JPS6239526B2 - - Google Patents

Info

Publication number
JPS6239526B2
JPS6239526B2 JP54110916A JP11091679A JPS6239526B2 JP S6239526 B2 JPS6239526 B2 JP S6239526B2 JP 54110916 A JP54110916 A JP 54110916A JP 11091679 A JP11091679 A JP 11091679A JP S6239526 B2 JPS6239526 B2 JP S6239526B2
Authority
JP
Japan
Prior art keywords
resin
ferromagnetic powder
magnetic field
magnet
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110916A
Other languages
Japanese (ja)
Other versions
JPS5633934A (en
Inventor
Hiroshi Komeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11091679A priority Critical patent/JPS5633934A/en
Publication of JPS5633934A publication Critical patent/JPS5633934A/en
Publication of JPS6239526B2 publication Critical patent/JPS6239526B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明は希土類コバルト合金系強磁性粉末と樹
脂とを主成分とする円環状もしくは円柱状の異方
性樹脂磁石の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an anisotropic resin magnet having an annular or cylindrical shape, the main components of which are a rare earth cobalt alloy ferromagnetic powder and a resin.

電動機モータ用やステツピングモータ用永久磁
石として、従来より等方性焼結フエライト磁石を
多極着磁した永久磁石が使用されているが、近
年、さらに多極着磁された磁力の強い磁石が要望
されるようになつてきた。円環状または円柱状の
磁石で多極着磁を行なうためには、等方性あるい
は放射状に配向していなければならず、強磁力化
のたには放射状に配向する必要がある。
Permanent magnets made by magnetizing isotropic sintered ferrite magnets with multiple poles have traditionally been used as permanent magnets for electric motors and stepping motors, but in recent years, magnets with stronger magnetic force and magnets with even more poles have been used. It has become more and more demanded. In order to perform multipolar magnetization with an annular or cylindrical magnet, it must be isotropically or radially oriented, and in order to have a strong magnetic force, it must be radially oriented.

ストロンチウムフエライト粉末を、第1図に示
すような金型を用いて、磁場中において円環状に
成形し、その成形体を焼成して、放射状に配向し
た焼結異方性磁石を製造することは、公知であ
る。しかし、1000℃以上の高温度下で焼結を行な
わなければならず、このときに割れが生じる欠点
があつて、広く実用化されるに至つていない。な
お、図において、1は電磁コイル、2は鉄製の中
心棒、3は鉄製の磁路壁、4は円環状成形キヤビ
テイーに充填されているストロンチウムフエライ
ト粉末、5は真ちゆう製の金型下面、6は真ちゆ
う製の金型上面である。
It is possible to manufacture radially oriented sintered anisotropic magnets by molding strontium ferrite powder into an annular shape in a magnetic field using a mold as shown in Figure 1, and firing the molded body. , is publicly known. However, sintering must be carried out at a high temperature of 1000°C or higher, which causes cracks, so it has not been widely put into practical use. In the figure, 1 is the electromagnetic coil, 2 is the iron center rod, 3 is the iron magnetic path wall, 4 is the strontium ferrite powder filled in the annular molding cavity, and 5 is the lower surface of the brass mold. , 6 is the upper surface of the brass mold.

また、ストロンチウムフエライト粉末と樹脂と
よりなる樹脂磁石材料を用いて、磁場中で成形す
ることにより、放射状に配向した円環状磁石を製
造する方法も公知である。この永久磁石の最大エ
ネルギー積は1.5MGOeが限度であり、これ以上
の強磁力化は不可能である。
Furthermore, a method of manufacturing a radially oriented annular magnet by using a resin magnet material made of strontium ferrite powder and resin and molding it in a magnetic field is also known. The maximum energy product of this permanent magnet is limited to 1.5 MGOe, and it is impossible to make the magnet stronger than this.

さらに強磁力の円環状磁石を得るために、サマ
リウムコバルト合金粉末などの希土類コバルト系
合金粉末と樹脂とよりなる複合材料を用い、第1
図に示すような金型中で放射状磁場を印加して、
円環状磁石を成形しようとしても、希土類コバル
ト合金粉末はほとんど配向しない。
Furthermore, in order to obtain an annular magnet with strong magnetic force, a composite material made of rare earth cobalt alloy powder such as samarium cobalt alloy powder and resin was used.
By applying a radial magnetic field in the mold as shown in the figure,
Even if an annular magnet is formed, the rare earth cobalt alloy powder is hardly oriented.

第2図に、ストロンチウムフエライト粉末90重
量部とエチレン酢酸ビニル共重合樹脂10重量部と
よりなる混合物を用いて磁場中成形を行なつた場
合の、磁場の強さと、成形物の最大エネルギー積
との関係を実験により求めた結果を示す。これか
ら明らかなように、ストロンチウムフエライト粉
末を配向させるためには、約7000ガウスの磁場の
強さで十分であることがわかる。
Figure 2 shows the strength of the magnetic field and the maximum energy product of the molded product when molding is performed in a magnetic field using a mixture consisting of 90 parts by weight of strontium ferrite powder and 10 parts by weight of ethylene-vinyl acetate copolymer resin. The results of the experimentally determined relationship are shown below. As is clear from this, a magnetic field strength of approximately 7000 Gauss is sufficient to orient the strontium ferrite powder.

これに対して、サマリウムコバルト合金94重量
部とエチレン酢酸ビニル共重合樹脂6重量部とよ
りなる混合物を用いた場合の、印加磁場の強さ
と、成形物の最大エネルギー積との関係を示す
と、第3図のとおりである。これからサマリウム
コバルト合金粉末を配向させるためには、12000
ガウスの磁場の強さが必要であることがわかる。
On the other hand, the relationship between the strength of the applied magnetic field and the maximum energy product of the molded product when using a mixture consisting of 94 parts by weight of samarium cobalt alloy and 6 parts by weight of ethylene-vinyl acetate copolymer resin is as follows: As shown in Figure 3. From now on, in order to orient the samarium cobalt alloy powder, 12000
It can be seen that a Gaussian magnetic field strength is required.

しかしながら、第1図に示すような電磁石コイ
ルを具備した金型(成形物の形状は外径30mm,内
径24mm,高さ20mm)を用いて、放射状の磁場を発
生させた場合の、発生磁場の強さと印加電流との
関係を示すと、第4図のとおりである。これか
ら、発生磁場の強さは約8000ガウスで飽和してい
ることがわかる。
However, when a radial magnetic field is generated using a mold equipped with an electromagnetic coil as shown in Figure 1 (the molded product has an outer diameter of 30 mm, an inner diameter of 24 mm, and a height of 20 mm), the generated magnetic field is The relationship between strength and applied current is shown in FIG. 4. From this, it can be seen that the strength of the generated magnetic field is saturated at about 8000 Gauss.

以上のことから、ストロンチウムフエライト粉
末を放射状に配向させることは容易であるが、希
土類コバルト合金粉末を放射状に配向させること
は不可能であることが明らかである。
From the above, it is clear that it is easy to radially orient the strontium ferrite powder, but it is impossible to radially orient the rare earth cobalt alloy powder.

本発明は希土類コバルト系合金を用いて放射状
に配向した強磁力の円環状および円柱状磁石の製
造法を提供するものであり、厚さ方向に配向した
希土類コバルト合金系強磁性粉末と樹脂とを主成
分とするシート状樹脂磁石を巻いて円環状磁石を
製造することを特徴とする。さらに、上記シート
状樹脂磁石を金属棒またはプラスチツク棒の囲り
に巻いて円柱状磁石を製造することを特徴とす
る。
The present invention provides a method for manufacturing radially oriented ferromagnetic annular and cylindrical magnets using a rare earth cobalt alloy, in which a rare earth cobalt alloy ferromagnetic powder oriented in the thickness direction and a resin are used. It is characterized by manufacturing an annular magnet by winding a sheet-shaped resin magnet, which is the main component. Furthermore, the present invention is characterized in that the sheet-shaped resin magnet is wound around a metal rod or a plastic rod to produce a cylindrical magnet.

厚さ方向に配向したシート状樹脂磁石は、たと
えば第5図に示すような金型を用いて、成形する
ことができる。図の11は磁性体たとえば鉄から
なる金型下面、12は非磁性体たとえば真ちゆう
からなる周囲金型棒、13は鉄製の金型上面であ
る。周囲金型壁12を金型下面11に重ねてか
ら、樹脂磁石組成物を充填し、樹脂の融点以上の
温度に加熱し、希土類コバルト粉末が自由に動き
うる状態で、それに金型上面13を重ねて加圧す
る。その際に金型上面13と金型下面11との間
に12000ガウス以上の磁場を発生させてやると、
希土類コバルト粉末は磁束方向に配向し、その後
冷却固化することによつて、厚み方向に配向した
成形体が容易に得られる。
A sheet-like resin magnet oriented in the thickness direction can be molded using a mold as shown in FIG. 5, for example. In the figure, 11 is a lower surface of the mold made of a magnetic material such as iron, 12 is a surrounding mold rod made of a non-magnetic material such as brass, and 13 is an upper surface of the mold made of iron. After the peripheral mold wall 12 is stacked on the mold bottom surface 11, a resin magnet composition is filled and heated to a temperature above the melting point of the resin, and the mold top surface 13 is placed thereon in a state where the rare earth cobalt powder can move freely. Stack and apply pressure. At that time, if a magnetic field of 12,000 Gauss or more is generated between the mold upper surface 13 and the mold lower surface 11,
By orienting the rare earth cobalt powder in the magnetic flux direction and then cooling and solidifying it, a molded body oriented in the thickness direction can be easily obtained.

本発明により、従来より不可能であつた放射状
に配向した強磁力の円環状磁石の製造が可能にな
り、また、金属製またはプラスチツク製の中心棒
と一体になつた強磁力の円柱状磁石の製造も可能
になり、さらに長尺の円環状または円柱状磁石の
製造が可能になるなどの利点がある。
The present invention makes it possible to manufacture a radially oriented, strong-force annular magnet, which was previously impossible, and also makes it possible to manufacture a strong-magnetic cylindrical magnet that is integrated with a metal or plastic center rod. It also has the advantage of being easier to manufacture, and it also makes it possible to manufacture long annular or cylindrical magnets.

本発明において、希土類コバルト合金系強磁性
粉末としてサマリウムコバルトを主成分とする合
金粉末およびセリウムコバルトを主成分とする合
金粉末などを使用することができる。また、樹脂
としては、塩素化ポリエチレン,ポリ塩化ビニ
ル,エチレン酢酸ビニル共重合体,ニトリルゴ
ム,ポリシロキサンなどの可撓性のある樹脂を使
用することができる。
In the present invention, an alloy powder containing samarium cobalt as a main component, an alloy powder containing cerium cobalt as a main component, etc. can be used as the rare earth cobalt alloy-based ferromagnetic powder. Further, as the resin, flexible resins such as chlorinated polyethylene, polyvinyl chloride, ethylene vinyl acetate copolymer, nitrile rubber, and polysiloxane can be used.

以下に本発明の方法の詳細を実施例により説明
する。
The details of the method of the present invention will be explained below using examples.

〔実施例 1〕 塩素化ポリエチレン6重量部とサマリウムコバ
ルト合金粉末94重量部との混練物を、第5図に示
すような幅20mm、長さ100mm、厚さ3mmのシート
成形物の鉄と真ちゆう材とより構成される金型に
投入し、190℃に加熱して塩素化ポリエチレンを
溶融した状態で、厚さ方向に18000ガウスの磁場
を印加した。樹脂の軟化温度以下に冷却した後、
磁場を切り、反対の極性の磁場を印加して成形物
を脱磁した後、成形物を金型から取り出した。
[Example 1] A kneaded product of 6 parts by weight of chlorinated polyethylene and 94 parts by weight of samarium-cobalt alloy powder was mixed into a molded sheet of iron and steel having a width of 20 mm, a length of 100 mm, and a thickness of 3 mm as shown in Fig. 5. The chlorinated polyethylene was placed in a mold made of chlorinated polyethylene and heated to 190°C to melt it, and a magnetic field of 18,000 Gauss was applied in the thickness direction. After cooling to below the softening temperature of the resin,
After turning off the magnetic field and demagnetizing the molding by applying a magnetic field of opposite polarity, the molding was removed from the mold.

このようにして得たシート状成形物のB−H曲
線を測定すると、最大エネルギー積8.2MGOe,
残留磁束密度5900G,保磁力79000eであり、十分
に配向していた。
When the B-H curve of the sheet-shaped molded product obtained in this way was measured, the maximum energy product was 8.2MGOe,
The residual magnetic flux density was 5900G and the coercive force was 79000e, indicating sufficient orientation.

上記シート状成形物を巻いて、外径30mm,内径
24mm,高さ20mmの円環状磁石を作り、シールドケ
ースの中に装着して内面から4極着磁を行なつ
て、モータ用磁石を得た。
Roll the above sheet-shaped molded product, outer diameter 30mm, inner diameter
A toroidal magnet of 24 mm and 20 mm height was made, placed inside a shield case, and magnetized with four poles from the inside to obtain a motor magnet.

これに対して、同じサマリウムコバルト合金粉
末と塩素化ポリエチレンとの混練物を用いて第1
図に示すような金型を用いて8000ガウスの放射状
の磁場を印加して円環状磁石を成形した。その成
形物のB−H曲線を測定した結果、最大エネルギ
ー積0.8MGOe,残留磁束密度2000G,保磁力
79000eであり、全く配向していなかつた。
On the other hand, using the same kneaded material of samarium cobalt alloy powder and chlorinated polyethylene,
A radial magnetic field of 8000 Gauss was applied to mold a toroidal magnet using a mold as shown in the figure. As a result of measuring the B-H curve of the molded product, the maximum energy product was 0.8MGOe, the residual magnetic flux density was 2000G, and the coercive force was
79000e and was not oriented at all.

〔実施例 2〕 実施例1によつて得たシート状成形物を内径20
mmの鉄製の棒の曲りに巻きつけて外径26mm,高さ
20mmの円柱状磁石を作り、外周に6極着磁を行な
つて、モータ用磁石を得た。
[Example 2] The sheet-like molded product obtained in Example 1 was
Wrapped around a bent iron rod of 26mm outer diameter and height
A 20 mm cylindrical magnet was made, and the outer periphery was magnetized with 6 poles to obtain a motor magnet.

以上のようにして得たモータ用磁石は、その最
大エネルギー積が非常に大きいことから明らかの
ように、従来の焼結フエライト磁石よりも強磁力
である。
The motor magnet obtained as described above has a stronger magnetic force than the conventional sintered ferrite magnet, as is clear from its very large maximum energy product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放射状に磁場を印加して円環状の成形
物を成形する電磁石コイルを具備した金型の要部
断面図である。第2図はストロンチウムフエライ
ト粉末と樹脂とを使用して磁場中成形を行なつた
場合の、印加磁場の強さと成形物の磁気特性との
関係の一例を示す図である。第3図はサマリウム
コバルト合金粉末と樹脂とを使用して磁場中成形
を行なつた場合の印加磁場の強さと成形物の磁気
特性との関係の一例を示す図である。第4図は円
環状磁石を成形するときの金型の印加電流と発生
磁場の強さとの関係の一例を示す図である。第5
図は本発明の方法においてシート状成形物を成形
する場合の金型の一例を示す分解斜視図である。 11……金型下面、12……周囲金型壁、13
……金型上面。
FIG. 1 is a sectional view of a main part of a mold equipped with an electromagnetic coil that applies a magnetic field radially to form an annular molded product. FIG. 2 is a diagram showing an example of the relationship between the strength of the applied magnetic field and the magnetic properties of a molded product when molding is performed in a magnetic field using strontium ferrite powder and resin. FIG. 3 is a diagram showing an example of the relationship between the strength of an applied magnetic field and the magnetic properties of a molded product when molding is performed in a magnetic field using samarium cobalt alloy powder and resin. FIG. 4 is a diagram showing an example of the relationship between the current applied to the mold and the strength of the generated magnetic field when molding an annular magnet. Fifth
The figure is an exploded perspective view showing an example of a mold for molding a sheet-like molded product in the method of the present invention. 11... Lower surface of the mold, 12... Surrounding mold wall, 13
...Top surface of the mold.

Claims (1)

【特許請求の範囲】 1 ほぼ等方性形状の希土類コバルト合金系強磁
性粉末と樹脂とを主成分とする混合物を、前記樹
脂の融解温度以上に加熱し、前記強磁性粉末が自
由に動きうる状態で、12000ガウス以上の磁場を
印加することによつて前記強磁性粉末を所定の方
向に配向させて、冷却固化することを特徴とする
樹脂磁石の製造法。 2 ほぼ等方性形状の希土類コバルト合金系強磁
性粉末と樹脂とを主成分とする混合物を、前記樹
脂の融解温度以上に加熱し、前記強磁性粉末が自
由に動きうる状態で、12000ガウス以上の磁場を
印加することによつて前記強磁性粉末を厚さ方向
に配向させて、冷却固化して得たシート状成形物
を巻いて円環状または円柱状の異方性磁石とする
ことを特徴とする樹脂磁石の製造法。
[Claims] 1. A mixture mainly consisting of a rare earth cobalt alloy ferromagnetic powder having an approximately isotropic shape and a resin is heated to a temperature higher than the melting temperature of the resin so that the ferromagnetic powder can move freely. 1. A method for producing a resin magnet, which comprises applying a magnetic field of 12,000 Gauss or more to orient the ferromagnetic powder in a predetermined direction, and cooling and solidifying the ferromagnetic powder. 2 A mixture whose main components are a rare earth cobalt alloy-based ferromagnetic powder having an almost isotropic shape and a resin is heated to a temperature higher than the melting temperature of the resin, and heated to a temperature of 12,000 Gauss or higher in a state where the ferromagnetic powder can move freely. The ferromagnetic powder is oriented in the thickness direction by applying a magnetic field, and the sheet-shaped molded product obtained by cooling and solidifying is rolled to form an annular or columnar anisotropic magnet. A method for manufacturing resin magnets.
JP11091679A 1979-08-29 1979-08-29 Production of resin magnet Granted JPS5633934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11091679A JPS5633934A (en) 1979-08-29 1979-08-29 Production of resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11091679A JPS5633934A (en) 1979-08-29 1979-08-29 Production of resin magnet

Publications (2)

Publication Number Publication Date
JPS5633934A JPS5633934A (en) 1981-04-04
JPS6239526B2 true JPS6239526B2 (en) 1987-08-24

Family

ID=14547878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11091679A Granted JPS5633934A (en) 1979-08-29 1979-08-29 Production of resin magnet

Country Status (1)

Country Link
JP (1) JPS5633934A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014404A (en) * 1983-07-05 1985-01-25 Tdk Corp Rubber magnet and manufacture thereof
JPS60214517A (en) * 1984-04-10 1985-10-26 Nissin Electric Co Ltd Manufacture of ring permanent magnet magnetized in radial direction
JPH02263405A (en) * 1984-04-19 1990-10-26 Seiko Epson Corp Permanent magnet
JPH02191310A (en) * 1989-11-07 1990-07-27 Seiko Epson Corp Manufacture of tape-shaped permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121198A (en) * 1974-08-16 1976-02-20 Nippon Special Steel Co Ltd IHOSEIRINGUJOJUSHIJISHAKUNO SEIZOHOHO
JPS5334640A (en) * 1976-09-02 1978-03-31 Ibm Wet treating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121198A (en) * 1974-08-16 1976-02-20 Nippon Special Steel Co Ltd IHOSEIRINGUJOJUSHIJISHAKUNO SEIZOHOHO
JPS5334640A (en) * 1976-09-02 1978-03-31 Ibm Wet treating device

Also Published As

Publication number Publication date
JPS5633934A (en) 1981-04-04

Similar Documents

Publication Publication Date Title
JPS6359243B2 (en)
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
US7531050B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JP2940048B2 (en) Permanent magnet magnetization method
JPS6239526B2 (en)
JPS6134249B2 (en)
JP3007491B2 (en) Side-oriented anisotropic magnet
JPS5674907A (en) Manufacturing process of permanent magnet magnetized in radial direction
JPS6028377B2 (en) Manufacturing method for rolled magnets
JPS5656159A (en) Manufacture of peripheral pole asymmetric magnet for motor
JPS6156857B2 (en)
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPS5923448B2 (en) anisotropic magnet
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPS60145601A (en) Cylindrical multipolar resin magnet
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPS6344285B2 (en)
JPS62232107A (en) Anisotropic resin magnet
JPH053124B2 (en)
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JPH0637641B2 (en) Method for manufacturing surface multipolar anisotropic permanent magnet body
JPH0556644B2 (en)
JPS62235704A (en) Anisotropic resin magnet
JPS58173807A (en) Permanent magnet roll
JPH0343707Y2 (en)