JPH071726B2 - Anisotropic resin magnet and manufacturing method thereof - Google Patents

Anisotropic resin magnet and manufacturing method thereof

Info

Publication number
JPH071726B2
JPH071726B2 JP7417986A JP7417986A JPH071726B2 JP H071726 B2 JPH071726 B2 JP H071726B2 JP 7417986 A JP7417986 A JP 7417986A JP 7417986 A JP7417986 A JP 7417986A JP H071726 B2 JPH071726 B2 JP H071726B2
Authority
JP
Japan
Prior art keywords
magnet
resin magnet
resin
anisotropic
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7417986A
Other languages
Japanese (ja)
Other versions
JPS62232107A (en
Inventor
尚次 大塚
順一 堀川
聖昭 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7417986A priority Critical patent/JPH071726B2/en
Publication of JPS62232107A publication Critical patent/JPS62232107A/en
Publication of JPH071726B2 publication Critical patent/JPH071726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円筒状又は円柱状の樹脂磁石に関するもので、
特に径方向に磁気異方性を有する異方性樹脂磁石に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a cylindrical or cylindrical resin magnet,
Particularly, it relates to an anisotropic resin magnet having magnetic anisotropy in the radial direction.

〔従来の技術〕[Conventional technology]

従来よりカメラ、複写器、その他の機器に使用されるス
テッピングモーター等に使用する、円筒状の等方性樹脂
磁石や円筒状のラジアル異方性配向樹脂磁石等の円筒状
樹脂磁石が知られている。
BACKGROUND ART Cylindrical resin magnets such as cylindrical isotropic resin magnets and cylindrical radial anisotropic oriented resin magnets, which are used for stepping motors used in cameras, copying machines, and other devices, have been known. There is.

等方性樹脂磁石は樹脂磁石材料中の磁性粉末が不定方向
に混入されており、各磁性粉末の磁化容易軸が不定方向
に向いている為、着磁後の磁石特性が低い。
In the isotropic resin magnet, the magnetic powder in the resin magnet material is mixed in an indefinite direction, and the easy axis of magnetization of each magnetic powder is oriented in an indefinite direction, so the magnet characteristics after magnetization are low.

それに対して、第5図に示すようなラジアル異方性配向
樹脂磁石は、磁性粉末の磁化容易軸が円筒状樹脂磁石の
径方向に放射状に配向されており着磁後の磁石特性は等
方性樹脂磁石に比べて良好となっている。
On the other hand, in the radial anisotropic oriented resin magnet as shown in FIG. 5, the easy axis of magnetization of the magnetic powder is oriented radially in the radial direction of the cylindrical resin magnet, and the magnet characteristics after magnetization are isotropic. Is better than the magnetic resin magnet.

このラジアル異方性配向の円筒状樹脂磁石を製造する方
法としては、成形時において磁性粉を径方向に磁気配向
させておき、その磁気配向にそって着磁を施すという方
法がほとんどであった。この径方向に磁気配向した樹脂
磁石は工業的生産性に優れており、かつその配向性も非
常に高くすることが容易である。しかしこの配向は直線
状一方向であるため、外周に多極着磁する際に与える磁
束の方向と配向が一致しない。そのため着磁後磁石内を
通る磁束は径方向だけになり、磁石外の磁気抵抗の大き
い空気中において磁気的に閉じることになり、その特性
は弱いものとなる。
Most of the methods for producing the cylindrical resin magnet having the radial anisotropic orientation are such that magnetic powder is magnetically oriented in the radial direction at the time of molding, and magnetization is performed along the magnetic orientation. . This resin magnet magnetically oriented in the radial direction is excellent in industrial productivity, and its orientation can be easily made very high. However, since this orientation is a linear one direction, the orientation does not match the direction of the magnetic flux applied when the outer periphery is magnetized in multiple poles. Therefore, the magnetic flux passing through the magnet after magnetization is only in the radial direction, and is magnetically closed outside the magnet in the air having a large magnetic resistance, and the characteristic becomes weak.

又、さらに磁石特性の向上を図るため、第6図に示す様
に、円筒状樹脂磁石の外周方向に対して極異方性配向を
示した極異方性配向樹脂磁石が良好とされている。しか
しながらこのような従来の極異方性配向樹脂磁石は、第
6図に示すように第7図の様な極数の少ない多極の極異
方性配向品に比較して円筒状及び円柱状樹脂磁石の極数
が多極になるほど磁性粉末の配向度の低下が大きくなる
という欠点があった。すなわち多極になればなる程配向
用磁極からの主な磁束が成形品の深い所を通らずに最短
距離である表面のみを通ってしまうという原理的欠陥が
あった。よって成形品肉厚を増してマグネットの磁気特
性をアップさせて動作点を高くしようとしても表面層か
らの配向の深さは変わらない為に、深い所は多極配向の
場合、等方性のまま存在してしまい大きな向上が得られ
ず、高速回転体として使用しようとした場合に於ては慣
性モーメントだけが大きくなってしまい、かえって起動
周波数、最大応答周波数が低下してしまうという結果に
なっていた。また、この方法では磁性粉を配向すること
が容易でなく生産性も悪いという問題点があった。
Further, in order to further improve the magnet characteristics, as shown in FIG. 6, a polar anisotropic oriented resin magnet showing a polar anisotropic orientation in the outer peripheral direction of a cylindrical resin magnet is considered to be good. . However, such a conventional polar anisotropic oriented resin magnet has a cylindrical shape and a cylindrical shape as compared with a multipolar polar anisotropic oriented product with a small number of poles as shown in FIG. There is a drawback that the degree of orientation of the magnetic powder decreases more as the number of poles of the resin magnet increases. That is, there is a principle defect that as the number of poles increases, the main magnetic flux from the orienting magnetic pole does not pass through the deep portion of the molded product but only through the surface which is the shortest distance. Therefore, the depth of orientation from the surface layer does not change even if the thickness of the molded product is increased to improve the magnetic characteristics of the magnet to raise the operating point. However, when it is used as a high-speed rotating body, only the moment of inertia becomes large, and the starting frequency and maximum response frequency are reduced. Was there. Further, this method has a problem that it is not easy to orient the magnetic powder and the productivity is poor.

本発明は上記問題点に鑑み成されたものであり、その目
的は生産性が良くかつ径方向の磁気特性を一層向上させ
た異方性樹脂磁石を得ることにある。
The present invention has been made in view of the above problems, and an object thereof is to obtain an anisotropic resin magnet having good productivity and further improved radial magnetic characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、円筒状樹脂磁石である外層と、該
外層に内接して設けられた樹脂磁石である内層とからな
る円柱状又は円筒状の異方性樹脂磁石であって、該外層
は径方向に磁気異方性配向を施されておりかつ該内層
は、極異方性配向を施されていることを特徴とする異方
性樹脂磁石、および、 樹脂磁石を成形する金型のキャビティ内に極異方性配向
された円柱状又は円筒状の内側磁石を配置して、該内側
磁石と前記金型のキャビティとの間に外側磁石を形成す
るための樹脂成形用キャビティ部を設け、前記金型に径
方向への磁気異方性配向用の磁極部材を配置して、前記
キャビティ内に磁性材料を含んだ樹脂材料を注入すると
共に、前記注入樹脂材料の磁性材料を径方向へ磁気異方
性配向させ、前記内側磁石と外側磁石を一体化して円柱
状又は円筒状の異方性樹脂磁石を製造する方法によって
達成される。
The above-mentioned object of the present invention is a cylindrical or cylindrical anisotropic resin magnet comprising an outer layer which is a cylindrical resin magnet and an inner layer which is a resin magnet inscribed in the outer layer, wherein the outer layer Is anisotropically magnetically oriented in the radial direction, and the inner layer is polarically anisotropically oriented, and an anisotropic resin magnet and a mold for molding the resin magnet. A columnar or cylindrical inner magnet having polar anisotropic orientation is arranged in the cavity, and a resin molding cavity portion for forming an outer magnet is provided between the inner magnet and the cavity of the mold. A magnetic pole member for magnetic anisotropy orientation in the radial direction is arranged in the mold to inject a resin material containing a magnetic material into the cavity, and the magnetic material of the injected resin material in the radial direction. A magnetic anisotropy is oriented and the inner magnet and outer magnet are integrated into a circle. This is achieved by a method of manufacturing a columnar or cylindrical anisotropic resin magnet.

本発明の異方性樹脂磁石の一実施態様(円筒状のもの)
の概略図を第1図に示す。
One embodiment of the anisotropic resin magnet of the present invention (cylindrical one)
A schematic diagram of is shown in FIG.

図中の円筒状樹脂磁石は、径方向に磁気配向した円筒状
樹脂磁石1(外層)と極異方性配向した円筒状樹脂磁石
2(内層)とからなる。
The cylindrical resin magnet in the figure comprises a cylindrical resin magnet 1 (outer layer) magnetically oriented in the radial direction and a cylindrical resin magnet 2 (inner layer) oriented in polar anisotropy.

本発明の円筒状樹脂磁石内部での磁束の流れを第2図に
示す。
The flow of magnetic flux inside the cylindrical resin magnet of the present invention is shown in FIG.

矢印で示すように円筒状樹脂磁石1中においては磁性粉
の配向である径方向(内部方向)に磁束が流れる。その
磁束が円筒状樹脂磁石2に達すると、磁束は極異方性配
向された磁化容易軸の方向に添って周方向に向きを変え
隣接する極の内径側の位置まで達したところで再度径方
向(外部方向)に向きを変え隣接する極に入り込んで流
れる。
As shown by the arrow, in the cylindrical resin magnet 1, magnetic flux flows in the radial direction (inward direction), which is the orientation of the magnetic powder. When the magnetic flux reaches the cylindrical resin magnet 2, the magnetic flux changes its direction in the circumferential direction along the direction of the magnetically easy axis oriented in polar anisotropy and reaches the position on the inner diameter side of the adjacent pole. It changes its direction (outward) and flows into the adjacent pole.

すなわち、円筒状樹脂磁石2の層はバックヨークの役目
を果たし、磁石内において磁束が磁気的に閉じた回路を
作り磁気性能を向上させるものである。
That is, the layer of the cylindrical resin magnet 2 plays the role of a back yoke and creates a circuit in which magnetic flux is magnetically closed in the magnet to improve the magnetic performance.

本発明の異方性樹脂磁石の内層は、上記のような円筒状
に限らず、円柱状であってもよい。
The inner layer of the anisotropic resin magnet of the present invention is not limited to the cylindrical shape as described above, and may be a columnar shape.

本発明の異方性樹脂磁石は、磁性粉とバインダーを主成
分としてなり、その他、滑剤等が添加されてなる。
The anisotropic resin magnet of the present invention contains magnetic powder and a binder as main components, and further contains a lubricant and the like.

磁性粉としては、フェライト系やサマリウムコバルト系
等の希土類金属等が使用できるが、着磁のためのエネル
ギーが少なくてすむフェライトが好適に使用される。使
用される具体的なフェライトとしてはストロンチウムフ
ェライトやバリウムフェライト等が挙げられる。
As the magnetic powder, a rare earth metal such as a ferrite-based material or a samarium-cobalt-based material can be used, but a ferrite that requires less energy for magnetization is preferably used. Specific examples of ferrite used include strontium ferrite and barium ferrite.

バインダーとしてはポリアミド、ポリブチレンテレフタ
レート、ポリフェニレンサルファイド等の従来公知の任
意の樹脂磁石用のバインダー材料が使用される。磁性粉
の配合割合は樹脂磁石の組成物の重量に対しおよそ70wt
%〜90wt%の範囲である。
As the binder, any conventionally known binder material for resin magnets such as polyamide, polybutylene terephthalate, and polyphenylene sulfide is used. The mixing ratio of the magnetic powder is about 70 wt with respect to the weight of the resin magnet composition.
% To 90 wt%.

滑剤としては、ステアリン酸や金属塩やビスアミド系等
が使用され、又、表面処理剤としてシラン系及びチタネ
ート系等が使用される。
As the lubricant, stearic acid, metal salts, bisamides, etc. are used, and as the surface treatment agent, silanes, titanates, etc. are used.

本発明の異方性樹脂磁石はネインサート成形に基づく本
発明の製造方法により得られる。また、これ以外の方
法、例えば2色成形等の方法により内層と外層を一体成
形したり、該方法により別々に成形された内層と外層を
はめ合わせる等の簡単な方法によっても製造可能であ
る。ただし接着等による方法では、接着面の寸法精度を
高くする必要があり、また中間の接着層による磁場の影
響に悪い結果を引き起こす。一方、インサート成形に基
づく本発明の製造方法によれば、密着性が良く、磁場の
磁束への悪影響も無く、インサートによる外側磁石部分
の成形後の収縮作用による内側磁石と外側磁石の結合が
強まり、磁場回路の一体化が可能となる。
The anisotropic resin magnet of the present invention is obtained by the manufacturing method of the present invention based on the Ne insert molding. Further, it can be manufactured by a method other than this, for example, a simple method such as integrally molding the inner layer and the outer layer by a method such as two-color molding or fitting the inner layer and the outer layer separately molded by the method. However, in the method using adhesion or the like, it is necessary to increase the dimensional accuracy of the adhesion surface, and the adverse effect of the magnetic field due to the intermediate adhesion layer causes a bad result. On the other hand, according to the manufacturing method of the present invention based on insert molding, the adhesion is good, there is no adverse effect on the magnetic flux of the magnetic field, and the coupling between the inner magnet and the outer magnet is strengthened by the contracting action of the insert after molding the outer magnet portion. It becomes possible to integrate the magnetic field circuit.

本発明の製造方法の一実施態様を、第4図を用いて説明
する。
One embodiment of the manufacturing method of the present invention will be described with reference to FIG.

第4図中2はあらかじめ極異方性配向された内側樹脂磁
石であり、4は外側樹脂磁石をラジアル異方性配向され
るための磁束である。5は内側樹脂磁石2と金型成形面
から成形される外側樹脂磁石成形用キャビティーであ
る。
In FIG. 4, reference numeral 2 denotes an inner resin magnet that is polar-anisotropically oriented in advance, and reference numeral 4 denotes a magnetic flux for radially outwardly orienting the outer resin magnet. An outer resin magnet molding cavity 5 is molded from the inner resin magnet 2 and the molding surface of the mold.

まず極異方性配向された内側樹脂磁石2をラジアル異方
性配向用磁極3を成形面に持つキャビティーを5内に内
側極異方性配向磁石2の磁極とラジアル異方性配向用磁
極3の位置を対向するように合わせて設置し、ラジアル
異方性配向用磁極3に磁場を印加し磁束4を保持した状
態でキャビティー5内に溶融状態の樹脂磁石材料を充填
し磁性粉末を磁束4の方向に配向し、冷却、固化後、第
1図に示すような極異方性配向を施したような磁束の閉
じた異方性配向樹脂磁石を得た。
First, a cavity having a polar anisotropically oriented inner resin magnet 2 and a magnetic pole 3 for radial anisotropic orientation on the molding surface is provided in a cavity 5 in which a magnetic pole of the inner polar anisotropically oriented magnet 2 and a magnetic pole for radial anisotropic orientation are formed. 3 are installed so as to oppose each other, and a magnetic field is applied to the radial anisotropic orientation magnetic pole 3 to hold the magnetic flux 4, and the cavity 5 is filled with a molten resin magnet material to form a magnetic powder. After being oriented in the direction of the magnetic flux 4, cooled and solidified, an anisotropically oriented resin magnet with a closed magnetic flux, such as the polar anisotropic orientation shown in FIG. 1, was obtained.

上記製造方法で、ラジアル異方性配向用磁極の数を増や
せば、もっと多極の第3図に示すような異方性配向樹脂
磁石が得られる。
If the number of magnetic poles for radial anisotropic orientation is increased by the above manufacturing method, an anisotropic oriented resin magnet having more poles as shown in FIG. 3 can be obtained.

前記実施例においては、第1回成形の極異方性配向成形
品を第4図の様な多極のキャビティーにインサートして
成形配向を行ったが、これらによらず第1回成形品を第
8図の様なN,Sの2極のラジアル配向用金型にインサー
トし、成形することによっても配向させることができ
る。この方法はN,Sの2極だけなのでインサート成形品
をつきぬけさせて強力な磁場をかけることが可能であ
る。
In the above-mentioned embodiment, the first anisotropic molded product was inserted into the multipolar cavity as shown in FIG. 4 to perform the molded alignment. Can also be oriented by inserting and molding into a N, S bipolar bipolar orientation die as shown in FIG. Since this method has only two poles, N and S, it is possible to apply a strong magnetic field by making the insert molded product stick out.

以上説明したように本発明の異方性樹脂磁石は内径側に
極異方性配向樹脂磁石を設けているため、バックヨーク
を設けたことになり、磁石としての性能が高い。
As described above, since the anisotropic resin magnet of the present invention is provided with the polar anisotropic oriented resin magnet on the inner diameter side, it means that the back yoke is provided and the performance as a magnet is high.

〔発明の効果〕〔The invention's effect〕

本発明の異方性樹脂磁石は、 ・磁束が閉じているため径方向の磁気性能が強い ・径が大きくても、多極に着磁しても、磁束が樹脂磁石
の中心部まで達するので磁気性能が弱くならない、 ・磁束が閉じたものでありながら、製造方法が簡単であ
る、 等の効果がある。また、本発明の製造方法によれば、密
着性が良く、磁場の磁束への悪影響も無く、インサート
による外側磁石部分の成形後の収縮作用による内側磁石
と外側磁石の結合が強まり、磁場回路の一体化が可能と
なる。
The anisotropic resin magnet of the present invention has a strong magnetic performance in the radial direction because the magnetic flux is closed. The magnetic flux reaches the central portion of the resin magnet regardless of whether it has a large diameter or is magnetized in multiple poles. The magnetic performance does not deteriorate. ・ Even though the magnetic flux is closed, the manufacturing method is simple, and so on. Further, according to the manufacturing method of the present invention, the adhesion is good, there is no adverse effect on the magnetic flux of the magnetic field, the coupling between the inner magnet and the outer magnet is strengthened by the contracting action of the insert after molding the outer magnet portion, and Integration is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第3図は本発明の異方性樹脂磁石の概略図で
あり、第2図は磁石中の磁束の流れを表す模式図であ
り、第4図はインサート成形を示す模式図であり、第5
図は径方向に異方性配向した円筒状樹脂磁石の平面模式
図であり、第6図及び第7図は極異方性配向した樹脂磁
石の平面模式図であり、第8図は着磁方法の例を示す模
式図である。 1:径方向に磁気配向した円筒状樹脂磁石(外層) 2:極異方性配向した円筒状樹脂磁石(内層) 3:ラジアル異方性配向用磁極 4:磁束 5:キャビティー
1 and 3 are schematic diagrams of the anisotropic resin magnet of the present invention, FIG. 2 is a schematic diagram showing the flow of magnetic flux in the magnet, and FIG. 4 is a schematic diagram showing insert molding. Yes, fifth
FIG. 6 is a schematic plan view of a cylindrical resin magnet that is anisotropically oriented in the radial direction, FIGS. 6 and 7 are schematic plan views of a resin magnet that is polar anisotropically oriented, and FIG. It is a schematic diagram which shows the example of a method. 1: Cylindrical resin magnet with magnetic orientation in the radial direction (outer layer) 2: Cylindrical resin magnet with polar anisotropic orientation (inner layer) 3: Magnetic pole for radial anisotropic orientation 4: Magnetic flux 5: Cavity

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒状樹脂磁石である外層と、該外層に内
接して設けられた樹脂磁石である内層とからなる円柱状
又は円筒状の異方性樹脂磁石であって、該外層は径方向
に磁気異方性配向を施されておりかつ該内層は、極異方
性配向を施されていることを特徴とする異方性樹脂磁
石。
1. A cylindrical or cylindrical anisotropic resin magnet comprising an outer layer, which is a cylindrical resin magnet, and an inner layer, which is a resin magnet provided inscribed in the outer layer, wherein the outer layer has a diameter. An anisotropic resin magnet, characterized in that it is magnetically anisotropic oriented in a direction and the inner layer is polar anisotropically oriented.
【請求項2】樹脂磁石を成形する金型のキャビティ内に
極異方性配向された円柱状又は円筒状の内側磁石を配置
して、該内側磁石と前記金型のキャビティとの間に外側
磁石を形成するための樹脂成形用キャビティ部を設け、
前記金型に径方向への磁気異方性配向用の磁極部材を配
置して、前記キャビティ内に磁性材料を含んだ樹脂材料
を注入すると共に、前記注入樹脂材料の磁性材料を径方
向へ磁気異方性配向させ、前記内側磁石と外側磁石を一
体化して円柱状又は円筒状の異方性樹脂磁石を製造する
方法。
2. A cylindrical or cylindrical inner magnet having polar anisotropic orientation is arranged in a cavity of a mold for molding a resin magnet, and an outer side is provided between the inner magnet and the mold cavity. Providing a resin molding cavity for forming a magnet,
A magnetic pole member for magnetic anisotropy orientation in the radial direction is arranged in the mold, a resin material containing a magnetic material is injected into the cavity, and the magnetic material of the injected resin material is magnetized in the radial direction. A method for producing a columnar or cylindrical anisotropic resin magnet by anisotropically orienting and integrating the inner magnet and the outer magnet.
JP7417986A 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof Expired - Fee Related JPH071726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7417986A JPH071726B2 (en) 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7417986A JPH071726B2 (en) 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62232107A JPS62232107A (en) 1987-10-12
JPH071726B2 true JPH071726B2 (en) 1995-01-11

Family

ID=13539683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7417986A Expired - Fee Related JPH071726B2 (en) 1986-04-02 1986-04-02 Anisotropic resin magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH071726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701641B2 (en) * 2004-07-02 2011-06-15 三菱電機株式会社 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP5381072B2 (en) * 2008-12-15 2014-01-08 セイコーエプソン株式会社 Brushless electric machine
WO2013147157A1 (en) * 2012-03-30 2013-10-03 日本ピストンリング株式会社 Rotating electrical machine

Also Published As

Publication number Publication date
JPS62232107A (en) 1987-10-12

Similar Documents

Publication Publication Date Title
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JPH071726B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPH071727B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPH0341965B2 (en)
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPH0220129B2 (en)
JPS62235703A (en) Anisotropic resin magnet
JPS588571B2 (en) Simultaneous orientation magnetization method in injection molding
JP3774876B2 (en) Cylindrical radial anisotropic magnet forming device
JPS6142249A (en) Manufacture of rotor with permanent magnet
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JPS60145601A (en) Cylindrical multipolar resin magnet
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPH0138903Y2 (en)
JPS62232910A (en) Manufacture of multi-polar anisotropic resinous magnet
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JPH0638377B2 (en) Method for manufacturing ring-shaped multipole magnet
JPH027856A (en) Manufacturing device for rotor of rotary electric machine
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JP2002343661A (en) Cylindrical bonded magnet and coreless motor
JP2001185412A (en) Anisotropic bonded magnet
JPS58218858A (en) Manufacture of permanent magnet for rotary machine
JPH0618137B2 (en) Mold for plastic magnet
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees