JPS62252119A - Manufacture of radial anisotropic magnet - Google Patents

Manufacture of radial anisotropic magnet

Info

Publication number
JPS62252119A
JPS62252119A JP9528286A JP9528286A JPS62252119A JP S62252119 A JPS62252119 A JP S62252119A JP 9528286 A JP9528286 A JP 9528286A JP 9528286 A JP9528286 A JP 9528286A JP S62252119 A JPS62252119 A JP S62252119A
Authority
JP
Japan
Prior art keywords
magnetic field
radial anisotropic
anisotropic magnet
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9528286A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Tatsuya Shimoda
達也 下田
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9528286A priority Critical patent/JPS62252119A/en
Publication of JPS62252119A publication Critical patent/JPS62252119A/en
Priority to JP2003205A priority patent/JPH02224208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the magnetic performance of a radial anisotropic magnet and to obtain a thick and long radial anisotropic permanent magnet by compression molding of magnetic powder by orienting it in a pulse magnetic field. CONSTITUTION:Magnetic powder in which its basic composition contains rare earth metal, iron and boron is filled in a cylindrical mold, is oriented in a pulse magnetic field in a radial direction, compression molded with a solenoid synchronously with the orientation to form a cylindrical molding, sintered in an argon gas atmosphere, and age-hardened at optimum temperature. Thus, it is highly oriented even in a low magnetic field to improve the magnetic performance of a radial anisotropic magnet, thereby performing a thick and long radial anisotropic magnet, and a larger pulse magnetic field than a DC magnetic field is obtained. Further, since a large apparatus, such as a hydraulic press is not needed, manufacturing steps and apparatus can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が希土類金属、鉄およびボロンから
なるラジアル異方性磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radially anisotropic magnet whose basic composition is a rare earth metal, iron and boron.

〔従来の技術〕[Conventional technology]

従来、ラジアル異方性永久磁石の圧縮成形の配向磁場と
しては、直流電源による静的な磁場が用いられていた。
Conventionally, a static magnetic field generated by a DC power source has been used as an orienting magnetic field for compression molding of radially anisotropic permanent magnets.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、直流電源による静的な磁場を用いるとす
ると、大きな磁場を得るためには大掛かシな電源や大規
模なコイルが必賛となり、さらには発熱・消費電力も冷
却水といったラシニングコスト等の関係から、成形高さ
が低いものや低配向のラジアル異方性永久磁石しか得ら
れないといつt問題点を有している。
However, if a static magnetic field from a DC power source is used, in order to obtain a large magnetic field, a large-scale power supply and large-scale coil are required, and furthermore, heat generation and power consumption are required, as well as cooling water and other lashing costs. Due to this relationship, there is a problem when only radial anisotropic permanent magnets with a low molding height or low orientation can be obtained.

本発明は以上の問題点を解決するもので、その目的とす
るところは製造工程および装置が簡便で、かつラジアル
異方性永久磁石の磁気性能な向上させ、厚肉、長尺のラ
ジアル異方性永久磁石を実現するラジアル異方性永久磁
石の製造方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to simplify the manufacturing process and equipment, improve the magnetic performance of radially anisotropic permanent magnets, and improve the magnetic performance of thick-walled and long radially anisotropic permanent magnets. An object of the present invention is to provide a method for manufacturing a radially anisotropic permanent magnet that realizes a radially anisotropic permanent magnet.

〔問題を解決するための手段〕[Means to solve the problem]

本発明のラジアル異方性永久磁石の製造方法は、パルス
磁場で配向して磁性粉末を圧縮成形することを特徴とす
る特 なお、基本組成が希土類金橘、鉄およびボロンからなる
希土類永久磁石としてはNd−Fe−a磁石が知られて
いるが、希土類金属としては、Y。
The method for manufacturing a radially anisotropic permanent magnet of the present invention is characterized in that magnetic powder is compressed and oriented in a pulsed magnetic field. Although Nd-Fe-a magnets are known as rare earth metals, Y.

La、 Co、 Pr、 Nd、 Pm、 Sm、 I
n、 Gd、 Tb。
La, Co, Pr, Nd, Pm, Sm, I
n, Gd, Tb.

Dy、Ho、Er、Trn、Yb&よびしUの希土類元
素のうちの1a!または2橿以上であれば艮く、ジジム
(Pr−Nd)やセリウム・ジジム(Ce−Pr −N
d)でも十分な磁気性能が得られ、供給面・価格面から
有第1」である。さらに、Dy−?Tb等の重布土頌元
素の少”艙添加により、保磁力IHcを増大させること
ができ、温度特性の実質的な改善が達成される。
1a of the rare earth elements Dy, Ho, Er, Trn, Yb & U! Or, if it is more than 2 rods, it will be rejected.
d) also provides sufficient magnetic performance, making it the best in terms of supply and price. Furthermore, Dy-? By adding a small amount of a heavy metal element such as Tb, the coercive force IHc can be increased and a substantial improvement in temperature characteristics can be achieved.

また、鉄の一部ケコバルトでe換することによりキュー
リ一温度の向上が計られ、残留磁化Brの温度係数も改
善され、他の4#金金属で置換しても磁気性能や耐食性
等が改善される。
In addition, by replacing some of the iron with kecobalt, the Curie temperature was improved, the temperature coefficient of residual magnetization Br was also improved, and magnetic performance and corrosion resistance were improved even when replacing with other 4# gold metals. be done.

〔実施例〕〔Example〕

以下、本発明について実施例に基づいて詳細に祝明する
Hereinafter, the present invention will be celebrated in detail based on examples.

(実施例−1) Nd+a F 677 Bg  の組成になるように高
周波溶解炉を用いアルゴンガス雰囲気中で溶解、鋳造し
た合金ラスタンプミル、ボールミルを用い磁性粉末とし
た◇ この磁性粉末を円筒状の型に充填させ、ラジアル方向に
パルス磁場を用い様々な磁場で磁場配向させ、それに同
期させてソレノイドを用いて圧縮成形し、円筒状成形体
を作成した。こrLをアルゴンガス雰囲気中で1000
〜1200℃の最J温度で焼結、400〜1000℃の
最適温度で時効を施し丸。
(Example-1) An alloy was melted and cast in an argon gas atmosphere using a high-frequency melting furnace to obtain a composition of Nd + a F 677 Bg. Magnetic powder was made using a rust stamp mill and a ball mill. ◇ This magnetic powder was made into a cylindrical shape. The mixture was filled into a mold, oriented in various magnetic fields using a pulsed magnetic field in the radial direction, and compression molded using a solenoid in synchronization with the magnetic field to create a cylindrical molded body. This rL was heated to 1,000 liters in an argon gas atmosphere.
Sintered at the maximum J temperature of ~1200℃ and aged at the optimum temperature of 400~1000℃.

また、比較例として、従来用いられてきたように、直流
磁場と油圧プレスにより円筒状成形体7作成し、本発明
と同様な方法を用い焼結、時効を施した。
Further, as a comparative example, a cylindrical molded body 7 was prepared using a DC magnetic field and a hydraulic press as conventionally used, and sintered and aged using the same method as in the present invention.

得られ九円筒状磁石を切り出し貼り合わせることによ’
)、axax 10g1のブロックを作成、BHトレー
サーを用い磁気測ボを行なつ之。WJ1図に配回磁場と
絡和磁化の関係を示した。
By cutting out and pasting together nine cylindrical magnets,
), create a block of axax 10g1, and perform magnetic measurement using a BH tracer. The WJ1 diagram shows the relationship between the magnetic field and the entanglement magnetization.

第1図から明らかなように、比較例と比べて、低い磁場
で、高い飽和磁化が、即ち高い配向度か得られているこ
とが分かる。
As is clear from FIG. 1, it can be seen that a high saturation magnetization, that is, a high degree of orientation, was obtained in a lower magnetic field than in the comparative example.

(実施例−2) Nd、、、うD)’+、a F 66? CG+。B6
となるように、実施例−1と同様な方法を用い、所定の
磁性粉末を作成し、この磁性粉末な外径20m++、内
径18喘の型に充填させ、パルス磁場でラジアル方向に
磁場配向させ、様々な成形高さの円筒状成形体を作成し
、焼結、時効を施した。
(Example-2) Nd,,,UD)'+,a F 66? CG+. B6
A predetermined magnetic powder was prepared using the same method as in Example 1, and this magnetic powder was filled into a mold with an outer diameter of 20 m++ and an inner diameter of 18 mm, and the magnetic powder was oriented in the radial direction using a pulsed magnetic field. , cylindrical molded bodies of various molding heights were created, sintered and aged.

ま九、比較例として、lf′a磁場と油圧プレスによシ
様々な成形高さの円筒状成形体を作成し、焼結、時効な
施した。
As a comparative example, cylindrical molded bodies of various molding heights were prepared using an lf'a magnetic field and a hydraulic press, and sintered and aged.

実施例−1と同様に磁化測定を行なった。第2図に成形
高さと飽和磁化の関係を示した。
Magnetization measurements were performed in the same manner as in Example-1. Figure 2 shows the relationship between molding height and saturation magnetization.

第2図から明らかなように、比較例と比べて、高い成形
高さで、篩い飽オロ磁化が、即ち高い配向度が侍られて
いることが分かる。つまり、従来に比べて長尺のラジア
ル異方性磁石が得られる訳である。
As is clear from FIG. 2, it can be seen that, compared to the comparative example, at a higher molding height, a sieve saturation magnetization, that is, a higher degree of orientation is observed. In other words, a longer radially anisotropic magnet can be obtained than in the past.

(実施例−3) (CsgP To、zNdqs D7o、t )+s 
F @eyc O+o Bgとなるように、実施例−1
と同様な方法を用い、所定の磁性粉末を作成し、この磁
性粉末を外径z G !II!l、内径を様々に変えた
型に充填させ、パルス磁場でラジアル方向に磁場配向さ
せ、成形高さの円筒状成形体を作成し、焼結、時効を施
した。
(Example-3) (CsgP To, zNdqs D7o, t )+s
Example-1 so that F @eyc O+o Bg
A predetermined magnetic powder is prepared using a method similar to the above, and the outer diameter of this magnetic powder is z G ! II! 1. Molds with various inner diameters were filled with the material, the magnetic field was oriented in the radial direction using a pulsed magnetic field, a cylindrical molded product with a molding height was created, and the material was sintered and aged.

また、比較例として、直流磁場と油圧プレスによシ様々
な内径の円筒状成形体を作成し、焼結、時効を施した。
In addition, as a comparative example, cylindrical molded bodies with various inner diameters were created using a DC magnetic field and a hydraulic press, and were sintered and aged.

実施例−1と同様に磁化測定を行なった。第5図に内径
と飽和磁化の関係を示した。
Magnetization measurements were performed in the same manner as in Example-1. Figure 5 shows the relationship between inner diameter and saturation magnetization.

$3図から明らかなように、比較例と比べて、小さな内
径で即ち大きな肉厚で、高い飽和磁化が、即ち高い配向
度が得られていることが分かる。つまり、従来に比べて
厚肉のラジアル異方性磁石が・痔られる訳である。
As is clear from Figure 3, it can be seen that a high saturation magnetization, that is, a high degree of orientation, is obtained with a small inner diameter, that is, a large wall thickness, compared to the comparative example. In other words, a radially anisotropic magnet with a thicker wall than the conventional one is used.

(実施例−4ン 実施例−5の磁性粉末を用い、パルス磁場でラジアル方
向に磁場配向させ、外径8請、内径6m。
(The magnetic powder of Example 4 and Example 5 was used and oriented in the radial direction with a pulsed magnetic field, with an outer diameter of 8 m and an inner diameter of 6 m.

商さσ珊の円筒状磁石を作成した。A cylindrical magnet of σ coral was created.

また、比較例として、直流磁場と油圧プレスにより同僚
の円筒状磁石を作成した。
As a comparative example, a colleague created a cylindrical magnet using a DC magnetic field and a hydraulic press.

この円筒状磁石をロータに組み込んでステンピングモー
タとし、本発明および比較例の5V、20Ω、4相、ユ
ニボー2,1枢動パルスレート・トルク特性図を第4図
に示す・ @4図から明らかなように、比較例と比べても、本発明
は大変間い特性を示している。
This cylindrical magnet is incorporated into the rotor to make a stamping motor, and the 5V, 20Ω, 4-phase, Unibo 2,1 pivoting pulse rate/torque characteristics diagram of the present invention and comparative example are shown in Figure 4. @From Figure 4 As is clear, the present invention exhibits very fast characteristics even when compared with the comparative example.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、基本組成が希土類
金属、鉄およびボロンからなる研性粉末をパルス磁場を
用いラジアル方向に配向し圧縮成形することにより、低
い磁場でも高い配向を示し、ラジアル異方性磁石の磁気
性能を向上させ、厚肉、長尺のラジアル異方性磁石を実
現し、かつパルス磁場は直流磁場に比べて大きな磁場が
得られ易く、刃口えて、油圧プレスのような大掛かりな
装置も必要なくなるので、製造工程および装置が簡便と
なり、さらにステンピングモータの尚出力化、小型化が
実現でき、応用面にも多大の効果を有するものである。
As described above, according to the present invention, abrasive powder whose basic composition is rare earth metal, iron, and boron is oriented in the radial direction using a pulsed magnetic field and compression molded, thereby exhibiting high orientation even in a low magnetic field. By improving the magnetic performance of radial anisotropic magnets, we have realized thick-walled and long radial anisotropic magnets, and the pulsed magnetic field makes it easier to obtain a larger magnetic field than the DC magnetic field. Since such a large-scale device is no longer necessary, the manufacturing process and device are simplified, and furthermore, the output of the stamping motor can be increased and the size of the stamping motor can be increased, which has great effects in terms of application.

【図面の簡単な説明】[Brief explanation of drawings]

wc1図は配向磁場と飽和磁化の関係図。 第2図は成形高さと飽和磁化の関係図。 第6図は内極と飽和磁化の関係図。 第4図はパルスレート・トルク特性図である・以上 第1誌 0   5    +o    15  20    
ユタ戒形高ぐ〔情調〕 第2図 ′    タ   /ρ    /r   !ρ内ぐセ
 〔、、戦〕 ρ   樽  勤  7Q  /ρy  /λQ八0へ
スし一μ CPPR)
The wc1 diagram is a diagram showing the relationship between the orientation magnetic field and the saturation magnetization. Figure 2 is a diagram showing the relationship between molding height and saturation magnetization. Figure 6 is a diagram showing the relationship between the inner pole and saturation magnetization. Figure 4 is a pulse rate/torque characteristic diagram.
Yuta Kaigata high [tempo] Fig. 2′ ta /ρ /r! ρ Uchiguse [,, war] ρ Taru Tsutomu 7Q /ρy /λQ80 Hesshi 1μ CPPR)

Claims (2)

【特許請求の範囲】[Claims] (1)基本組成が希土類金属、鉄およびボロンからなる
磁性粉末をパルス磁場を用いラジアル方向に配向し圧縮
成形することを特徴とするラジアル異方性磁石の製造方
法。
(1) A method for producing a radially anisotropic magnet, which comprises oriented magnetic powder in the radial direction using a pulsed magnetic field and compression molding the magnetic powder whose basic composition is a rare earth metal, iron, and boron.
(2)前記鉄の一部を、コバルトなどの鉄以外の遷移金
属群から選ばれた少なくとも1種以上の遷移金属群で置
換した特許請求の範囲第1項に記載のラジアル異方性磁
石の製造方法。
(2) The radial anisotropic magnet according to claim 1, wherein a part of the iron is replaced with at least one transition metal group selected from the transition metal group other than iron, such as cobalt. Production method.
JP9528286A 1986-04-24 1986-04-24 Manufacture of radial anisotropic magnet Pending JPS62252119A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9528286A JPS62252119A (en) 1986-04-24 1986-04-24 Manufacture of radial anisotropic magnet
JP2003205A JPH02224208A (en) 1986-04-24 1990-01-10 Manufacture of radial anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9528286A JPS62252119A (en) 1986-04-24 1986-04-24 Manufacture of radial anisotropic magnet

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003205A Division JPH02224208A (en) 1986-04-24 1990-01-10 Manufacture of radial anisotropic magnet
JP2003206A Division JPH02229404A (en) 1990-01-10 1990-01-10 Stepping motor

Publications (1)

Publication Number Publication Date
JPS62252119A true JPS62252119A (en) 1987-11-02

Family

ID=14133417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9528286A Pending JPS62252119A (en) 1986-04-24 1986-04-24 Manufacture of radial anisotropic magnet

Country Status (1)

Country Link
JP (1) JPS62252119A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115319A (en) * 1979-02-27 1980-09-05 Inoue Japax Res Inc Manufacturing method of rubber magnet
JPS5674907A (en) * 1979-11-24 1981-06-20 Tdk Corp Manufacturing process of permanent magnet magnetized in radial direction
JPS58200518A (en) * 1982-05-18 1983-11-22 Mitsubishi Metal Corp Formation of magnetic field of powder
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS60153109A (en) * 1984-01-21 1985-08-12 Sumitomo Special Metals Co Ltd Permanent magnet
JPS61154118A (en) * 1984-12-27 1986-07-12 Tdk Corp Molding method in magnetic field of rare earth magnet and device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115319A (en) * 1979-02-27 1980-09-05 Inoue Japax Res Inc Manufacturing method of rubber magnet
JPS5674907A (en) * 1979-11-24 1981-06-20 Tdk Corp Manufacturing process of permanent magnet magnetized in radial direction
JPS58200518A (en) * 1982-05-18 1983-11-22 Mitsubishi Metal Corp Formation of magnetic field of powder
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS60153109A (en) * 1984-01-21 1985-08-12 Sumitomo Special Metals Co Ltd Permanent magnet
JPS61154118A (en) * 1984-12-27 1986-07-12 Tdk Corp Molding method in magnetic field of rare earth magnet and device thereof

Similar Documents

Publication Publication Date Title
US4131495A (en) Permanent-magnet alloy
Hinz et al. Near net shape production of radially oriented NdFeB ring magnets by backward extrusion
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
JPH02139907A (en) Manufacture of pole anisotropic rare earth magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
JPS62252119A (en) Manufacture of radial anisotropic magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPH02125402A (en) Magnetic powder and manufacture thereof
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPS62264609A (en) Manufacture of cylindrical rare-earth magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JP2006019386A (en) Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH0552045B2 (en)
JPS6088418A (en) Manufacture of cylindrical permanent magnet
JPH02102504A (en) Manufacture of rare earth-iron-boron anisotropic magnet powder
JPH01171217A (en) Manufacture of cylindrical rare earth-fe-b magnet
JPH02224208A (en) Manufacture of radial anisotropic magnet
JPH02229404A (en) Stepping motor
JPS62262404A (en) Manufacture of rare earth-iron permanent magnet
JPS62269307A (en) Manufacture of radial anisotropic magnet
JPS62224915A (en) Manufacture of rare-earth magnet