JPS58200518A - Formation of magnetic field of powder - Google Patents

Formation of magnetic field of powder

Info

Publication number
JPS58200518A
JPS58200518A JP8357082A JP8357082A JPS58200518A JP S58200518 A JPS58200518 A JP S58200518A JP 8357082 A JP8357082 A JP 8357082A JP 8357082 A JP8357082 A JP 8357082A JP S58200518 A JPS58200518 A JP S58200518A
Authority
JP
Japan
Prior art keywords
magnetic field
powder
punch
pressing direction
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8357082A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamaguchi
哲郎 山口
Akira Mochizuki
晃 望月
Masafumi Kawaguchi
雅史 川口
Toru Tsurumaki
弦巻 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8357082A priority Critical patent/JPS58200518A/en
Publication of JPS58200518A publication Critical patent/JPS58200518A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To realize magnetization of multiple poles at the external circumference, set a magnetic field molding speed to about 5sec, improve the optimum magnetic field orientation rate and enhance production efficiency by generating magnetic field oriented vertically to the pressing direction by a pulse current and by forming pulse magnetic field through the orientation of magnetic field. CONSTITUTION:A magnetic field perpendicular to the pressing direction is formed at the die portion of punch by winding a magnetic field generation coil at the circumference of die of punch so that magnetic flux is generated in vertical to the pressing direction or by winding a coil to the yoke oriented to the vertical direction to the pressing direction, the timing of generating magnetic field is interlocked with movement of punch, and disturbance of orientation is minimized at the time of pressing powder material. Here, if the height of molding is (b), distance between upper punch and lower punch at the time of molding is (a), height of powder charged to the die set is (c), the desirable timing of generating pulse magnetic field should be in the following relation; 1.3<=a/b<=c/b.

Description

【発明の詳細な説明】 この発明は、プレス方向に対して垂直方向に磁場配向さ
せて成形する粉末の磁場成形法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for magnetic field molding of powder, in which powder is molded by magnetic field orientation perpendicular to the pressing direction.

一般に、焼結磁石を製造する場合、磁性原料粉末を磁場
中でプレス成形することにより磁気異方性を付与して、
磁気特性のすぐれた永久磁石を製造することは良く知ら
れていることであるが、従来、このような磁場成形は、
プレス機を用い、直流電源により空芯コイルに持続電流
を流すことで磁場を発生させ、この磁場中で成形を行々
うという方法がとられている。この場合、通常、磁場の
配向はプレス方向と一致することとなり、したかつて、
例えば磁場成形を適用したリング状磁石はリングの中心
軸方向に磁気異方性を有することとなる。
Generally, when manufacturing sintered magnets, magnetic raw material powder is press-molded in a magnetic field to impart magnetic anisotropy.
It is well known that permanent magnets with excellent magnetic properties can be manufactured, but conventionally, such magnetic field forming
A method is used in which a press machine is used to generate a magnetic field by passing a sustained current through an air-core coil using a DC power supply, and molding is performed in this magnetic field. In this case, the orientation of the magnetic field will usually coincide with the pressing direction, and once
For example, a ring-shaped magnet to which magnetic field shaping is applied has magnetic anisotropy in the direction of the center axis of the ring.

ところが、近年、コアレスモータやステノブモ−タに用
いるリング状永久磁石に、その中心軸に対して垂直方向
で、かつラジアル方向(以下、単に「ラジアル方向」と
いう)の磁気異方性を付与することによって、これらの
モータの性能がより向上するとの報告がなされ、このた
めに、ラジアル方向に磁気異方性を有する焼結永久磁石
の製造が種々試みられている。
However, in recent years, efforts have been made to impart magnetic anisotropy in the direction perpendicular to the central axis and in the radial direction (hereinafter simply referred to as the "radial direction") to ring-shaped permanent magnets used in coreless motors and steno knob motors. It has been reported that the performance of these motors is further improved by the above methods, and for this reason, various attempts have been made to manufacture sintered permanent magnets having magnetic anisotropy in the radial direction.

これら、従来のラジアル方向に磁気異方性を有する焼結
永久磁石の製造法の代表的なものとして、金型の両側に
通常の電磁石をセットし、粉末のプレス方向に対して垂
直方向に磁場配向させる方法があるが、こトの場合、通
常の電磁石では巻線の数が多いのでその嵩も大きく、ダ
イテーブル面以下に電磁石全体を下げることは困難で、
リング状永久磁石のラジアル方向極数が2極のものを製
造するのがせいぜいであった。また、上・下パンチにコ
イルを巻き、パンチ端面匹両極磁場を発生させながら上
下にプレスし、同極の洩れ磁束方向、すなわち、ラジア
ル方向に磁場配向さ・せる方法もとられている。
As a typical manufacturing method for these conventional sintered permanent magnets with magnetic anisotropy in the radial direction, ordinary electromagnets are set on both sides of the mold, and a magnetic field is applied perpendicularly to the direction in which the powder is pressed. There is a method to orient the wires, but in this case, a normal electromagnet has a large number of windings and is bulky, so it is difficult to lower the entire electromagnet below the die table surface.
At most, a ring-shaped permanent magnet with two poles in the radial direction was manufactured. Another method is to wind coils around the upper and lower punches and press them up and down while generating bipolar magnetic fields on the end faces of the punches, so that the magnetic fields are oriented in the direction of leakage magnetic flux of the same polarity, that is, in the radial direction.

しかしながら、前述のコアレスモータやステップモニタ
に組込まれるリング状永久磁石のラジアル方向の極数は
、できれば4以上の多極にした方がこれらのモータの性
能を一段と向上せしめ得ることがその後の研究によって
明らかとなっており、また前記従来法の後者の方法では
高い配向率が得゛られす、これらのことを考慮すれば、
未だ満足すべき焼結永久磁石の製造法が見つかっていな
いのが現状である。
However, subsequent research has shown that the performance of these motors can be further improved by increasing the number of radial poles of the ring-shaped permanent magnets incorporated into the coreless motors and step monitors mentioned above to four or more if possible. It is clear that the latter method of the conventional method achieves a high orientation rate. Taking these into account,
At present, a satisfactory method for manufacturing sintered permanent magnets has not yet been found.

本発明者等は、上述のような観点から、粉末を原料とす
る永久磁石の製造工程における磁場成形において、プレ
ス方向に数多くの極数で磁場配向できる方法を見出すべ
く研究を行なった結果、■ パルス電流で磁場を発生さ
せる場合には、コイルに瞬時に大きい電流が流れるので
、同一磁束密度を得る場合にコイルの巻数を少なくして
も良く、磁場発生コイルや電磁石を小型化することが可
能となること、 ■ したがって、パルス電流でプレス方向に対し垂直方
向に配向した磁場を発生させる場合は、小型化し得た電
磁石がダイテーブル面よυ下に収まり金型の外周部に組
込めるので、プレス方向に対して垂直の方向に磁場を発
生させる回路をとることが可能となり、しかも電磁石を
小型化した分だけ多くの電磁石を設置できることから、
その電磁石が置けるだけの極数に磁場配向させることが
可能であること、 ■ 従来の直流電流による直流磁場に対し、パルス電流
によって磁場を発生させた場合は、プレスサイクルを非
常に速くでき、磁場成形の際に一般に採用されている油
圧プレスによる成形よりも成形速度の速いプレスを採用
することが可能であること、 以上■〜■に示す如き知見を得るに至ったのである。
From the above-mentioned viewpoint, the present inventors conducted research to find a method that allows magnetic field orientation with a large number of poles in the pressing direction in magnetic field forming in the manufacturing process of permanent magnets using powder as a raw material. When generating a magnetic field with a pulsed current, a large current instantly flows through the coil, so the number of turns in the coil can be reduced to obtain the same magnetic flux density, making it possible to downsize the magnetic field generating coil and electromagnet. ■ Therefore, when generating a magnetic field oriented perpendicular to the press direction using a pulsed current, the electromagnet can be made smaller and fit below the die table surface, allowing it to be incorporated into the outer periphery of the mold. It is now possible to create a circuit that generates a magnetic field in a direction perpendicular to the pressing direction, and more electromagnets can be installed as the size of the electromagnets has been reduced.
It is possible to orient the magnetic field to the number of poles that the electromagnet can be placed in. ■ In contrast to the conventional DC magnetic field generated by DC current, if the magnetic field is generated by pulsed current, the press cycle can be made very fast, and the magnetic field We have come to the knowledge shown in (1) to (3) above that it is possible to employ a press that has a faster molding speed than the generally used hydraulic press for molding.

このような知見を得るにあたって、本発明者等は、金型
のダイ外周部に磁場発生コイルをプレス方向と垂直方向
に磁束がでるように巻いたシ、プレス方向に垂直方向に
向けられたヨークに巻いたりして、プレス方向と垂直方
向の磁場を金型のダイの部分に形成するとともに、磁場
発生のタイミングをパンチの動きと連動させ、かつ、粉
末原料がプレス成形される際、配向性の乱れを最小限に
防ぐことのできる着磁タイミングを詳細に検討したこと
はいうまでもないことである。
In order to obtain this knowledge, the present inventors wound a magnetic field generating coil around the die periphery of the mold so that the magnetic flux was generated perpendicular to the pressing direction, and created a yoke oriented perpendicular to the pressing direction. A magnetic field perpendicular to the pressing direction is created in the die part of the mold, and the timing of the magnetic field generation is linked to the movement of the punch, and when the powder raw material is press-molded, the orientation Needless to say, we have carefully considered the magnetization timing that can minimize the disturbance of the magnetic field.

第1図に、従来の磁場成形のカム線図〔第1図(a)〕
と、パルス状磁場を利用した磁場成形のカム線図〔第1
図(b)〕を、着磁磁場および脱磁磁場のタイミングと
一諸に例示した。第1図からも明らかなように、パルス
状磁場を利用したものの方が、従来のものに比して、プ
レスサイクルが非常に速くなるのである。
Figure 1 shows a cam diagram of conventional magnetic field forming [Figure 1 (a)]
and cam diagram of magnetic field shaping using pulsed magnetic field [1st
Figure (b)] is illustrated together with the timing of the magnetizing magnetic field and the demagnetizing magnetic field. As is clear from FIG. 1, the press cycle using a pulsed magnetic field is much faster than the conventional press.

したがって、この発明は、種々の研究から見出された上
記知見にもとづいてなされたもので、プレス機を用いた
粉末の磁場成形法において、パルス電流によりプレス方
向に対し垂直に配向した磁場を発生させ、このパルス状
磁場によって磁場配向させて成形することにより、ラジ
アル方向の磁気異方性を有する成形品を高速度で製造し
得るようにしたことに特徴を有するものである。
Therefore, this invention was made based on the above-mentioned knowledge found from various studies, and in a magnetic field compaction method of powder using a press machine, a magnetic field oriented perpendicular to the pressing direction is generated by a pulsed current. The present invention is characterized in that a molded article having radial magnetic anisotropy can be manufactured at high speed by magnetically oriented and molded using this pulsed magnetic field.

なお、この発明におけるプレス機としては、油圧プレス
だけでなく、機械プレスやロータリープレス等も対象と
することができ、また、パルス電流は、例えば、コンデ
ンサーに電荷を貯めて放出したり、ロータリープレスに
おいて電極の接触時間を短かくすること等によっても発
生でき、その他、公知の種々の方法が採用できるのはも
ちろんのことである。
Note that the press machine in this invention is not only a hydraulic press, but also a mechanical press, a rotary press, etc., and the pulse current can be used, for example, by storing charge in a capacitor and releasing it, or by a rotary press. It goes without saying that this can also occur by shortening the contact time of the electrodes, and various other known methods can also be adopted.

そして、磁場?発生のための電磁石は、前述のように、
金型にコイルを巻いた形でも、ヨークにコイルを巻いた
形でも、いずれでも採用が可能である。
And the magnetic field? The electromagnet for generation is, as mentioned above,
Either a coil wrapped around a mold or a coil wrapped around a yoke can be used.

第2図は、成形体の高さをbとし、成形する際の上パン
チから下パンチまでの距離をaとした場合の、a / 
bの比に対す゛る結晶の配向率をX線回折から求めて示
したものである。
Figure 2 shows the height of the molded body as b, and the distance from the upper punch to the lower punch during molding as a.
The crystal orientation ratio relative to the ratio of b is determined from X-ray diffraction.

成形体が磁石として使用さ訃るための特性を得るために
は、配向率は80%以上が望ましいものであるが、第2
図からも明らかなように、a / bが1.3よりも小
さいと、粉末原料が磁場によって配向する前に成形され
てしまい、その配向性は80%゛を割り磁気特性は著し
く低下する。また、a / bがc/b(但し、Cはダ
イセットにチャージされた粉末の高さ)を越えると、配
向車上はとんど変らないが、パルス磁場がかかった際に
ダイからの粉漏れ等が増え、原料損失となって実用的で
ない。すなわち、上パンチがダイの中に入る前に磁場が
作用すると、粉がダイから溢れるのである。
In order to obtain properties for the molded body to be used as a magnet, it is desirable that the orientation rate is 80% or more.
As is clear from the figure, when a/b is smaller than 1.3, the powder raw material is molded before being oriented by the magnetic field, and the orientation is less than 80% and the magnetic properties are significantly degraded. In addition, when a/b exceeds c/b (where C is the height of the powder charged in the die set), the orientation wheel will not change much, but when a pulsed magnetic field is applied, the amount from the die will change. This is not practical as powder leakage, etc. increases, resulting in loss of raw materials. That is, if the magnetic field is applied before the upper punch enters the die, the powder will overflow from the die.

このようなことから8、この発明の磁場成形法において
は、パルス磁場発生のタイミングを、13≦a / b
≦c / b とすることが望ましく、あるいは、さらに、1.3≦a
 / b≦3.0 とするのがより好ましい。なぜなら、a / bが3、
Oを越えるようになると、パルス磁場がかかつてから成
形されるまでのパンチの動く距離が長い、111: ため、一度配向した粉は崩されて成形されることとなり
、配向率が80%を割る恐れがあるためである。
For this reason8, in the magnetic field shaping method of the present invention, the timing of pulse magnetic field generation is set to 13≦a/b.
It is desirable that ≦c/b, or furthermore, 1.3≦a
/b≦3.0 is more preferable. Because a/b is 3,
When the value exceeds 0, the distance the punch moves from when the pulsed magnetic field is applied to when the powder is formed is long. Therefore, once oriented, the powder is broken and formed, and the orientation ratio drops below 80%. This is because there is fear.

また、この発、明の方法において、パルス状磁場を直流
磁場に9重畳させて使用しても好成績を収めることがで
きる。
Furthermore, in the method of the present invention, good results can be achieved even when a pulsed magnetic field is used with nine superimposed pulsed magnetic fields on a DC magnetic field.

つぎに、この発明の方法を実施例によシ比較例と対比し
ながら説明する。
Next, the method of the present invention will be explained by comparing examples and comparative examples.

実施例 l BaO・6Fe203の組成を有する原料を1μの平均
粒径に粉砕し、金型の外周部4極にヨークを取付け、各
。ヨークに中空銅パイプ(外径:3龍、内径:1mm)
のものを5ターン巻き、5 KOeの磁場を発生させた
。a/b=1.3の磁場タイミングで171000秒発
生させる磁場条件にて、これを直径13mm、内径9m
m+ 厚さ4uの形状に成形した゛。
Example 1 A raw material having a composition of BaO.6Fe203 was pulverized to an average particle size of 1μ, and a yoke was attached to four poles on the outer periphery of a mold. Hollow copper pipe in yoke (outer diameter: 3 dragons, inner diameter: 1mm)
A magnetic field of 5 KOe was generated by winding it with 5 turns. Under the magnetic field condition of generating for 171000 seconds with magnetic field timing of a/b = 1.3, this was made into a diameter of 13 mm and an inner diameter of 9 m.
m+ It was molded into a shape with a thickness of 4u.

このときの成形速度は5sec/サイクルであった。こ
の結果得られた成形体の配向率は82係であった。
The molding speed at this time was 5 sec/cycle. The resulting molded body had an orientation ratio of 82.

この成形体を、1150℃で1時間焼結し、外周4極の
着磁を8KGのパルス磁場で行ない、各方向を切り出し
て磁気特性を測定したところ、Br:3200 ()、
)lc: 18000e、 BHmax: 2.6MG
Oeを示した。
This molded body was sintered at 1150°C for 1 hour, the outer 4 poles were magnetized with an 8KG pulsed magnetic field, and each direction was cut out and the magnetic properties were measured. Br: 3200 (),
)lc: 18000e, BHmax: 2.6MG
It showed Oe.

一方、従゛来の直流電源を用いた磁場成形′法によって
、上・下パンチにコイルを巻くことで′対向する磁極を
発生させたプレス装置を用い、上記組成の原料粉末を4
0秒間で成形した。なお、この結果得られた成形体の配
向率は65%であった。
On the other hand, using a press machine that generates opposing magnetic poles by winding coils around the upper and lower punches using the conventional magnetic field forming method using a DC power source, the raw material powder of the above composition was
It was molded in 0 seconds. Note that the orientation rate of the molded body obtained as a result was 65%.

この成形体を焼結して得られた焼結体を、外周4極着磁
し、各種を切り出して磁気特性を測定したところ、Br
: 2700.Hc: 1500.BH+aax: 1
.8 M()Oeを示した。
The sintered body obtained by sintering this compact was magnetized with four poles on the outer periphery, and various pieces were cut out and their magnetic properties were measured.
: 2700. Hc: 1500. BH+aax: 1
.. It showed 8 M()Oe.

これらの結果から、この発明の方法は、プレス方向に対
し垂直方向に、磁場を発生しながら外周2極以上の極性
を出せるようにできるばかりでなく、生産性が格段に良
いにもかかわらず得られた磁石が従来法によるものより
すぐれた特性を有していることがわかる。
From these results, the method of the present invention not only makes it possible to generate two or more outer polarities while generating a magnetic field in the direction perpendicular to the pressing direction, but also achieves much better productivity. It can be seen that the produced magnet has better properties than those produced by the conventional method.

実施例 2 Sm (C0o6y cuo、l Feo、21’5 
zro、o15 ) 7.25組成の原料を4μの平均
粒径に粉砕し、原料粉末とした。
Example 2 Sm (C0o6y cuo, l Feo, 21'5
zro, o15) A raw material having a composition of 7.25 was ground to an average particle size of 4μ to obtain a raw material powder.

この原料粉末を、直径13m、、厚さ25m、の形状に
成形できる金型で、磁場タイミングa / b = 2
 。
Using a mold that can mold this raw material powder into a shape with a diameter of 13 m and a thickness of 25 m, magnetic field timing a / b = 2
.

着磁時間17100秒、外周4極(プレス方向に垂直の
磁場発生)の磁場を発生させる金型印加磁場: 8 K
Oe、成形速度10 sec/サイクルの条件で成形し
た。この成形体は91%の配向率を有したが、これを真
空中にて1230℃で1時間焼結した後、不活性ガス中
で急冷した。この焼結体に、800〜400℃まで24
時間の連続冷却の熱処理を施した。
Magnetization time: 17,100 seconds, magnetic field applied to the mold to generate a magnetic field with four outer circumferential poles (magnetic field generated perpendicular to the pressing direction): 8 K
Molding was performed under the conditions of Oe and molding speed of 10 sec/cycle. This compact, which had an orientation rate of 91%, was sintered in vacuum at 1230° C. for 1 hour and then rapidly cooled in an inert gas. This sintered body is heated at 24°C to 800-400℃
Heat treatment was performed with continuous cooling for hours.

このようにして得られた焼結体の磁気特性を測定したと
ころ、 Brが99000.Hcが40000e。
When the magnetic properties of the sintered body thus obtained were measured, the Br was 99,000. Hc is 40000e.

Bl−imaxが24.’5 M()Oeの値を示した
Bl-imax is 24. '5 M()Oe value is shown.

実施例 3 5mCo5組成におけるSmが36.5重量係の原料を
4μの平均粒径にまで不活性ガス中で粉砕して原料粉末
とした。この原料粉末を、500個/分の成形速度をも
つ通常のロータリープレスで成形した。成形にあたって
は、直径13朋;厚み21111に成形できる金型をセ
ットし、a/b−2,5の条件になるような接点位置を
ロータリーに合わせ、金型の接点を通して200OAの
電流を171000秒間流して、外周6極に磁場を発生
させ、1OKOeの磁場を付与した。この結果得られた
成形体は88%の配向率を有するものであった。
Example 3 A raw material having a Sm of 36.5% by weight in a 5mCo5 composition was pulverized in an inert gas to an average particle size of 4μ to obtain a raw material powder. This raw material powder was molded using a normal rotary press having a molding speed of 500 pieces/min. For molding, a mold that can be molded to a diameter of 13 mm and a thickness of 21111 mm is set, the contact positions are adjusted to the rotary to meet the conditions of a/b-2, 5, and a current of 200 OA is applied for 171,000 seconds through the contacts of the mold. A magnetic field was generated at six poles on the outer periphery, and a magnetic field of 1 OKOe was applied. The resulting molded product had an orientation rate of 88%.

ついで、この粉末成形体を、不活性雰囲気中で9焼結し
、得られた焼結体の磁気特性を測定したところ、Brが
8300C)、Haが’i’ 5000e、  BHm
axが1 ’7.2 MGOeのすぐれた値を示した。
Next, this powder compact was sintered in an inert atmosphere for 9 days, and the magnetic properties of the obtained sintered body were measured, and it was found that Br was 8300C), Ha was 'i' 5000e, and BHm.
ax showed an excellent value of 1'7.2 MGOe.

上述のように、この発明によれば、プレス方向に垂直に
磁場を発生させることができ、外周多極の着磁が可能と
なり、生産性が上ったばかりでなく、従来の磁場成形速
度が1サイクル40秒程度であったものを5秒程度とす
ることができ、そのときの最適磁場配向率も8らチリ上
の良好な結果が得られ、粉末成形磁石の生産能率を大幅
に向上することができるなど工業上有用な効果がもたら
されるのである。
As described above, according to the present invention, it is possible to generate a magnetic field perpendicular to the pressing direction, making it possible to magnetize multiple poles on the outer periphery, which not only increases productivity but also reduces the conventional magnetic field forming speed to 1. The cycle time, which used to be about 40 seconds, can be reduced to about 5 seconds, and the optimum magnetic field orientation rate at that time is 8, which yields better results and greatly improves the production efficiency of powder molded magnets. This brings about industrially useful effects such as the ability to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粉末の磁場成形のカム線図であり、第1図(a
)は従来法、第1図(b)は本発明方法を示し、第2図
はa / bの値に対する結晶の配向率を示した線図で
ある。 出願人  三菱金属株式会社 代理人  富  1) 和  夫 8 条 1 (a) 05ec (b)  sec
Figure 1 is a cam diagram of magnetic field compaction of powder, and Figure 1 (a
) shows the conventional method, FIG. 1(b) shows the method of the present invention, and FIG. 2 is a diagram showing the crystal orientation rate with respect to the value of a/b. Applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo Article 8 1 (a) 05ec (b) sec

Claims (1)

【特許請求の範囲】 (1)  粉末の磁場成形法において、パルス電流によ
りプレス方向に対し垂直に配向した磁場を発生させ、こ
のパルス状磁場によって磁場配向させて成形することを
特徴とする粉末の磁場成形法。 (2、特許請求の範囲第1項記載の方法において、下パ
ンチから上パンチまでの距離(a)と、成形体の高さく
b)と、ダイセットにチャージされた粉末の高さくC)
との関係が 13≦a / b≦c / b を満たす条件下で磁場を発生させることを特徴とする粉
末の磁場成形法。 (3)特許請求の範囲第2項記載の方法において、13
≦a / b≦3.0 を満たす条件下で磁場を発生させることを特徴とする粉
末の磁場成形法。
[Claims] (1) In the magnetic field compaction method of powder, a magnetic field oriented perpendicularly to the pressing direction is generated by a pulsed current, and the powder is shaped by being oriented by the pulsed magnetic field. Magnetic field forming method. (2. In the method described in claim 1, the distance from the lower punch to the upper punch (a), the height of the molded body b), and the height of the powder charged in the die set C)
A method for magnetic field compaction of powder, characterized in that a magnetic field is generated under conditions where the relationship 13≦a/b≦c/b is satisfied. (3) In the method according to claim 2, 13
A method for magnetic field compaction of powder, characterized in that a magnetic field is generated under conditions satisfying ≦a/b≦3.0.
JP8357082A 1982-05-18 1982-05-18 Formation of magnetic field of powder Pending JPS58200518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8357082A JPS58200518A (en) 1982-05-18 1982-05-18 Formation of magnetic field of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8357082A JPS58200518A (en) 1982-05-18 1982-05-18 Formation of magnetic field of powder

Publications (1)

Publication Number Publication Date
JPS58200518A true JPS58200518A (en) 1983-11-22

Family

ID=13806167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8357082A Pending JPS58200518A (en) 1982-05-18 1982-05-18 Formation of magnetic field of powder

Country Status (1)

Country Link
JP (1) JPS58200518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224916A (en) * 1986-03-27 1987-10-02 Seiko Epson Corp Manufacture of rare-earth magnet
JPS62252119A (en) * 1986-04-24 1987-11-02 Seiko Epson Corp Manufacture of radial anisotropic magnet
JPS62269307A (en) * 1986-05-19 1987-11-21 Seiko Epson Corp Manufacture of radial anisotropic magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588998A (en) * 1978-12-28 1980-07-05 Inoue Japax Res Inc Magnetic press machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588998A (en) * 1978-12-28 1980-07-05 Inoue Japax Res Inc Magnetic press machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224916A (en) * 1986-03-27 1987-10-02 Seiko Epson Corp Manufacture of rare-earth magnet
JPS62252119A (en) * 1986-04-24 1987-11-02 Seiko Epson Corp Manufacture of radial anisotropic magnet
JPS62269307A (en) * 1986-05-19 1987-11-21 Seiko Epson Corp Manufacture of radial anisotropic magnet

Similar Documents

Publication Publication Date Title
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
US7740714B2 (en) Method for preparing radially anisotropic magnet
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
WO2012090841A1 (en) Arc-shaped magnet having polar-anisotropy orientation, method of manufacturing for same, and die for manufacturing same
JPH02139907A (en) Manufacture of pole anisotropic rare earth magnet
JPS58200518A (en) Formation of magnetic field of powder
JP2004111944A (en) Radial anisotropic ring magnet and manufacturing method of the same
JPS5815929B2 (en) Manufacturing method of radially magnetized permanent magnet
JPS58200517A (en) Formation magnetic field of powder
JPS63110605A (en) Method and apparatus for manufacturing magnet
JPS60221550A (en) Rare earth permanent magnet
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JP3719782B2 (en) Manufacturing method of surface multipolar anisotropic ring magnet
JPH04112504A (en) Manufacture of pare-earth magnet
KR20070023644A (en) Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet
JPH08130143A (en) Anisotropic bonded magnet and manufacturing method
JP2638995B2 (en) Permanent magnet structure
JPH0243325B2 (en)
JPH0353445Y2 (en)
JPH0578166B2 (en)
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPS61241905A (en) Manufacture of anisotropic permanent magnet
JPH06302427A (en) Cylindrical anisotropic magnet
JPS63310356A (en) Cylindrical permanent magnet