JPS62232107A - Anisotropic resin magnet - Google Patents

Anisotropic resin magnet

Info

Publication number
JPS62232107A
JPS62232107A JP7417986A JP7417986A JPS62232107A JP S62232107 A JPS62232107 A JP S62232107A JP 7417986 A JP7417986 A JP 7417986A JP 7417986 A JP7417986 A JP 7417986A JP S62232107 A JPS62232107 A JP S62232107A
Authority
JP
Japan
Prior art keywords
resin magnet
magnet
magnetic
magnetic flux
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7417986A
Other languages
Japanese (ja)
Other versions
JPH071726B2 (en
Inventor
Naoji Otsuka
尚次 大塚
Junichi Horikawa
順一 堀川
Masaaki Kuroda
黒田 聖昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7417986A priority Critical patent/JPH071726B2/en
Publication of JPS62232107A publication Critical patent/JPS62232107A/en
Publication of JPH071726B2 publication Critical patent/JPH071726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To improve productivity and the magnetic characteristics in radial direction by providing the magneto-anisotropic orientation in the radial direction in an outer layer and the polar anisotropic orientation in an inner layer. CONSTITUTION:A magnet consists of a cylindrical resin magnet 1 (outer layer) magnetically orientated in the radial direction and a cylindrical resin magnet 2 (inner layer) orientated in polar anisotropy. The flow of magnetic flux in the cylindrical resin magnets is, as shown by an arrow, in the radial direction (inward direction), the orientation of magnetic powder, in the cylindrical resin magnet 1. When the magnetic flux arrives at the cylindrical resin magnet 2, the magnetic flux turns to the direction of the circumference along the direction of the axis of easy magnetization orientated in polar anisotropy and turns again to the radial direction (outward direction) into an adjacent pole when the magnetic flux arrives at the position of the inner radius side of the adjacent pole. That is, the layer of the cylindrical resin magnet 2 is effective for a back yoke, the magnetic flux is made a magnetically closed circuit in the magnet and magnetic performance is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円筒状又は円柱状の樹脂磁石に関するもので、
特に径方向に磁気異方性を有する異方性樹脂磁石に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cylindrical or columnar resin magnet,
In particular, the present invention relates to an anisotropic resin magnet having magnetic anisotropy in the radial direction.

(従来の技術) 従来よりカメラ、複写器、その他の機器に使用されるス
テッピングモーター等に使用する、円筒状の等方性樹脂
磁石や円筒状のラジアル異方性配向樹脂磁石等の円筒状
樹脂磁石か知られている。
(Prior art) Cylindrical resins such as cylindrical isotropic resin magnets and cylindrical radially anisotropically oriented resin magnets have been conventionally used in stepping motors used in cameras, copiers, and other equipment. It is known as a magnet.

等方性樹脂磁石は樹脂磁石材料中の磁性粉末が不定方向
に混入されており、各磁性粉末の磁化容易軸が不定方向
に向いている為、着&fi後の磁石特性が低い。
In an isotropic resin magnet, the magnetic powder in the resin magnet material is mixed in an undefined direction, and the axis of easy magnetization of each magnetic powder is oriented in an undefined direction, so that the magnetic properties after attachment and fixing are poor.

それに対して、第5図に示すようなラジアル異方性配向
樹脂磁石は、磁性粉末の磁化容易軸が円筒状樹脂磁石の
径方向に放射状に配向されており着磁後のlll1石特
性は等方性樹脂磁石に比べて良好となっている。
On the other hand, in a radially anisotropically oriented resin magnet as shown in Fig. 5, the axis of easy magnetization of the magnetic powder is oriented radially in the radial direction of the cylindrical resin magnet, and the characteristics after magnetization are equal. This is better than a oriented resin magnet.

このラジアル異方性配向の円筒状樹脂磁石を製造する方
法としては、成形時において磁性粉を径方向に磁気配向
させておき、その磁気配向にそって着磁を施すという方
法かほとんどであった。この径方向に磁気配向した樹脂
磁石はT業的生産性に優れており、かつその配向性も非
常に高くすることが容易である。しかしこの配向は直線
状−左方向であるため、外周に多極着磁する際に!j、
える磁束の方向と配向が一致しない。そのため着磁後磁
石内を通る磁束は径方向だけになり、磁石外の磁気抵抗
の大きい空気中において磁気的に閉じることになり、そ
の特性は弱いものとなる。
The most common method for manufacturing cylindrical resin magnets with radial anisotropic orientation is to magnetically orient magnetic powder in the radial direction during molding, and then magnetize it along that magnetic orientation. . This radially magnetically oriented resin magnet has excellent productivity in the T industry, and its orientation can be easily made very high. However, since this orientation is linear - to the left, when multipole magnetizing the outer periphery! j,
The direction and orientation of the magnetic flux generated by the magnetic flux do not match. Therefore, after magnetization, the magnetic flux passing through the magnet is only in the radial direction, and it is magnetically closed in the air outside the magnet, which has a high magnetic resistance, and its characteristics become weak.

又、さらに磁石特性の向上を図るため、第6図に示す様
に、円筒状樹脂磁石の外周方向に対して極異方性配向を
示した極異方性配向樹脂磁石が良好とされている。しか
しながらこのような従来の極異方性配向樹脂磁石は、第
6図に示すように第7図の様な極数の少ない多極の極異
方性配向品に比較して円筒状及び円柱状樹脂磁石の極数
が多極になるほど磁性粉末の配向度の低下が大きくなる
という欠点があった。すなわち多極になればなる程配向
用磁極からの主な磁束が成形品の深い所を通らずに最短
距離である表面のみを通ってしまうという原理的欠陥が
あった。よって成形品肉厚を増してマグネットの磁気特
性をアップさせて動作点を高くしようとしても表面層か
らの配向の深さは変わらない為に、深い所は多極配向の
場合、等方性のまま存在してしまい大きな向上が得られ
ず、高速回転体として使用しようとした場合に於ては慣
性モーメントだけが大きくなってしまい、かえって起動
周波数、最大応答周波数が低下してしまうという結果に
なっていた。また、この方法では磁性粉な配向すること
か容易でなく生産性も悪いという問題点があった。
In addition, in order to further improve magnetic properties, a polar anisotropically oriented resin magnet that exhibits polar anisotropic orientation in the outer circumferential direction of a cylindrical resin magnet is considered to be good, as shown in Figure 6. . However, such conventional polar anisotropically oriented resin magnets, as shown in FIG. There was a drawback that the higher the number of poles of the resin magnet, the greater the decrease in the degree of orientation of the magnetic powder. In other words, there is a fundamental flaw in that the more the number of poles increases, the more the main magnetic flux from the orientation magnetic poles passes through only the surface, which is the shortest distance, without passing deeper into the molded product. Therefore, even if you try to increase the operating point by increasing the thickness of the molded product and improving the magnetic properties of the magnet, the depth of orientation from the surface layer will not change. If it remains as it is, no significant improvement can be achieved, and when trying to use it as a high-speed rotating body, only the moment of inertia increases, resulting in a decrease in the starting frequency and maximum response frequency. was. Furthermore, this method has the problem that it is not easy to orient the magnetic powder and the productivity is poor.

本発明はl−記問題点に鑑み成されたものであり、その
[−1的は生産性が良くかつ径方向の磁気時P1を一層
向トさせた異方性樹脂磁石を得ることにある。
The present invention has been made in view of the problems mentioned above, and the object is to obtain an anisotropic resin magnet which is highly productive and further improves the magnetic field P1 in the radial direction. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記[1的は、円筒状樹脂磁石である外層と、
該外層に内接して設けられた樹脂磁石である内層とから
なる円柱状又は円筒状の異方性樹脂磁石であって、該外
層は径方向に磁気異方性配向を施されておりかつ該内層
は極異方性配向を施されている異方性樹脂磁石によって
達成される。
[1] The above-mentioned outer layer of the present invention is a cylindrical resin magnet;
A cylindrical or cylindrical anisotropic resin magnet consisting of an inner layer which is a resin magnet provided inscribed in the outer layer, the outer layer being magnetically anisotropically oriented in the radial direction and The inner layer is achieved by an anisotropic resin magnet with polar anisotropic orientation.

本発明の異方性樹脂磁石の一実施態様(円筒状のもの)
の概略図を第1図に示す。
One embodiment of the anisotropic resin magnet of the present invention (cylindrical)
A schematic diagram is shown in Figure 1.

図中の円筒状樹脂磁石は、径方向に磁気配向した円筒状
樹脂磁石1(外層)と極異方性配向した円筒状樹脂磁石
2(内層)とからなる。
The cylindrical resin magnet in the figure consists of a cylindrical resin magnet 1 (outer layer) magnetically oriented in the radial direction and a cylindrical resin magnet 2 (inner layer) magnetically oriented in the polar anisotropic orientation.

本発明の円筒状樹脂磁石内部での磁束の流れを第2図に
示す。
FIG. 2 shows the flow of magnetic flux inside the cylindrical resin magnet of the present invention.

矢印で示すように円筒状樹脂磁石1中においては磁性粉
の配向である径方向(内部方向)に磁束が流れる。その
磁束が円筒状樹脂磁石2に達すると、磁束は極異方性配
向された磁化容易軸の方向に添って周方向に向きを変え
隣接する極の内径側の位置まで達したところで再度径方
向(外部方向)に向きを変え隣接する極に入り込んで流
れる。
As shown by the arrow, magnetic flux flows in the radial direction (inward direction) in the cylindrical resin magnet 1, which is the orientation of the magnetic powder. When the magnetic flux reaches the cylindrical resin magnet 2, the magnetic flux changes its direction in the circumferential direction along the polar anisotropically oriented axis of easy magnetization, and when it reaches the position on the inner diameter side of the adjacent pole, it redirects in the radial direction. (outward direction) and flows into the adjacent pole.

すなわち、円筒状樹脂磁石2の層はバックヨークの役目
を果たし、磁石内において磁束が磁気的に閉じた回路を
作り磁気性能を向上させるものである。
That is, the layer of the cylindrical resin magnet 2 serves as a back yoke, and the magnetic flux creates a magnetically closed circuit within the magnet, thereby improving magnetic performance.

本発明の異方性樹脂磁石の内層は、上記のような円筒状
に限らず、円柱状であってもよい。
The inner layer of the anisotropic resin magnet of the present invention is not limited to the cylindrical shape as described above, but may be columnar.

本発明の異方性樹脂磁石は、磁性粉とバインダーを主成
分としてなり、その他、滑剤等が添加されてなる。
The anisotropic resin magnet of the present invention consists of magnetic powder and a binder as main components, and a lubricant and the like are added thereto.

磁性粉としては、フェライト系やサマリウムコバルト系
等の希!二類金属等が使用できるが、着磁のためのエネ
ルギーが少なくてすむフェライトが好適に使用される。
Rare magnetic powders include ferrite and samarium cobalt! Class 2 metals can be used, but ferrite is preferably used because it requires less energy for magnetization.

使用される具体的なフェライトとしてはストロンチウム
フェライトやバリウムフェライト等が挙げられる。
Specific examples of ferrites used include strontium ferrite and barium ferrite.

バインダーとしてはポリアミド、ポリブチレンテレフタ
レート、ポリフェニレンサルファイド等の従来公知の任
意の樹脂磁石用のバインダー材料が使用される。磁性粉
の配合割合は樹脂磁石の組成物の市4i1に対しおよそ
70wL%i〜90w1’);の範囲である。
As the binder, any conventionally known binder material for resin magnets, such as polyamide, polybutylene terephthalate, polyphenylene sulfide, etc., can be used. The mixing ratio of the magnetic powder is in the range of approximately 70wL%i to 90w1') with respect to the weight of the resin magnet composition.

滑剤としては、ステアリン酸や金属塩やビスアミド系等
が使用され、又、表面処理剤としてシラン系及びチタネ
ート系等が使用される。
Stearic acid, metal salts, bisamides, etc. are used as lubricants, and silanes, titanates, etc. are used as surface treatment agents.

本発明の異方性樹脂磁石は、インサート成形や2色成形
等の方法により内層と外層を一体成形したり、該方法に
より別々に成形された内層と外層をはめ合わせる等の簡
単な方法により、製造される。
The anisotropic resin magnet of the present invention can be produced by a simple method such as integrally molding the inner layer and outer layer by methods such as insert molding or two-color molding, or fitting together the inner layer and outer layer that have been separately molded by the method. Manufactured.

インサート成形の方法を、第4図を用いて説明する。The insert molding method will be explained using FIG. 4.

第4図中2はあらかじめ極異方性配向された内側樹脂磁
石であり、4は外側樹脂磁石をラジアル異方性配向され
るための磁束である。5は内側樹脂磁石2と金型成形面
から成形される外側樹脂磁石成形用キャビティーである
In FIG. 4, reference numeral 2 indicates an inner resin magnet which has been polar anisotropically oriented in advance, and 4 indicates a magnetic flux for radially anisotropically oriented the outer resin magnet. 5 is an outer resin magnet molding cavity formed from the inner resin magnet 2 and the molding surface of the mold.

まず極異方性配向された内側樹脂磁石2をラジアル異方
性配向用磁極3を成形布に持つキャビチーを5内に内側
極異方性配向磁石2の磁極とラジアル異方性配向用磁極
3の位置を対向するように合わせて設置し、ラジアル異
方性配向用磁極3に磁場を印加し磁束4を保持した状態
でキャビティー5内に溶融状態の樹脂磁石材料を充填し
磁性粉末を磁束4の方向に配向し、冷却、固化後、第1
図に示ずような極異方性配向を施したような磁束の閉じ
た異方性配向樹脂磁石を得た。
First, a cavity with a molded cloth containing an inner resin magnet 2 with polar anisotropy orientation and a magnetic pole 3 for radial anisotropic orientation is placed inside the cavity 5, and the magnetic pole of the inner polar anisotropic orientation magnet 2 and the magnetic pole 3 for radial anisotropic orientation A magnetic field is applied to the magnetic pole 3 for radial anisotropy orientation to maintain the magnetic flux 4, and a molten resin magnet material is filled into the cavity 5, and the magnetic powder is applied to the magnetic flux. After cooling and solidifying, the first
An anisotropically oriented resin magnet with a closed magnetic flux as shown in the figure was obtained.

上記製造方法で、ラジアル異方性配向用磁極の数を増や
せば、もっと多極の第3図に示すような異方性配向樹脂
磁石が得られる。
By increasing the number of magnetic poles for radial anisotropic orientation in the above manufacturing method, an anisotropically oriented resin magnet having even more poles as shown in FIG. 3 can be obtained.

面記実施例においては、第1回成形の極異方性配向成形
品を第4図の様な多極のキャビディーにインサートして
成形配向を行ったが、これらによらず第1回成形品を第
8図の様なN、Sの2棒のラジアル配向用金型にインサ
ートし、成形することによっても配向させることができ
る。この方法はN、Sの2極だけなのでインサート成形
品をつきぬけさせて強力な磁場をかけることが可能であ
る。
In the surface example, the polar anisotropically oriented molded product of the first molding was inserted into a multipolar cavity as shown in Fig. 4 and the molding orientation was performed. Orientation can also be achieved by inserting the product into a two-rod radial orientation mold, N and S, as shown in FIG. 8, and molding it. Since this method uses only two poles, N and S, it is possible to apply a strong magnetic field through the insert molded product.

以」−説明したように本発明の異方性樹脂磁石は内径側
に極異方性配向樹脂磁石を設けているため、バックヨー
クを設けたことになり、磁石としての性能が高い。
As described above, since the anisotropic resin magnet of the present invention has a polar anisotropic oriented resin magnet on the inner diameter side, a back yoke is provided, and the magnet has high performance.

(発明の効果) 本発明の異方性樹脂磁石は、 ・磁束が閉じているため径方向の磁気性能が強い・径が
大きくても、多極に着磁しても、磁束が樹脂磁石の中心
部まで達するので磁気性能が弱くならない、 ・磁束が閉じたものでありながら、製造方法が簡単であ
る、 等の効果がある。
(Effects of the invention) The anisotropic resin magnet of the present invention has strong magnetic performance in the radial direction because the magnetic flux is closed.Even if the diameter is large or multi-pole magnetized, the magnetic flux of the resin magnet is The magnetic performance does not weaken because it reaches the center, and the manufacturing method is simple even though the magnetic flux is closed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は本発明の異方性樹脂磁石の概略図で
あり、第2図は磁石中の磁束の流れを表す模式図であり
、第4図はインサート成形を示す模式図であり、第5図
は径方向に異方性配向した円筒状樹脂磁石の平面模式図
であり、第6図及び第7図は極異方性配向した樹脂磁石
の平面模式図であり、第8図は着磁方法の例を示す模式
図である。 1:径方向に磁気配向した円筒状樹脂磁石(外層) 2:極異方性配向した円筒状樹脂磁石 (内層) 3ニラシアル異方性配向用磁極 4:磁束 5:キャビティー
Figures 1 and 3 are schematic diagrams of the anisotropic resin magnet of the present invention, Figure 2 is a schematic diagram showing the flow of magnetic flux in the magnet, and Figure 4 is a schematic diagram showing insert molding. 5 is a schematic plan view of a cylindrical resin magnet oriented anisotropically in the radial direction, FIGS. 6 and 7 are schematic plan views of a resin magnet oriented polar anisotropically, and FIG. The figure is a schematic diagram showing an example of a magnetization method. 1: Cylindrical resin magnet with radial magnetic orientation (outer layer) 2: Cylindrical resin magnet with polar anisotropic orientation (inner layer) 3 Magnetic pole for radially anisotropic orientation 4: Magnetic flux 5: Cavity

Claims (1)

【特許請求の範囲】[Claims]  円筒状樹脂磁石である外層と、該外層に内接して設け
られた樹脂磁石である内層とからなる円柱状又は円筒状
の異方性樹脂磁石であって、該外層は径方向に磁気異方
性配向を施されておりかつ該内層は極異方性配向を施さ
れていることを特徴とする異方性樹脂磁石。
A cylindrical or cylindrical anisotropic resin magnet consisting of an outer layer that is a cylindrical resin magnet and an inner layer that is a resin magnet provided inscribed in the outer layer, the outer layer having magnetic anisotropy in the radial direction. 1. An anisotropic resin magnet, characterized in that the inner layer is polar-anisotropically oriented.
JP7417986A 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof Expired - Fee Related JPH071726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7417986A JPH071726B2 (en) 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7417986A JPH071726B2 (en) 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62232107A true JPS62232107A (en) 1987-10-12
JPH071726B2 JPH071726B2 (en) 1995-01-11

Family

ID=13539683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7417986A Expired - Fee Related JPH071726B2 (en) 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH071726B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet
JP2010142082A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Brushless electrical machine
WO2013147157A1 (en) * 2012-03-30 2013-10-03 日本ピストンリング株式会社 Rotating electrical machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet
JP4701641B2 (en) * 2004-07-02 2011-06-15 三菱電機株式会社 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP2010142082A (en) * 2008-12-15 2010-06-24 Seiko Epson Corp Brushless electrical machine
WO2013147157A1 (en) * 2012-03-30 2013-10-03 日本ピストンリング株式会社 Rotating electrical machine

Also Published As

Publication number Publication date
JPH071726B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US4547758A (en) Cylindrical permanent magnet and method of manufacturing
JP4029679B2 (en) Bond magnet for motor and motor
JP2006019573A (en) Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet
JPS62232107A (en) Anisotropic resin magnet
USRE34229E (en) Cylindrical permanent magnet and method of manufacturing
JPS62235704A (en) Anisotropic resin magnet
JPS62235703A (en) Anisotropic resin magnet
JPS6134249B2 (en)
JPH0341965B2 (en)
JPH07250460A (en) Manufacture of dice for orienting magnetic field and flexible magnet
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP3774876B2 (en) Cylindrical radial anisotropic magnet forming device
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JP2003151825A (en) Magnet roller
JP2002343661A (en) Cylindrical bonded magnet and coreless motor
JPS5923448B2 (en) anisotropic magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPS62232910A (en) Manufacture of multi-polar anisotropic resinous magnet
JPS6239526B2 (en)
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JP2563404B2 (en) Anisotropic permanent magnet
JPH0556644B2 (en)
JPS6211212A (en) Injection molding die for manufacturing plastic magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees