JPS6221206A - Manufacture of ring-shaped multipolar magnet - Google Patents

Manufacture of ring-shaped multipolar magnet

Info

Publication number
JPS6221206A
JPS6221206A JP16018085A JP16018085A JPS6221206A JP S6221206 A JPS6221206 A JP S6221206A JP 16018085 A JP16018085 A JP 16018085A JP 16018085 A JP16018085 A JP 16018085A JP S6221206 A JPS6221206 A JP S6221206A
Authority
JP
Japan
Prior art keywords
ring
magnetic
shaped
magnet
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16018085A
Other languages
Japanese (ja)
Other versions
JPH0638377B2 (en
Inventor
Tsuneteru Takahashi
高橋 常照
Yoji Arita
陽二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Kasei Corp filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP16018085A priority Critical patent/JPH0638377B2/en
Publication of JPS6221206A publication Critical patent/JPS6221206A/en
Publication of JPH0638377B2 publication Critical patent/JPH0638377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized annular multipolar magnet having large surface magnetic force by a method wherein a composition for a magnet is solidified by orienting magnetic powder in circumferential direction under an annular magnetic field, and a multipolar magnet is formed on the inner or outer circumference of said composition. CONSTITUTION:The composition consisting of magnetic powder and a binder is filled up in the annular cavity 15 formed by the outer mold 11 and the inner mold 12. An annular magnetic field is formed by applying a large DC current or a pulse to a conductor 13 and the magnetic powder is oriented in circumferential direction. Then, the magnetized pole 19 consisting of a magnetic material 19 whereon a coil 18 is wound around is arranged in alternate polarity, a multipolar magnetization is performed by applying a current to each coil 18. If L/DELTAr<=4 is selected when the length in circumferential direction of a radial orientational magnetic pole is L and the thickness in radial direction is DELTAr, an excellent result can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ラジアル方向に多極に着磁された円筒磁石
、特に磁性粉末を含む樹脂組成リング状成形体の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cylindrical magnet magnetized into multiple poles in the radial direction, and particularly to a method for producing a ring-shaped molded resin composition containing magnetic powder.

〔従来の技術〕[Conventional technology]

ラジアル方向に多極化されたリング状磁石は小型モータ
をはじめ、各種の用途に広く用いられている。高性能の
ラジアル方向に多極化されたリング状磁石を製造するに
は、磁性粉末を成形してリング状にする過程において、
磁性粉末にラジアル方向の配向を起させて磁気異方性を
有するリング状磁性成形体とするのが望ましい。そして
、磁性粉末の配向が揃っているほど磁気特性が優れた磁
石が得られる。これを図についてさらに説明する。
Ring-shaped magnets with multiple poles in the radial direction are widely used in various applications including small motors. In order to manufacture a high-performance ring-shaped magnet with multiple poles in the radial direction, in the process of molding magnetic powder into a ring-shape,
It is desirable that the magnetic powder be oriented in the radial direction to form a ring-shaped magnetic compact having magnetic anisotropy. The more uniform the orientation of the magnetic powder, the better the magnetic properties of the magnet. This will be further explained with reference to the figures.

第8図は先に提案したリング状磁性成形体の製造方法で
使用する成型装置のソレノイドコイル、外型を構成する
第1の磁性部材、第2の磁性部材並びに内型の配置関係
を示すものであり、成型装置のキャビティの中心軸に垂
直な断面、すなわち第9図のI−I線に沿う断面図に相
当する。第9図は第8図のII −II線に沿う断面図
に相当する。
Figure 8 shows the arrangement of the solenoid coil of the molding device used in the previously proposed method for manufacturing a ring-shaped magnetic molded body, the first magnetic member and second magnetic member constituting the outer mold, and the inner mold. This corresponds to a cross section perpendicular to the central axis of the cavity of the molding device, that is, a cross section taken along line II in FIG. FIG. 9 corresponds to a cross-sectional view taken along line II--II in FIG. 8.

図中、1はポールピース、2はこれを囲繞するソレノイ
ドコイル、3は内型である磁性部材、4はその端部で前
記ポールピース1と接触してこれと磁気的に結合してい
る外型である磁性部材、5はキャビティ、6,7は前記
キャビティ5の上底。
In the figure, 1 is a pole piece, 2 is a solenoid coil surrounding it, 3 is an inner magnetic member, and 4 is an outer part that contacts the pole piece 1 at its end and is magnetically coupled to it. A magnetic member which is a mold, 5 is a cavity, and 6 and 7 are the upper bottom of the cavity 5.

下底である。(先に提案した発明は使用する成型装置の
各部分の磁気的相互関係に特徴を有するものであるので
、キャビティ5への磁石用組成物の供給手段およびキャ
ビティ5からの成形体の取出し手段等の成型装置の機械
的構成は公知のものに準ずればよいので、図ではすべて
省略されている。) 第8図の装置を用いてラジアル配向したリング状成形体
を製造するには、先ずキャビティ5に磁石用組成物を磁
性粉末が変位、すなわち、その位置や姿勢を変え得るよ
うに充填する。磁性粉末としてはフェライトをはじめ任
意のものを用い得るが、高性能の磁石を与えるサマリウ
ム−コバルト合金など稀土類元素を含む合金が好ましい
。このような合金の粉末に十分な配向を起させるには8
KOe以上の空間磁場の強さを必要とするが、この方法
によればキャビティ7内に容易にこのような強いラジア
ル方向の磁場を発生させることができる。
It is the bottom. (Since the previously proposed invention is characterized by the magnetic interrelationship of each part of the molding device used, the means for supplying the magnet composition to the cavity 5, the means for taking out the molded body from the cavity 5, etc. (The mechanical configuration of the molding device shown in FIG. 8 is omitted in the figure because it can be based on a known one.) In order to manufacture a radially oriented ring-shaped molded product using the device shown in FIG. 5 is filled with a magnet composition so that the magnetic powder can be displaced, that is, its position and orientation can be changed. As the magnetic powder, any material including ferrite can be used, but alloys containing rare earth elements such as samarium-cobalt alloys, which provide high performance magnets, are preferred. To induce sufficient orientation in the powder of such an alloy, 8
Although the strength of the spatial magnetic field is required to be greater than KOe, according to this method, such a strong radial magnetic field can be easily generated within the cavity 7.

キャビティ5内に磁石用組成物を充填したのち、左右の
ソレノイドコイルに逆向きの電流を通ずると第10図の
矢印に示すように磁場が発生し、キャビティ7内の磁石
用組成物の磁性粉末がこの方向に配向する。配向が完了
したときに組成物を固化させると、ラジアル配向した成
形体が得られる。なお、第1O図の矢印の向きは磁束の
向きを示し、その長さが磁束の大5さを示している。
After filling the cavity 5 with the magnet composition, when currents in opposite directions are passed through the left and right solenoid coils, a magnetic field is generated as shown by the arrow in FIG. 10, and the magnetic powder of the magnet composition in the cavity 7 is generated. is oriented in this direction. When the composition is solidified when orientation is completed, a radially oriented molded body is obtained. Note that the direction of the arrow in FIG. 1O indicates the direction of the magnetic flux, and the length thereof indicates the magnitude of the magnetic flux.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のラジアルに配向された磁石の場合、極ピッチが短
くなってくると(特に3mm以下)、隣同士の極で磁束
の閉ループを作る部分の面積が相対的に増大するために
磁石の持っている磁性を十分に引出すことが難しくなっ
てくるという問題点があった。
In the case of conventional radially oriented magnets, as the pole pitch becomes shorter (particularly 3 mm or less), the area of the part where adjacent poles create a closed loop of magnetic flux increases, so the magnet's holding capacity increases. There was a problem in that it became difficult to fully draw out the magnetism that existed.

この発明は上記の問題点を解決するためになされたもの
で、極ピッチが短くなっても、大きな表面磁束が得られ
るリング状多極磁石の製造方法を提供することを目的と
する。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a ring-shaped multipolar magnet that can obtain a large surface magnetic flux even if the pole pitch is shortened.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかるリング状多極磁石の製造方法は、成形
金型のリング状キャビティ内に充填した磁石粉末を含む
磁石用組成物に環状磁場を作用させて磁性粉末を円周方
向に配向させて固化し、次いで、リング状成形体の内面
または外面に多極着磁を行うようにしたものである。
A method for manufacturing a ring-shaped multipolar magnet according to the present invention includes applying an annular magnetic field to a magnet composition containing magnetic powder filled in a ring-shaped cavity of a molding die to orient the magnetic powder in the circumferential direction. After solidification, multipole magnetization is performed on the inner or outer surface of the ring-shaped molded body.

〔作用〕[Effect]

この発明においては、環状磁場を作用させることで、磁
性粉末が円周方向に配向された状態で固化する。次いで
、その内“面または外面に多極磁石を形成することによ
って、小型で表面磁力の大きいリング状多極磁石が得ら
れる。
In this invention, by applying an annular magnetic field, the magnetic powder is solidified in a circumferentially oriented state. Next, by forming a multipolar magnet on its inner or outer surface, a small ring-shaped multipolar magnet with a large surface magnetic force can be obtained.

〔実施例〕〔Example〕

第1図、第2図はこの発明による配向を施すための成型
装置の平面図並びに側面斜視図である。
1 and 2 are a plan view and a side perspective view of a molding apparatus for applying orientation according to the present invention.

これらの図において、11は内側に内径φ11の円筒状
の空間が形成された外型、12は円筒状の外径がφI2
であり、外型11の内径φ11より小さい内型であり、
いずれもセラミックス等の非磁性体で製造されている。
In these figures, 11 is an outer mold in which a cylindrical space with an inner diameter of φ11 is formed inside, and 12 is a cylindrical outer mold with an outer diameter of φI2.
, the inner mold is smaller than the inner diameter φ11 of the outer mold 11,
All of them are manufactured from non-magnetic materials such as ceramics.

13は内型12の中心を貫通している導体である。14
は底板で、導体13が導出される孔があるが他の部分で
外型11と内型12間のキャップを閉止している。]5
はリング状キャビティで、外型11と内型12との間に
形成される。
13 is a conductor passing through the center of the inner mold 12. 14
1 is a bottom plate, which has a hole through which the conductor 13 is led out, but other parts close the cap between the outer mold 11 and the inner mold 12. ]5
is a ring-shaped cavity formed between an outer mold 11 and an inner mold 12.

この成型装置による配向工程について次に説明する。The orientation process using this molding apparatus will be explained next.

まず、第1図に示すように、外型11と内型12との間
に形成されるリング状キャビティ15内に磁性粉末とバ
インダとからなる磁石用組成物を、磁性粉末が変位しう
るように充填する。
First, as shown in FIG. 1, a magnet composition consisting of magnetic powder and a binder is placed in a ring-shaped cavity 15 formed between an outer mold 11 and an inner mold 12 in such a way that the magnetic powder can be displaced. Fill it.

次いで、導体13に大電流の直流またはパルスを−流す
とこの大電流によって環状磁場ができ、従って、リング
状キャビティ15内の磁性粉末は円周方向に配向せしめ
られる。この環状磁場の大きさは使用する磁性粉末の原
料によって異なるが、例えば、稀土類磁石であれば10
KOe以上が必要である。そして、成型装置から取りは
ずすと第3図に示すようなリング状磁性成形体16が得
られる。このように、円周方向に配向されたリング状磁
性成形体の多極着磁を次に行う。これは通常の多極着磁
でよいが、その−例を以下に説明する。
Then, when a large direct current or pulse current is passed through the conductor 13, a ring-shaped magnetic field is created by this large current, so that the magnetic powder in the ring-shaped cavity 15 is oriented in the circumferential direction. The magnitude of this annular magnetic field varies depending on the raw material of the magnetic powder used, but for example, in the case of a rare earth magnet, 10
KOe or higher is required. When removed from the molding apparatus, a ring-shaped magnetic molded body 16 as shown in FIG. 3 is obtained. Multipolar magnetization of the ring-shaped magnetic molded body oriented in the circumferential direction in this manner is then performed. This may be normal multi-pole magnetization, and an example thereof will be explained below.

すなわち、第4図に示すように、磁性体17.hにコイ
ル18を巻回した着磁極19をその極性がN極とS極が
交互になるように、リング状磁性成形体16の外方に配
置する(第4図では=一部のみ示し、他は点線で示して
省略しである)。その後、各コイル18に電流を流すこ
とによって多極着磁が行える。
That is, as shown in FIG. 4, the magnetic material 17. A magnetized pole 19 with a coil 18 wound around it is placed outside the ring-shaped magnetic molded body 16 so that its polarity alternates between N and S poles (only a portion is shown in FIG. 4). Others are shown with dotted lines and omitted). Thereafter, multipolar magnetization can be performed by passing current through each coil 18.

なお、上記の実施例では環状磁場の作成に導体13に大
電流を流すことで行ったが、この他、第5図の示すよう
に、リング状キャビティ15に導体2oを巻きつけ、こ
れに直流またはパルス電流を流すことで環状磁場を作成
するようにしてもよい。これはトロイダルコイルの環状
コア内にできる環状磁場と同じものである。なお、第5
図では外型11は円形としである。
In the above embodiment, the annular magnetic field was created by passing a large current through the conductor 13, but in addition to this, as shown in FIG. Alternatively, an annular magnetic field may be created by passing a pulsed current. This is the same as the annular magnetic field created within the annular core of a toroidal coil. In addition, the fifth
In the figure, the outer mold 11 is circular.

この発明によれば24極、48極というよう、な極数が
極めて多いステップモータの作成に必要なリング状多極
磁石が容易に得られる。
According to the present invention, it is possible to easily obtain a ring-shaped multi-pole magnet necessary for producing a step motor having an extremely large number of poles, such as 24 poles or 48 poles.

さらに、第5図の実施例ではその都度、導体2゜を巻回
しなければならないのでこれを避けるため、導体20を
太いものを使用して巻回し、全体を1丁に分箸したり−
・体にしたりできるようにすれば、内部のリング状磁性
成形体16の取出しゃ、リング状キャビティ15内への
磁石用組成物の充填が容易になる。
Furthermore, in the embodiment shown in FIG. 5, it is necessary to wind the conductor 20 each time, so in order to avoid this, the conductor 20 is wound using a thick one, and the entire conductor 20 is divided into one piece.
- If the ring-shaped magnetic molded body 16 inside is taken out, it becomes easy to fill the ring-shaped cavity 15 with the magnet composition.

第6図は、多極着磁の他の例を示すもので、リング状磁
性成形体16の内外から着磁極19を当てて着磁を行う
場合であり、部分展開図として示したものである。
FIG. 6 shows another example of multi-pole magnetization, in which magnetization is performed by applying magnetizing poles 19 from the inside and outside of the ring-shaped magnetic molded body 16, and is shown as a partially developed view. .

第7図は、ラジアル配向磁石と、この発明による円周配
向磁石のL/Δr(L:磁極の円周方向の長さ、Δr:
半径方向の厚み)に対する1極当りの平均磁束密度を示
すものである。
FIG. 7 shows L/Δr (L: length of the magnetic pole in the circumferential direction, Δr:
It shows the average magnetic flux density per pole with respect to the thickness in the radial direction.

L/Δr≦4では、この発明による円周配向の方が従来
のラジアル配向のものより優れていることが解る。すな
わち、厚みΔrはほぼ一定の値とみてよいから、Lが小
さい方(これは極数が多いことを意味する)で、この発
明の効果が大きいことがわかる。
It can be seen that when L/Δr≦4, the circumferential orientation according to the present invention is superior to the conventional radial orientation. That is, since the thickness Δr can be considered to be a substantially constant value, it can be seen that the effect of the present invention is greater when L is smaller (which means a larger number of poles).

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、環状磁場を作用させて
磁石用組成物を固化し、その後、得られたリング状成形
体の内面または外面に多極着磁を行うようにしたので、
極数が多くなっても表面の磁束密度の大きいリング状多
極磁石が得られる効果があり、ステップモータその他に
今後広い利用が期待されるものである。
As explained above, in this invention, a magnet composition is solidified by applying an annular magnetic field, and then multipolar magnetization is performed on the inner or outer surface of the obtained ring-shaped molded body.
This has the effect of providing a ring-shaped multi-polar magnet with a large surface magnetic flux density even when the number of poles is increased, and is expected to be widely used in step motors and other applications in the future.

【図面の簡単な説明】 第1図はこの発明の一実施例に用いる成型装置の平面図
、第2図は第1図の斜視図、第3図はリング状磁性成形
体の斜視図、第4図はこの発明の一実施例に用いる多極
着磁装置の平面略図、第5図は他の成型装置を示す平面
略図、第6図は他の多極着磁装置の部分展開平面図、第
7図はラジアル配向磁石とこの発明による円周配向磁石
のL/Δrに対する1極当りの平均磁石密度との関係を
示す図、第8図、第9図は従来の成型装置の一例を示す
モ断面図とその■−■線による断面図、第10図は第8
図の成型装置によるキャビティおよびその周辺部におけ
る磁束の向きと大きさを示す図である。 図中、11は外型、12は内型、13は導体、14は底
板、15はリング状キャビティ、16はリング状磁性成
形体、17は磁性体、18はコイル、19は着磁極であ
る。 第1図 第2図 第3図   第4図 第5図   第6図 第7図 L/Δr 第8図
[Brief Description of the Drawings] Fig. 1 is a plan view of a molding device used in an embodiment of the present invention, Fig. 2 is a perspective view of Fig. 1, and Fig. 3 is a perspective view of a ring-shaped magnetic molded body. 4 is a schematic plan view of a multi-pole magnetizing device used in one embodiment of the present invention, FIG. 5 is a schematic plan view showing another molding device, and FIG. 6 is a partially expanded plan view of another multi-pole magnetizing device. FIG. 7 is a diagram showing the relationship between the average magnet density per pole and L/Δr of a radially oriented magnet and a circumferentially oriented magnet according to the present invention, and FIGS. 8 and 9 show an example of a conventional molding apparatus. Figure 10 is a cross-sectional view of the
It is a figure which shows the direction and magnitude|size of the magnetic flux in a cavity and its surrounding area by the molding apparatus of a figure. In the figure, 11 is an outer mold, 12 is an inner mold, 13 is a conductor, 14 is a bottom plate, 15 is a ring-shaped cavity, 16 is a ring-shaped magnetic molded body, 17 is a magnetic body, 18 is a coil, and 19 is a magnetized pole. . Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 L/Δr Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)成形金型のリング状キャビティ内に磁性粉末を含
む磁石用組成物を充填した後、前記磁性粉末を円周方向
に配向せしめる環状磁場を作用させて固化し、次いで、
得られたリング状成形体の内面または外面に多極着磁を
行うことを特徴とするリング状多極磁石の製造方法。
(1) After filling the ring-shaped cavity of the molding die with a magnet composition containing magnetic powder, solidify by applying an annular magnetic field that orients the magnetic powder in the circumferential direction, and then
A method for manufacturing a ring-shaped multipolar magnet, which comprises performing multipolar magnetization on the inner or outer surface of the obtained ring-shaped molded body.
(2)リング状成形体の半径方向の厚みをΔr、1個の
磁極の円周方向の長さをLとしたとき、L/Δrが4以
下であることを特徴とする特許請求の範囲第(1)項記
載のリング状多極磁石の製造方法。
(2) When the thickness of the ring-shaped molded body in the radial direction is Δr, and the length of one magnetic pole in the circumferential direction is L, L/Δr is 4 or less. A method for manufacturing a ring-shaped multipolar magnet according to item (1).
JP16018085A 1985-07-22 1985-07-22 Method for manufacturing ring-shaped multipole magnet Expired - Lifetime JPH0638377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16018085A JPH0638377B2 (en) 1985-07-22 1985-07-22 Method for manufacturing ring-shaped multipole magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16018085A JPH0638377B2 (en) 1985-07-22 1985-07-22 Method for manufacturing ring-shaped multipole magnet

Publications (2)

Publication Number Publication Date
JPS6221206A true JPS6221206A (en) 1987-01-29
JPH0638377B2 JPH0638377B2 (en) 1994-05-18

Family

ID=15709562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16018085A Expired - Lifetime JPH0638377B2 (en) 1985-07-22 1985-07-22 Method for manufacturing ring-shaped multipole magnet

Country Status (1)

Country Link
JP (1) JPH0638377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123318A (en) * 2011-12-12 2013-06-20 Mitsubishi Electric Corp Ring magnet, method of manufacturing ring magnet, and motor
CN105572220A (en) * 2015-12-14 2016-05-11 长春航空液压控制有限公司 Magnetizing device and method for performing flaw detection on sheet small-sized parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123318A (en) * 2011-12-12 2013-06-20 Mitsubishi Electric Corp Ring magnet, method of manufacturing ring magnet, and motor
CN105572220A (en) * 2015-12-14 2016-05-11 长春航空液压控制有限公司 Magnetizing device and method for performing flaw detection on sheet small-sized parts

Also Published As

Publication number Publication date
JPH0638377B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JPS6134249B2 (en)
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JP2860858B2 (en) Mold for magnetic powder molding
JP3774876B2 (en) Cylindrical radial anisotropic magnet forming device
JPS5923448B2 (en) anisotropic magnet
JPH0126418Y2 (en)
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP2001015340A (en) Method and device for manufacturing radial ring magnet
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPS6358033B2 (en)
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JPS6239526B2 (en)
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JPH04112504A (en) Manufacture of pare-earth magnet
JPH071727B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPS59211502A (en) Production of permanent magnet body having surface multipolar anisotropy
JPS62235703A (en) Anisotropic resin magnet
JPS60176206A (en) Radial direction bipolar magnet and manufacturing device thereof
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JPS62232107A (en) Anisotropic resin magnet
JPH0239852B2 (en) RINGUJOJISEISEIKEITAINOSEIZOHOHO
JPS6214411A (en) Manufacture of ring-shaped magnetic molded matter
JP4926834B2 (en) Radial anisotropic ring magnet manufacturing equipment
JP2002057018A (en) Permanent magnet and its manufacturing method