JPH0422010B2 - - Google Patents

Info

Publication number
JPH0422010B2
JPH0422010B2 JP59009153A JP915384A JPH0422010B2 JP H0422010 B2 JPH0422010 B2 JP H0422010B2 JP 59009153 A JP59009153 A JP 59009153A JP 915384 A JP915384 A JP 915384A JP H0422010 B2 JPH0422010 B2 JP H0422010B2
Authority
JP
Japan
Prior art keywords
permanent magnet
oxidation
plating
less
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59009153A
Other languages
Japanese (ja)
Other versions
JPS60153109A (en
Inventor
Masao Togawa
Masato Sagawa
Setsuo Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59009153A priority Critical patent/JPS60153109A/en
Publication of JPS60153109A publication Critical patent/JPS60153109A/en
Publication of JPH0422010B2 publication Critical patent/JPH0422010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、R(RはYを含む希土類元素のう
ち少なくとも1種)、B、Feを主成分とする円筒
状の永久磁石体に係り、円筒状の径方向に磁気異
方性を有して磁気特性、耐酸化性並びに強度にす
ぐれた円筒状ラジアル異方性永久磁石体に関す
る。 従来の技術 一般にモーターに使用する永久磁石体は、低出
力用には等方性円筒状磁石が使用され、高出力用
には異方性弓形磁石を円筒状に組立てて使用して
いるが、高出力用磁石の組立て工程の簡略化のた
め、一体成形の円筒状永久磁石がMO・6Fe2O3
(M;Sr、Ba、Pb)のハードフエライトで提案
されている。 また、近年の電気・電子機器の小形化、高効率
化の要求にともない、かかるモーターにおいて
も、小型化、軽量化が要望されている。ところ
が、磁性の低いハードフエライトの使用では、モ
ーターの小型化、軽量化に限度があり、現在、磁
気特性の最もすぐれている希土類Co磁石の適用
化が検討されている。 しかし、この希土類Co磁石はCoを50〜60wt%
も含むうえ、希土類鉱石中にあまり含まれていな
いSmを使用するため大変高価であり、通常の焼
結法により製造されるが、焼結体の強度が弱く、
焼結後に破損し易いなどの問題から、一体成形の
円筒状ラジアル異方性永久磁石体を製造すること
が困難であり一層価格を高騰させ、モーターの小
型化、軽量化のための適用が困難であつた。これ
を解決するために、磁石用粉末を樹脂あるいは金
属バインダーと結合固化させるボンド法が提案さ
れている。 さらに希土類Co磁石が、R1Co5系からR2Co17
系に高性能、省資源化されたが、ボンド法を用い
ても、高価なSm、Coが主成分であり大変高価で
ある。 発明が解決しようとする課題 本発明者は先に、高価なSmやCoを必ずしも含
有しない新しい高性能永久磁石として、Fe−B
−R三元化合物をベースとするFe−B−R系
(RはYを含む希土類元素のうち少なくとも1種)
永久磁石を提案した(特願昭57−145072号、特願
昭57−166663号、特願昭57−200204号、特願昭58
−5813号)。また、Fe−B−R合金粉末とバイン
ダーとを混練して得られる樹脂磁石についても提
案した(特願昭58−171909号)。 このFe−B−R系永久磁石は、RとしてNdや
Prを中心とする資源的に豊富な軽希土類を用い、
Fe、B、Rを主成分として25MGOe以上の極め
て高いエネルギー積を得ることができるすぐれた
永久磁石である。これらの系においてBは、従来
より知られていたような非晶質促進元素の一種と
して用いられるのでなく、Fe−B−R三元化合
物を形成するための必須不可欠の元素として用い
られる。 しかしながら、上記のすぐれた磁気特性を有す
るFe−B−R系永久磁石体は主成分として、空
気中で酸化し次第に安定な酸化物を生成し易い希
土類元素及び鉄を含有するため、磁気回路に組込
んだ場合に、磁石表面に生成する酸化物により、
磁気回路の出力低下及び磁気回路間のばらつきを
惹起し、また、表面酸化物の脱落による周辺機器
への汚染の問題があつた。 この発明は、かかるモーター用の一体成形円筒
状ラジアル異方性永久磁石体において、すぐれた
磁気特性を有し、モーターの小形化及び軽量化が
達成できるFe−B−R系永久磁石体の提供を目
的としている。 課題を解決するための手段 発明者はこの新規な永久磁石を使用して、高性
能かつ小型、軽量化を達成した磁気回路が得られ
るように種々検討した結果、焼結磁石の場合、平
均粒度0.5〜50μmの所要組成の磁石原料粉末をダ
イス成形空間内に充填し、成形体の径方向に放射
状に磁場を印加しながら磁場中プレス成形し、そ
の後焼結し、さらに時効処理することにより、
Br 12kG以上、iHc 11kOe以上、(BH)max
35MGOe以上、抗折強度25Kg/mm2以上の極めて
すぐれた磁気特性及び強度を有する円筒状ラジア
ル異方性永久磁石体が得られることを知見したも
のである。 また、円筒状ラジアル異方性Fe−B−R系永
久磁石体表面に耐酸化めつき層、樹脂層あるいは
化成被膜層を被覆形成することにより、強固かつ
安定な耐酸化被膜層が得られ該表面に生成する酸
化物を長期間抑制でき、特に所要厚みのNi等の
金属めつきを設けるとすぐれた耐酸化性と強度が
得られることを知見したものである。 すなわち、この発明は、R(但しRはYを含む
希土類元素のうち少なくとも1種)12原子%〜20
原子%、B4原子%〜24原子%、Fe65原子%〜82
原子%を主成分とし、円筒状磁石体の径方向に放
射状に磁気異方性を有し、表面に耐酸化被膜層を
被覆したことを特徴とする永久磁石体である。 作 用 以下に、この発明による永久磁石体の組成限定
理由を説明する。 この発明の永久磁石体に用いる希土類元素R
は、イツトリウム(Y)を包含し軽希土類及び重
希土類を包含する希土類元素であり、これらのう
ち少なくとも1種、好ましくはNd、Pr等の軽希
土類を主体として、あるいはNd、Pr等との混合
物を用いる。 又、通例Rのうち1種をもつて足りるが、実用
上は2種以上の混合物(ミツシユメタル、ジジム
等)を入手上の便宜等の理由により用いることが
でき、Sm、Y、La、Ce、Gd等は他のR、特に
Nd、Pr等との混合物として用いることができ
る。 なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差支えない。 Rは、新規な上記系永久磁石体における必須元
素であつて、12原子%未満では結晶構造がα−鉄
と同一構造の立方晶組織となるため、高磁気特性
特に高保磁力が得られず、20原子%を越えるとR
リツチな非磁性相が多くなり、残留磁束密度
(Br)が低下して、すぐれた特性の永久磁石体が
得られない。よつて、Rは12原子%〜20原子%の
範囲とする。 また、Rの50%以上を軽希土類金属が占めるこ
とが必要である。また、Rの一部の1〜30%を重
希土類のDy、Tb、Ho、Gd、Er、Ybのうち1種
以上と置換することは、保磁力及び最大エネルギ
ー積の向上が得られる。 Bは、新規な上記系永久磁石体における必須元
素であつて、4原子%未満では菱面体組織とな
り、高い保磁力(iHc)は得られず、24原子%を
越えるとBリツチな非磁性相が多くなり、残留磁
束密度(Br)が低下するため、すぐれた永久磁
石体が得られない。よつて、Bは4原子%〜24原
子%の範囲とする。 Feは、新規な上記系永久磁石体において必須
元素であり、65原子%未満では残留磁束密度
(Br)が低下し、82原子%を越えると高い保磁力
が得られないので、Feは65原子%〜82原子%の
含有とする。 また、この発明による永久磁石体において、
Feの一部をCoで置換することは、得られる磁石
の磁気特性を損うことなく温度特性を改善するこ
とができるが、Co置換量がFeの50%を越えると、
逆に磁気特性が劣化するため好ましくない。 また、この発明による永久磁石体は、R、B、
Feの他、工業的生産上不可避的不純物の存在を
許容できるが、Bの一部を4.0原子%以下のC、
3.5原子%以下のP、2.5原子%以下のS、3.5原子
%以下のCuのうち少なくとも1種、合計量で4.0
原子%以下で置換することにより、永久磁石体の
製造性改善、低価格化が可能である。 また、下記添加元素のうち少なくとも1種は、
R−B−Fe系永久磁石体に対してその保磁力等
を改善あるいは製造性の改善、低価格化に効果が
あるため添加する。しかし、保磁力改善のための
添加に伴ない残留磁束密度(Br)の低下を招来
するので、従来のハードフエライト磁石の残留磁
束密度と同等以上となる範囲での添加が望まし
い。 9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5原子%以下のBi、 12.5原子%以下のNb、10.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 5.5原子%以下のHfのうち少なくとも1種を添加
含有、但し、2種以上含有する場合は、その最大
含有量は当該添加元素のうち最大値を有するもの
の原子百分比%以下の含有させることにより、永
久磁石体の高保磁力化が可能になる。 この発明のR−B−Fe系永久磁石において、
結晶相は主相が正方晶であることが不可欠であ
り、特に、微細で均一な合金粉末を得て、すぐれ
た磁気特性を有する焼結永久磁石を作製するのに
効果的である。 また、この発明の永久磁石体用合金は、粒径が
1〜100μmの範囲にある正方晶系の結晶構造を有
する化合物を主相とし、特に体積比で1%〜50%
の非磁性相(非磁性金属間化合物、酸化物相を除
く)を含むことが、すぐれた磁気特性を有するボ
ンド磁石を作製するのに不可欠である。 耐酸化被膜層 この発明における耐酸化被膜層がめつき層の場
合は、25μm以下の厚みの、Ni、Cu、Zn等の耐
酸化性を有する金属または合金のめつき、あるい
はこれらの複合めつきであればよく、めつき処理
方法としては、無電解めつきまたは電解めつき、
あるいは前記めつきの併用による方法でもよい。
また、この発明における耐酸化性めつき層は、本
永久磁石体の磁気特性には何等の影響を与えな
い。 また、耐酸化性めつき層の厚みは、25μmを越
える厚みでは、めつき膜の強度が劣化するととも
に、製品の寸法精度を得ることが困難になり、か
つめつき処理時間に長時間を要し、コスト的にも
好ましくないため、めつき層厚みは25μm以下と
する必要がある。 例えば、Cu下地、Niめつき、あるいはNi無電
解めつき下地、Ni電解めつき等の複合めつきの
場合は、5μm〜15μm厚み、Niめつき及びCuめつ
きの場合は5μm〜15μm厚み、Znめつきの場合は
5μm〜15μm厚みのめつき層のとき、耐酸化性は
もちろん、強度及びコスト面からも最も好まし
い。 また、耐酸化被膜層が耐酸化性樹脂層の場合、
25μm以下の層厚みで、樹脂として、エポキシ樹
脂、熱硬化型アクリル樹脂、アルキド樹脂、メラ
ミン樹脂、シリコン樹脂等の塗料用合成樹脂ある
いはこれら樹脂の複合樹脂であればよく、さら
に、防錆、塗膜補強改善の目的で、上記樹脂に酸
化亜鉛、クロム酸亜鉛、鉛丹等の防錆用顔料を樹
脂量に題して80%以下含有させたり、ベンゾトリ
アゾールを含有する場合は樹脂量に対して1%以
下の含有でもよい。 また、耐酸化性化成被膜からなる耐酸化被膜層
の場合は、燐酸亜鉛、燐酸マンガン等の燐酸塩被
膜あるいはクロム酸塩被膜が好ましく、さらにこ
れら化成被膜表面に、塗料あるいは樹脂層を被覆
してもよい。この発明において、化成被膜厚み
は、燐酸塩被膜の場合は3μm〜10μm、クロム酸
塩被膜の場合は2μm〜5μmが好ましい。 実施例 以下に、この発明による実施例を示しその効果
を明らかにする。 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl、Si、C等の不純物
からなるフエロボロン合金、純度99.7%以上の
Ndを使用し、これらを高周波溶解し、その後水
冷鋳型に鋳造した。 その後インゴツトをスタンプミルにより35メツ
シユスルーまでに粗粉砕し、次にボールミルによ
り3時間粉砕し、粒度3〜10μmの微粉末を得た。 この微粉末を金型に挿入し、10kOeの磁界中で
配向して2t/cm2の圧力で、外径67mm×内径52mm×
高さ13mm寸法の円筒体に成形した。 得られた成形体を、1100℃、1時間、Ar中の
条件で焼結し、その後放冷し、さらにAr中ので
600℃、2時間の時効処理を施して、この発明に
よる円筒状ラジアル異方性永久磁石体を作製し
た。 このときの磁石体成分組成は、15Nd−8B−
77Feであつた。 得られた永久磁石体から13mm×8mm×6mm寸法
に試験片を切り出し、第1表に示すめつき条件で
各試験片にめつき処理し、めつき後の各試料の磁
気特性、耐酸化性、接着強度を測定した。結果は
第2表に示す。 第2表の耐酸化性は、上記試験片を60℃の温
度、90%の湿度の雰囲気に3日間放置した場合の
試験片の酸化増量、酸化膜厚をもつて評価した。
なお、酸化膜厚みは酸化膜の最大厚みで表わして
ある。 また、接着強度は、めつき処理後の上記試験片
を保持板にアラルダイトAW−106(商品名)なる
接着剤で接着した後、試験片にアムスラー試験機
により剪断力を加えて、単位面積当りの接着強度
を測定した。 なお、第3表に比較のため、本発明の実施例と
同一成分の無めつき試料を酸化試験として、上記
と同一の60℃、湿度90%の雰囲気中に1日間、2
日間、3日間放置した場合の各試料の酸化増量及
び酸化膜厚みで評価してある。 第2表、第3表より明らかなように、無めつき
試料は短期間の酸化試験で、磁石体合金の表面に
酸化被膜が生成し、時間の経過とともに酸化は内
部に進行して磁気特性が劣化しており、また、磁
気回路に組込まれた磁石体の酸化に伴なう酸化被
膜の増大は、磁気回路の空〓を益々狭くし、最終
的には前記空〓部は0となり、磁気回路の出力低
下、さらには作動困難を来たすが、この発明によ
る永久磁石体は、耐酸化性にすぐれており、磁気
回路等に組込んだ場合に出力特性の安定化及び信
頼性の向上にきわめて有効なことが分かる。
Industrial Application Field The present invention relates to a cylindrical permanent magnet whose main components are R (R is at least one of rare earth elements including Y), B, and Fe, and which has a magnetic difference in the radial direction of the cylinder. The present invention relates to a cylindrical radially anisotropic permanent magnet body that has anisotropy and has excellent magnetic properties, oxidation resistance, and strength. Conventional technology In general, permanent magnets used in motors are isotropic cylindrical magnets for low output, and anisotropic arcuate magnets assembled into a cylindrical shape for high output. To simplify the assembly process of high-power magnets, integrally molded cylindrical permanent magnets are MO・6Fe 2 O 3
(M; Sr, Ba, Pb) hard ferrite is proposed. In addition, with the recent demand for smaller size and higher efficiency of electrical and electronic equipment, there is also a demand for smaller and lighter motors. However, the use of hard ferrite, which has low magnetism, limits the ability to reduce the size and weight of motors, and the application of rare earth Co magnets, which have the best magnetic properties, is currently being considered. However, this rare earth Co magnet contains 50~60wt% Co.
In addition, it is very expensive because it uses Sm, which is not contained in rare earth ores.Although it is manufactured using the normal sintering method, the strength of the sintered body is weak.
Due to problems such as easy breakage after sintering, it is difficult to manufacture an integrally molded cylindrical radially anisotropic permanent magnet body, which further increases the price and makes it difficult to apply it to make motors smaller and lighter. It was hot. To solve this problem, a bonding method has been proposed in which magnet powder is bonded and solidified with a resin or metal binder. Furthermore, rare earth Co magnets range from R 1 Co 5 to R 2 Co 17
The system has high performance and is resource-saving, but even if the bond method is used, the main components are expensive Sm and Co, making it very expensive. Problems to be Solved by the Invention The present inventor previously developed Fe-B as a new high-performance permanent magnet that does not necessarily contain expensive Sm or Co.
-Fe-B-R system based on R ternary compound (R is at least one rare earth element including Y)
Permanent magnets were proposed (Japanese Patent Application No. 145072/1983, Patent Application No. 166663/1983, Patent Application No. 200204/1983, Patent Application No. 1983)
−5813). They also proposed a resin magnet obtained by kneading Fe-BR alloy powder and a binder (Japanese Patent Application No. 171909/1982). In this Fe-BR-based permanent magnet, R is Nd or
Using resource-rich light rare earths, mainly Pr,
It is an excellent permanent magnet that has Fe, B, and R as its main components and can obtain an extremely high energy product of 25 MGOe or more. In these systems, B is not used as a type of amorphous promoting element as conventionally known, but as an essential element for forming the Fe--B--R ternary compound. However, the Fe-B-R permanent magnet body, which has the above-mentioned excellent magnetic properties, contains rare earth elements and iron, which tend to oxidize in the air and gradually produce stable oxides, so it cannot be used in magnetic circuits. When incorporated, oxides generated on the magnet surface cause
This caused a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and there was also the problem of contamination of peripheral equipment due to shedding of surface oxide. The present invention provides an Fe-BR-based permanent magnet body that has excellent magnetic properties and can achieve miniaturization and weight reduction of the motor in an integrally molded cylindrical radially anisotropic permanent magnet body for such a motor. It is an object. Means for Solving the Problems The inventor conducted various studies to obtain a high-performance, compact, and lightweight magnetic circuit using this new permanent magnet, and found that the average particle size of sintered magnets was By filling the die molding space with magnet raw material powder of the desired composition of 0.5 to 50 μm, press-molding in a magnetic field while applying a magnetic field radially in the radial direction of the compact, then sintering, and further aging treatment.
Br 12kG or more, iHc 11kOe or more, (BH) max
It was discovered that a cylindrical radially anisotropic permanent magnet body having extremely excellent magnetic properties and strength of 35 MGOe or more and a bending strength of 25 Kg/mm 2 or more can be obtained. In addition, by coating the surface of the cylindrical radially anisotropic Fe-B-R permanent magnet with an oxidation-resistant plating layer, resin layer, or chemical conversion coating layer, a strong and stable oxidation-resistant coating layer can be obtained. It was discovered that the formation of oxides on the surface can be suppressed for a long period of time, and that excellent oxidation resistance and strength can be obtained, especially by providing a metal plating such as Ni to the required thickness. That is, this invention provides R (where R is at least one kind of rare earth elements including Y) from 12 atomic % to 20 atomic %.
atomic%, B4 atomic% ~ 24 atomic%, Fe65 atomic% ~ 82
This permanent magnet is characterized by having atomic percent as a main component, having magnetic anisotropy radially in the radial direction of the cylindrical magnet, and having its surface coated with an oxidation-resistant film layer. Function The reasons for limiting the composition of the permanent magnet body according to the present invention will be explained below. Rare earth element R used in the permanent magnet body of this invention
is a rare earth element that includes yttrium (Y) and includes light rare earths and heavy rare earths, and at least one of these, preferably light rare earths such as Nd and Pr, or a mixture with Nd, Pr, etc. Use. In addition, it is usually sufficient to have one type of R, but in practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as availability, Sm, Y, La, Ce, Gd etc. are other R, especially
It can be used as a mixture with Nd, Pr, etc. Note that this R may not be a pure rare earth element,
It may contain impurities that are unavoidable during production within an industrially available range. R is an essential element in the new above-mentioned permanent magnet body, and if it is less than 12 atomic %, the crystal structure becomes a cubic structure that is the same as α-iron, so high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 20 atomic%, R
The rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R should be in the range of 12 atomic % to 20 atomic %. Further, it is necessary that light rare earth metals account for 50% or more of R. Furthermore, replacing 1 to 30% of a part of R with one or more of the heavy rare earth elements Dy, Tb, Ho, Gd, Er, and Yb can improve the coercive force and the maximum energy product. B is an essential element in the new above-mentioned permanent magnet. If it is less than 4 at%, it will form a rhombohedral structure and a high coercive force (iHc) will not be obtained, and if it exceeds 24 at%, it will form a B-rich nonmagnetic phase. increases, and the residual magnetic flux density (Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 4 at.% to 24 at.%. Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 65 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 82 at%, high coercive force cannot be obtained. % to 82 atomic %. Further, in the permanent magnet body according to the present invention,
Substituting a portion of Fe with Co can improve the temperature characteristics of the resulting magnet without impairing its magnetic properties, but if the amount of Co substitution exceeds 50% of Fe,
On the contrary, it is not preferable because the magnetic properties deteriorate. Further, the permanent magnet according to the present invention has R, B,
In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B can be replaced with 4.0 atomic % or less of C,
At least one of P below 3.5 atom%, S below 2.5 atom%, Cu below 3.5 atom%, total amount 4.0
By substituting atomic percent or less, it is possible to improve the manufacturability and reduce the cost of permanent magnets. In addition, at least one of the following additional elements is
It is added to R-B-Fe permanent magnets because it is effective in improving coercive force, etc., improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets. Al less than 9.5 atom%, Ti less than 4.5 atom%, V less than 9.5 atom%, Cr less than 8.5 atom%, Mn less than 8.0 atom%, Bi less than 5 atom%, Nb less than 12.5 atom%, 10.5 Ta less than 9.5 atom%, Mo less than 9.5 atom%, W less than 9.5 atom%, Sb less than 2.5 atom%, Ge less than 7 atom%, Sn less than 3.5 atom%, Zr less than 5.5 atom%, 5.5 atom Permanent magnet It becomes possible to increase the coercive force of the body. In the R-B-Fe permanent magnet of this invention,
It is essential that the main crystal phase be tetragonal, which is particularly effective in obtaining fine and uniform alloy powder and producing a sintered permanent magnet having excellent magnetic properties. In addition, the alloy for permanent magnets of the present invention has a main phase of a compound having a tetragonal crystal structure with a grain size in the range of 1 to 100 μm, and in particular, the volume ratio is 1% to 50%.
Containing a non-magnetic phase (excluding non-magnetic intermetallic compounds and oxide phases) is essential for producing a bonded magnet with excellent magnetic properties. Oxidation-resistant film layer When the oxidation-resistant film layer in this invention is a plating layer, it is plated with a metal or alloy having oxidation resistance such as Ni, Cu, or Zn, or a composite plating thereof with a thickness of 25 μm or less. The plating method is electroless plating or electrolytic plating,
Alternatively, a method using the above-mentioned plating in combination may be used.
Further, the oxidation-resistant plating layer in the present invention has no effect on the magnetic properties of the permanent magnet. In addition, if the thickness of the oxidation-resistant plating layer exceeds 25 μm, the strength of the plating film will deteriorate, it will be difficult to obtain dimensional accuracy of the product, and the plating process will take a long time. However, since this is not preferable in terms of cost, the thickness of the plating layer must be 25 μm or less. For example, in the case of composite plating such as Cu base, Ni plating, Ni electroless plating base, Ni electrolytic plating, etc., the thickness is 5 μm to 15 μm, in the case of Ni plating and Cu plating, the thickness is 5 μm to 15 μm, and the Zn plating is In case of
A plated layer with a thickness of 5 μm to 15 μm is most preferable from the viewpoint of not only oxidation resistance but also strength and cost. In addition, when the oxidation-resistant coating layer is an oxidation-resistant resin layer,
With a layer thickness of 25 μm or less, the resin may be a synthetic resin for coatings such as epoxy resin, thermosetting acrylic resin, alkyd resin, melamine resin, silicone resin, or a composite resin of these resins. For the purpose of improving membrane reinforcement, the above resins contain rust-preventing pigments such as zinc oxide, zinc chromate, red lead, etc. in an amount of 80% or less based on the amount of resin, and if benzotriazole is included, it is The content may be 1% or less. In addition, in the case of an oxidation-resistant coating layer consisting of an oxidation-resistant chemical conversion coating, a phosphate coating such as zinc phosphate or manganese phosphate or a chromate coating is preferable, and the surface of these chemical conversion coatings is further coated with a paint or resin layer. Good too. In this invention, the thickness of the chemical conversion coating is preferably 3 μm to 10 μm in the case of a phosphate film, and 2 μm to 5 μm in the case of a chromate film. Examples Examples according to the present invention will be shown below to clarify its effects. As a starting material, electrolytic iron with a purity of 99.9%, B19.4
Feroboron alloy with a purity of 99.7% or more, with the remainder consisting of Fe and impurities such as Al, Si, and C.
These were radio-frequency melted using Nd and then cast into water-cooled molds. Thereafter, the ingot was coarsely ground with a stamp mill to a throughput of 35 meshes, and then ground with a ball mill for 3 hours to obtain a fine powder with a particle size of 3 to 10 μm. This fine powder was inserted into a mold, oriented in a magnetic field of 10 kOe, and heated at a pressure of 2 t/cm2.
It was molded into a cylindrical body with a height of 13 mm. The obtained compact was sintered at 1100°C for 1 hour in Ar, then allowed to cool, and further sintered in Ar.
A cylindrical radially anisotropic permanent magnet according to the present invention was produced by aging at 600°C for 2 hours. The component composition of the magnet at this time is 15Nd−8B−
It was 77Fe. Test pieces with dimensions of 13 mm x 8 mm x 6 mm were cut out from the obtained permanent magnet body, and each test piece was plated under the plating conditions shown in Table 1. The magnetic properties and oxidation resistance of each sample after plating were evaluated. , the adhesive strength was measured. The results are shown in Table 2. The oxidation resistance shown in Table 2 was evaluated based on the oxidation weight gain and oxide film thickness of the test piece when the test piece was left in an atmosphere of 60° C. and 90% humidity for 3 days.
Note that the oxide film thickness is expressed as the maximum thickness of the oxide film. In addition, the adhesive strength was determined by gluing the above-mentioned test piece after plating treatment to a holding plate with an adhesive called Araldite AW-106 (trade name), and then applying shear force to the test piece using an Amsler tester. The adhesive strength was measured. For comparison, Table 3 shows a non-plated sample with the same components as the example of the present invention as an oxidation test.
The oxidation weight gain and oxide film thickness of each sample after being left for 3 days were evaluated. As is clear from Tables 2 and 3, an oxide film was formed on the surface of the magnet alloy during the short-term oxidation test for the unplated sample, and as time progressed, the oxidation progressed internally, resulting in magnetic properties. In addition, as the oxide film increases due to oxidation of the magnet incorporated in the magnetic circuit, the space in the magnetic circuit becomes increasingly narrow, and eventually the space becomes 0. However, the permanent magnet according to the present invention has excellent oxidation resistance, and when incorporated into a magnetic circuit, it can stabilize output characteristics and improve reliability. It turns out that it is extremely effective.

【表】【table】

【表】【table】

【表】 発明の効果 この発明による円筒状ラジアル異方性永久磁石
体は、きわめてすぐれた磁気特性を有し、焼結磁
石であつても従来の希土類Co焼結磁石よりすぐ
れた強度を有しており、さらに所要組成からなる
Fe−B−R系円筒状永久磁石体表面に耐酸化め
つき層、樹脂層あるいは化成被膜層を被覆形成す
ることにより、強固かつ安定な耐酸化被膜層が得
られ該表面に生成する酸化物を長期間抑制でき、
特に所要厚みのNi等の金属めつきを設けるとす
ぐれた耐酸化性と強度が得られ、モーターの小形
化及び軽量化に最適な円筒状ラジアル異方性永久
磁石体である。
[Table] Effects of the Invention The cylindrical radially anisotropic permanent magnet body according to the present invention has extremely excellent magnetic properties, and even if it is a sintered magnet, it has superior strength to the conventional rare earth Co sintered magnet. and further consists of the required composition.
By coating the surface of the Fe-BR-based cylindrical permanent magnet with an oxidation-resistant plating layer, a resin layer, or a chemical conversion coating layer, a strong and stable oxidation-resistant coating layer can be obtained, and the oxides generated on the surface. can be suppressed for a long time,
In particular, when plated with metal such as Ni to the required thickness, excellent oxidation resistance and strength can be obtained, making this cylindrical radially anisotropic permanent magnet ideal for downsizing and reducing the weight of motors.

Claims (1)

【特許請求の範囲】[Claims] 1 R(但しRはYを含む希土類元素のうち少な
くとも1種)12原子%〜20原子%、B4原子%〜
24原子%、Fe65原子%〜82原子%を主成分とし、
円筒状磁石体の径方向に放射状に磁気異方性を有
し、表面に耐酸化被膜層を被覆したことを特徴と
する永久磁石体。
1 R (R is at least one rare earth element including Y) 12 atomic% to 20 atomic%, B4 atomic% to
The main components are 24 at%, Fe65 at% to 82 at%,
A permanent magnet body characterized by having magnetic anisotropy radially in the radial direction of the cylindrical magnet body and having an oxidation-resistant coating layer coated on the surface.
JP59009153A 1984-01-21 1984-01-21 Permanent magnet Granted JPS60153109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009153A JPS60153109A (en) 1984-01-21 1984-01-21 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009153A JPS60153109A (en) 1984-01-21 1984-01-21 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS60153109A JPS60153109A (en) 1985-08-12
JPH0422010B2 true JPH0422010B2 (en) 1992-04-15

Family

ID=11712669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009153A Granted JPS60153109A (en) 1984-01-21 1984-01-21 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS60153109A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252119A (en) * 1986-04-24 1987-11-02 Seiko Epson Corp Manufacture of radial anisotropic magnet
JPH02224208A (en) * 1986-04-24 1990-09-06 Seiko Epson Corp Manufacture of radial anisotropic magnet
DE3684714D1 (en) * 1986-06-27 1992-05-07 Namiki Precision Jewel Co Ltd METHOD FOR PRODUCING PERMANENT MAGNETS.
US4888506A (en) * 1987-07-09 1989-12-19 Hitachi Metals, Ltd. Voice coil-type linear motor
US4935080A (en) * 1988-01-29 1990-06-19 Kollmorgen Corporation Protection and bonding of neodymium-boron-iron magnets used in the formation of magnet assemblies
JPH01171578U (en) * 1988-05-20 1989-12-05
JPH0283905A (en) * 1988-09-20 1990-03-26 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet and manufacture thereof
JP2612494B2 (en) * 1989-06-09 1997-05-21 戸田工業株式会社 Manufacturing method of plastic magnet
JPH03173106A (en) * 1989-11-30 1991-07-26 Shin Etsu Chem Co Ltd Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH02229404A (en) * 1990-01-10 1990-09-12 Seiko Epson Corp Stepping motor
JP2521373B2 (en) * 1990-12-21 1996-08-07 川崎製鉄株式会社 Inspection device for cut plate test materials
DE102007005770A1 (en) * 2006-12-29 2008-07-03 Robert Bosch Gmbh Motor drive unit for disk wiping device of motor vehicle, has direct current motor with armature rotatably supported in pole housing and permanent magnets provided at housing wall, where magnets stay in reciprocal effect with armature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet

Also Published As

Publication number Publication date
JPS60153109A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
JPH0374012B2 (en)
JPH0422010B2 (en)
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JPH056322B2 (en)
JPH0348645B2 (en)
JPH0422007B2 (en)
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH053722B2 (en)
JPH0518895B2 (en)
JPH0422008B2 (en)
JPH0445573B2 (en)
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JPH066775B2 (en) Rare earth permanent magnet
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JP3208057B2 (en) Corrosion resistant permanent magnet
JP2779794B2 (en) Manufacturing method of rare earth permanent magnet
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH0467322B2 (en)
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPS6338555A (en) Magnet material containing rare earth element and having superior corrosion resistance
JPS6377104A (en) Rare-earth magnet excellent in corrosion resistance
JP2925840B2 (en) Fe-BR bonded magnet
JPH0633444B2 (en) Permanent magnet alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term