maximum value and the minimum value of the pulsating waveform, and the driving torque is an average value. In this permanent magnet rotating machine, the cogging torque is set to 0.01 Nm or less, and the cogging torque in the comparative example clears the target value. The driving torque at this time was 0.695 Nm.

実施例1として、図7で示す金型で製造したC形永久磁石を用い、図2に示したような永久磁石の容易磁化方向が中心線側を向いた回転子を、比較例と同じ固定子に組み込んだ回転機のコギングトルクと駆動トルクを評価した。駆動条件は、比較例と同様にした。   As Example 1, a C-shaped permanent magnet manufactured with the mold shown in FIG. 7 was used, and the rotor with the easy magnetization direction of the permanent magnet as shown in FIG. The cogging torque and driving torque of the rotating machine incorporated in the child were evaluated. The driving conditions were the same as in the comparative example.

永久磁石は、比較例と同様にコギングトルクの低減を図るため外径を偏心させた。図5のように偏心量を増やしていくとコギングトルクが小さくなり、今回の偏心量は6mmとした。コギングトルクと駆動トルクの値を表1に示す。コギングトルクは比較例とほぼ同じで目標の0.01Nm以下となっている。この時の駆動トルクは0.741Nmであり、比較例より6.6%の駆動トルク向上があった。   As in the comparative example, the outer diameter of the permanent magnet was decentered in order to reduce the cogging torque. As shown in FIG. 5, when the amount of eccentricity is increased, the cogging torque is reduced, and the amount of eccentricity this time is set to 6 mm. Table 1 shows the values of the cogging torque and the driving torque. The cogging torque is substantially the same as the comparative example, and is the target of 0.01 Nm or less. The driving torque at this time was 0.741 Nm, and the driving torque was improved by 6.6% from the comparative example.

参考例2として、図9で示す金型で製造したC形永久磁石を得、図2に示したような永久磁石の容易磁化方向が中心線側を向いた回転子を、比較例と同じ固定子に組み込んだ回転機のコギングトルクと駆動トルクを評価した。なお、図9のダイスは非磁性の超硬合金を用い、磁性体片の飽和磁化は18000ガウスである。駆動条件は、比較例と同様にした。 As a reference example 2, a C-shaped permanent magnet manufactured with the mold shown in FIG. 9 was obtained, and the rotor with the easy magnetization direction of the permanent magnet as shown in FIG. The cogging torque and driving torque of the rotating machine incorporated in the child were evaluated. Note that the die of FIG. 9 uses a non-magnetic cemented carbide, and the saturation magnetization of the magnetic piece is 18000 gauss. The driving conditions were the same as in the comparative example.

永久磁石は、比較例と同様にコギングトルクの低減を図るため外径を偏心させた。図5のように偏心量を増やしていくとコギングトルクが小さくなり、今回の偏心量は6mmとした。コギングトルクと駆動トルクの値を表1に示す。コギングトルクは比較例とほぼ同じで目標の0.01Nm以下となっている。この時の駆動トルクは0.755Nmであり、比較例より8.6%の駆動トルク向上があった。   As in the comparative example, the outer diameter of the permanent magnet was decentered in order to reduce the cogging torque. As shown in FIG. 5, when the amount of eccentricity is increased, the cogging torque is reduced, and the amount of eccentricity this time is set to 6 mm. Table 1 shows the values of the cogging torque and the driving torque. The cogging torque is substantially the same as the comparative example, and is the target of 0.01 Nm or less. The driving torque at this time was 0.755 Nm, and the driving torque was improved by 8.6% from the comparative example.

Figure 0004471698
Figure 0004471698

ラジアルエアギャップ形の永久磁石回転機を示す。A radial air gap type permanent magnet rotating machine is shown. 永久磁石回転子を示す。1 shows a permanent magnet rotor. 角度θでの容易磁化方向を示す。The easy magnetization direction at an angle θ is shown. (a)はC形偏心磁石を示し、(b)はD形偏心磁石を示す。(A) shows a C-shaped eccentric magnet, and (b) shows a D-shaped eccentric magnet. 偏心量とコギングトルクの関係との関係を示す。The relationship between the amount of eccentricity and the relationship between cogging torque is shown. 偏心量とトルクの関係との関係を示す。The relationship between the amount of eccentricity and the relationship of torque is shown. 本発明のダイスおよび配向磁場を示す。2 shows the dice and orientation magnetic field of the present invention. 本発明のダイスおよび配向磁場を示す。2 shows the dice and orientation magnetic field of the present invention. 参考例のダイスおよび配向磁場を示す。The dice | dies and orientation magnetic field of a reference example are shown. 参考例のダイスおよび配向磁場を示す。The dice | dies and orientation magnetic field of a reference example are shown. 従来のダイスおよび配向磁場を示す。1 shows a conventional die and orientation magnetic field. (a)従来の永久磁石回転子と、(b)従来の永久磁石回転子の角度θでの容易磁化方向を示す。(A) A conventional permanent magnet rotor and (b) an easy magnetization direction at an angle θ of a conventional permanent magnet rotor are shown. 従来のダイスおよび配向磁場を示す。1 shows a conventional die and orientation magnetic field. 従来のダイスおよび配向磁場を示す。1 shows a conventional die and orientation magnetic field.

符号の説明Explanation of symbols

1 永久磁石回転機
2 回転子ヨーク
3 永久磁石
4 回転子
5 空隙(ギャップ)
6 ティース
7 コイル
8 固定子
11 回転子の中心
12 容易磁化方向
21 金型
22 非磁性ダイス
23 キャビティ
24 磁石粉
25 配向磁場
26 磁石
31 金型
32 磁性ダイス
33 キャビティ
34 磁石粉
35 配向磁場
41 金型
42 非磁性ダイス
43 キャビティ
44 磁石粉
45 配向磁場
47 磁性体片
51 金型
52 非磁性ダイス
53 キャビティ
54 磁石粉
55 配向磁場
57 磁性体片
101 回転子の中心
102 永久磁石
103 回転子ヨーク
104 容易磁化方向
111 金型
112 非磁性ダイス
113 キャビティ
114 磁石粉
115 配向磁場
116 磁石
121 金型
122 非磁性ダイス
123 キャビティ
124 磁石粉
125 配向磁場
131 金型
132 非磁性ダイス
133 キャビティ
134 磁石粉
135 配向磁場
a 永久磁石の頂点を結ぶ外半径
b 永久磁石の外半径
c 偏心量
d 回転ヨークの外半径
e 回転ヨークの内接円半径
DESCRIPTION OF SYMBOLS 1 Permanent magnet rotating machine 2 Rotor yoke 3 Permanent magnet 4 Rotor 5 Air gap (gap)
6 Teeth 7 Coil 8 Stator 11 Rotor center 12 Easy magnetization direction 21 Mold 22 Nonmagnetic die 23 Cavity 24 Magnet powder 25 Orientation magnetic field 26 Magnet 31 Mold 32 Magnetic die 33 Cavity 34 Magnet powder 35 Orientation magnetic field 41 Mold 42 Nonmagnetic die 43 Cavity 44 Magnet powder 45 Orientation magnetic field 47 Magnetic piece 51 Mold 52 Nonmagnetic die 53 Cavity 54 Magnet powder 55 Orientation magnetic field 57 Magnetic piece 101 Rotor center 102 Permanent magnet 103 Rotor yoke 104 Easy magnetization Direction 111 Mold 112 Nonmagnetic die 113 Cavity 114 Magnet powder 115 Orientation magnetic field 116 Magnet 121 Mold 122 Nonmagnetic die 123 Cavity 124 Magnet powder 125 Orientation magnetic field 131 Mold 132 Nonmagnetic die 133 Cavity 134 Magnet powder 135 Orientation magnetic field a Permanent The top of the magnet Outer radius b to be connected Outer radius c of the permanent magnet c Eccentric amount d Outer radius of the rotating yoke e Inscribed circle radius of the rotating yoke

Claims (2)

弧が外部に向く外弧と弧が内部に向く内弧と両弧を結ぶ二本の線で構成されるC形断面形状または外弧と三本の線で構成されるD形断面形状を有し2の整数倍となる数のキャビティであって、2個1組でキャビティの外弧同士が対称に接するように配置されたキャビティと、該キャビティを形成するダイスと、キャビティ内を圧縮するためにプレスに連動可能なパンチとを備えてなる、永久磁石粉の配向磁場中圧縮成形用金型。 C-shaped cross section consisting of two lines connecting the outer arc with the arc facing outward and the inner arc facing the arc with both arcs, or a D-shaped cross section consisting of the outer arc and three lines In order to compress the inside of the cavity, the number of the cavities is an integral multiple of 2 and the cavities are arranged so that the outer arcs of the cavities are in symmetric contact with each other, the dies forming the cavities, and the cavity in comprising a punch which can interlock in the press, oriented in a magnetic field compression molding die of the permanent magnet powder. 請求項1に記載の金型と、該金型を挟むように配置され該金型に一定方向の磁場を印加する少なくとも二つの磁石と、該金型のパンチに連動してキャビティを該磁場方向に対して垂直方向に圧縮するためのプレスとを含んでなる永久磁石磁場成形機。 The mold according to claim 1, at least two magnets arranged so as to sandwich the mold and applying a magnetic field in a certain direction to the mold, and the cavity in the direction of the magnetic field in conjunction with the punch of the mold And a press for compressing in a direction perpendicular to the permanent magnet magnetic field forming machine.
JP2004097423A 2004-03-30 2004-03-30 Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet Expired - Lifetime JP4471698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097423A JP4471698B2 (en) 2004-03-30 2004-03-30 Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097423A JP4471698B2 (en) 2004-03-30 2004-03-30 Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010009302A Division JP4890620B2 (en) 2010-01-19 2010-01-19 Mold, magnetic field molding machine, and method for manufacturing permanent magnet

Publications (2)

Publication Number Publication Date
JP2005287181A JP2005287181A (en) 2005-10-13
JP4471698B2 true JP4471698B2 (en) 2010-06-02

Family

ID=35184983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097423A Expired - Lifetime JP4471698B2 (en) 2004-03-30 2004-03-30 Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet

Country Status (1)

Country Link
JP (1) JP4471698B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898137B2 (en) 2006-08-30 2011-03-01 Shin-Etsu Chemical Co., Ltd. Permanent magnet and permanent magnet rotating machine
JP4737431B2 (en) * 2006-08-30 2011-08-03 信越化学工業株式会社 Permanent magnet rotating machine
JP4919109B2 (en) * 2009-04-03 2012-04-18 信越化学工業株式会社 Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP5506234B2 (en) * 2009-04-24 2014-05-28 三菱電機株式会社 Anisotropic magnet, motor, and method for manufacturing anisotropic magnet
US9646751B2 (en) 2010-12-28 2017-05-09 Hitachi Metals, Ltd. Arcuate magnet having polar-anisotropic orientation, and method and molding die for producing it
JP2019054670A (en) * 2017-09-15 2019-04-04 Tdk株式会社 Permanent magnet assembly, permanent magnet rotor, permanent magnet mover for linear motor, permanent magnet stator for linear motor, motor and generator

Also Published As

Publication number Publication date
JP2005287181A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR101402451B1 (en) Permanent magnet and permanent magnet rotating machine
EP1308970B1 (en) Radial anisotropic sintered magnet production method
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
JP5089979B2 (en) Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
WO2005124800A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
WO2012090841A1 (en) Arc-shaped magnet having polar-anisotropy orientation, method of manufacturing for same, and die for manufacturing same
JP4890620B2 (en) Mold, magnetic field molding machine, and method for manufacturing permanent magnet
JP4471698B2 (en) Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JP4425682B2 (en) Mold, molding machine, method and magnet obtained for manufacturing anisotropic magnet
JP4238971B2 (en) Manufacturing method of radial anisotropic sintered magnet
JP2009111418A (en) Die, molding machine and method used for manufacturing anisotropic magnet, and magnet manufactured thereby
JP5353976B2 (en) Radial anisotropic sintered magnet and magnet rotor
JP5448314B2 (en) Permanent magnet and permanent magnet rotating machine
JP2000116089A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 6